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ABSTRACT

In this paper, we present an algorithm to automatically construct all
the conformations of a heterogeneous planar object from their tomo-
graphic projections at random unknown view angles. Our statisti-
cally motivated approach can reveal and analyze the heterogeneity
in the projection dataset and segregate the projections belonging to
different structures without requiring prior structural information or
templates, expert human intervention or even the knowledge of the
number of conformations present in the sample. Even in the pres-
ence of high noise variance (low SNR) and a large number of con-
formations, our algorithm can estimate the structures of each con-
formation to a high degree of accuracy. We demonstrate the broad
applicability of our algorithm by evaluating its performance on syn-
thetic 2D datasets of well-known protein complexes such as Lipase
under varying levels of noise and different number of conformations.

Index Terms— Cryo-electron microscopy, Heterogeneity, To-
mography, Ab initio reconstruction

1. INTRODUCTION

Over the years, single particle cryo-electron-microscopy [1] (re-
ferred to hereafter as Cryo-EM) has seen the development of many
sophisticated algorithms to analyze the structures of macromolec-
ular complexes up to a resolution of 7-10A [2, 3, 4, 1]. However,
biological assemblies are dynamic machines that adopt a wide range
of structures (called ‘conformations’) necessary for carrying out
some of their vital functions. For example, a sample of a certain
ribosome may have different sub-units as they have to synthesize
various polypeptide chains [5], or a virus sample may consist of
virions in different maturation stages [6]. Such conformational
variability poses a challenge to standard Cryo-EM reconstruction
algorithms which often assume that projections belong to identical
structures. Not segregating the projections belonging to different
conformations will limit the level of detail revealed in the estimated
structures, as the information from the different conformations will
be averaged out in the final reconstruction.

Prior work: Much of the prior research in this area belongs
to one of the following categories: (1) The most general strategy
used for separating heterogeneous projections is based on supervised
classification [7, 8], which uses known reference structures to isolate
the projections. The dependency on a priori knowledge severely
restricts the widespread use of this approach. (2) Other methods
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use alternating schemes, in which orientation and class assignment
are simultaneously refined. However, as this is a highly non-convex
optimization problem, the effectiveness of this class of methods is
generally difficult to predict. (3) The few algorithms that do not
require a prior template require the user to provide the number of
conformations K [9, 10, 11]. An incorrect input is detrimental, as
essential structures can be overlooked and reconstructed structures
may compose of an average of two or more conformations [12]. In
[9] particularly, results are only shown for the case of no noise and
an equal number of projections from each conformation.

Contributions: To address the heterogeneity issue we have
developed an algorithm that makes it possible to discover all the
conformations present in a sample without expert intervention, prior
templates, or an input of the number of discrete sample confor-
mations. Through a robust statistical analysis, we separate the
noisy projections belonging to different conformations and then
independently reconstruct all the different structures using a noise-
resistant procedure. In this paper, we will describe our approach
and present results on reconstructing 2D images (and hence simu-
lated 1D parallel-beam projections), even though actual objects are
3D. This follows previous work in the image processing commu-
nity which has studied the 2D variant of this problem extensively
[13, 14, 15]. Nonetheless, the underlying principles remain the
same, and the computational problem remains very challenging
even for reconstructing heterogeneous 2D images.

Algorithm Overview: In Sec. 2, we describe a pre-processing
procedure to obtain a representative set of denoised projections, from
noisy ones. We then present a method to cluster these projections
according to their respective conformations in Sec. 3. After the
projections are separated, we proceed to independently reconstruct
each of the conformations using the approach described in Sec. 4.
The performance of the algorithm is demonstrated in Sec. 5. Finally,
we conclude in Sec. 6 with a discussion of future work.

2. PRE-PROCESSING OF THE PROJECTION DATASET

2.1. Robust class-based clustering

Typically in the case of Cryo-EM, we seek to obtain a representative
set of less noisy projections by clustering them into a small num-
ber of classes, based on orientation and structural similarity [16, 17,
18]. In the case of multi-particle reconstruction, however, we have
observed that standard algorithms like K-means generate clusters
containing projections belonging to different conformations, mak-
ing them ineffective in reconstructing either of the conformations.
To generate ‘pure’ clusters, we turn to other clustering algorithms,



such as the Single-linkage clustering algorithm [19]. This is a variant
of hierarchical clustering [20] which treats each data point as a sin-
gleton cluster, and then successively merges clusters until a user-set
condition is satisfied. Here, we merge in each step, the two clus-
ters with the smallest minimum pairwise Euclidean distance d,,in
until dpin < €. The threshold e determines our estimate of the
distance between projections R, f and Rg, f of the same confor-
mation of image f(z,y) at angles 61, 0> respectively. We choose €
to be a small value such that only clusters with projections belong-
ing to the same conformation are merged at each step. However, ¢
should also be large enough, such that there are a sufficient number
of projections assigned to each cluster to perform the averaging step
effectively. In our experiments, we have found that a small value
of € (empirically determined as 1.15, see Sec. 5) works for a broad
range of biological complexes, that is, in each case, the clusters pro-
duced have a sufficient number of projections belonging predomi-
nantly to one conformation. Henceforth, we will denote the number
of clusters generated as K .. Within each pure cluster, we define the
processed representative projection p; (for cluster index j), where
1 <5 < K., to be the average of all the projections assigned to that
cluster. This averaging induces a basic form of filtering to remove
the noise.

2.2. Patch-Based Denoising

The processed cluster centers {p; }f:cl as obtained in the previous
step are significantly less noisy. The residual noise is removed by
passing the cluster centers ({p; }f;l) through a patch-based PCA
denoising algorithm adapted from [21] (see supplementary material
for more details). Hereafter, we use the symbol ¢; to refer to the
denoised version of the cluster center p;.

3. CLASSIFICATION

We consider that heterogeneity is intrinsically a clustering/classifi-
cation problem. Here we present a feature-based method to help
segregate the projections belonging to distinct conformations.

3.1. Preliminary Classification using a moment-based approach

In a majority of cases, heterogeneity is the result of the addi-
tion/removal of certain subunits. For example, in the case of
proteins, heterogeneity is often caused by addition of carbohy-
drates or lipids into the protein polypeptide chain [22]. This im-
plies a change in the average electron density of the object. In
other words, different conformations will likely have a different
zero frequency/average value. As it turns out, using the Helga-
son Ludwig Consistency Conditions (HLCC) [23], we transform
this empirical observation into an equivalent metric for classify-
ing projections belonging to different conformations. The HLCC
[23] give the following relationship between the geometric mo-
ments of the underlying image f(z,y) and those of its projections
at any angle: m{" = "o () (cos )" 77 (sin 6) v, —;,;, where
Vpg = [ [ fz,y) aPy? dx dy denotes the order (p,q)

image moment and mém £ [ g(p,0)p" dp denotes the order

n projection moment. When n = 0, we obtain méo) = vo,0, 1.€.
the zeroth-order moment of a projection (LHS) is equal to the sum-
total of the (density) values of the underlying image f (RHS). This
implies that all projections from the same conformation have the
same zeroth-order moment and its value differs across conforma-
tions having a different average value. Therefore, it can be used as a

statistic for classification as demonstrated by Fig. 1. In the practical
scenario, the classification provided by the zeroth-order moment,
although good, needs to be refined by a robust scheme which takes
into account the characteristics of the entire set of projections. For
this, we introduce a graph Laplacian-based algorithm, the details of
which are described next.
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Fig. 1: Scatter plot of zeroth moment of the projections correspond-
ing to three different conformations (shown in Fig. 4).

3.2. Graph Laplacian-based clustering

Like in any many areas of information retrieval, we observe here that
although the sampled projections g; are points in a high dimensional
space, they are intrinsically restricted to a manifold/curve in a low-
dimensional space (3D) as shown in [14]. This curve may have a
complicated non-linear structure that may not be captured by linear
methods such as PCA. Therefore, we employ a graph Laplacian-
based non-linear dimensionality reduction algorithm [24] to com-
pute a 3D representation that optimally preserves local neighborhood
information. By trying to preserve local information, we keep pro-
jections belonging to the same conformation close even in the low-
dimensional representation and thus implicitly emphasize the con-
formational information in the dataset. The locality-preserving char-
acter of this algorithm also makes it relatively insensitive to outliers
and noise. In Fig. 2, we show two examples demonstrating how this
approach highlights the conformations present in the sample. Along
with Fig. 1 it can be used to identify the number of conformations
through a simple visualization (hierarchical clustering can also be
used to suggest the number of clusters).
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Fig. 2: Low-dimensional representation of the data set of projections
(30% additive white noise): 5 different conformations of Lipase
from Fig. 4 (left); 3 different conformations of holo-glyceraldehyde-
3-phosphate dehydrogenase (holo-GAPDHase) from Fig. 4 (right).
A different color used for points from different conformations.

3.3. Nearest-neighbor Based Clustering

As the graph Laplacian-based algorithm preserves local neighbor-
hood information, the projections belonging to the same conforma-



tion lie on a smooth manifold in the 3D space. An important im-
plication of this is that the nearest neighbors of a projection in the
low-dimensional representation will in all likelihood belong to the
same conformation. The original projection space does not ensure
this, due to high amounts of noise and other non-relevant features.
This immediately suggests an intuitive way of refining the initial
separation (of different conformations) provided to us by the zeroth-
order moment: apply a Nearest-neighbor based scheme in the low-
dimensional space, i.e. examples are separated into different clus-
ters based on the majority cluster label of their k£ nearest neighbors.
Using this scheme, we correct the few incorrectly labeled cluster
centroids. As mentioned above, because the graph-Laplacian algo-
rithm is relatively insensitive to outliers and noise, combined with
the k-NN scheme, this is a robust clustering procedure. In Fig. 3 we
demonstrate the classification refinement performed by (k-NN) clas-
sification scheme. After the classification is refined and the cluster
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Fig. 3: Top: Classification provided by the moment-based estimation
with a few incorrectly classified cluster centroids. Bottom: The few
incorrectly classified centroids are corrected using the k-NN method.

centroids are segregated according to their respective conformations,
all the projections belonging to the cluster are also assigned the same
conformation/class. Since the clusters were highly pure, as ensured
by the single-linkage clustering algorithm, we end up with a highly
accurate classification of individual projections.

4. SINGLE-PARTICLE RECONSTRUCTION ALGORITHM

The accuracy of separation of the projections from different confor-
mations is very high. So our problem has now reduced to the case
of independently reconstructing all of the individual conformations
from their respective projections under unknown viewing parame-
ters. First, we cluster similar projections (of the same conforma-
tion) together and denoise the projection centroids. We then use a
moments based approach to obtain an initial estimate for the orien-
tations and finally optimize for the structure of the unknown object
along with a refinement of the orientations.

4.1. Robust Clustering and Denoising

Clustering: We use the K-means algorithm to cluster the large num-
ber of projections {;, } of conformation index c into a much smaller
number of clusters (K ) for the same reasons as described in Sec.
2.1. Averaging: Within each cluster, we compute the average of all
the projections assigned to that cluster. Denoising: The processed
projections are then denoised using patch-based PCA denoising al-
gorithm described in Sec. 2.2. The final representative projections
are henceforth denoted as 75,1 < ¢ < Ks.,1 < ¢ < C where
C' = # of conformations.

4.2. Initialization of the orientations using Helgason Ludwig
Consistency Conditions (HLCC)

For each conformation ¢, we harness the information available in
the image moments and moments of the projections {7; .} via the
HLCC from Sec. 3.1, to estimate the orientations {6; .}. For each
order n, we can write the constraints in matrix form, m(™9) =
Ay Here, for a total of K, . projections and for the n'"
order equation, A™ is the K, . x (n + 1) matrix defined by
AE;’C> 2 (")(cos ;)" (sin; )7, and image moments v(™*) £

J
{vp,q,c

(p+q) = n,p,q € Z>o} for conformation c. Since, in
practice, the projections are noisy, the above equations will not be
satisfied exactly. Instead, we define an energy function as follows

Nmaz Ks,c n 2
E{fic} v = > (mé?’C)ZAEZ’C>Unj,j,c> :
n=0 =1

j=0
Q)]
Here Nyqz denotes the highest order moment to be considered. We
set Npmaz = 7 for all cases (and higher orders yielded no benefit).
By minimizing this energy function, we derive an initial estimate of
the angles using an iterative coordinate descent strategy from [25].

4.3. Optimization strategy to obtain the structure of the object

Starting from the initial estimate from the previous section, we fur-
ther refine the orientations {0; .} along with the object structure f.
by minimizing the following energy function in an alternating fash-

on:
Ks,c

M{Bic} fo) = D IFie = Ro,  (fo)5. )
i=1

Given an estimate of {Gi,c}f:sl'c, we solve for the conformation f.
using filtered back-projection (FBP). Given an estimate of the struc-
ture f., the orientation of each projection is estimated by indepen-
dent 1D brute-force search.

5. RESULTS

In this section, we present a comprehensive set of results demonstrat-
ing the ability of our algorithm to perform ab initio classification of
projections without the use of any prior knowledge and then pro-
ceed to reconstruct each conformation independently. The images
used for our experiments were taken from the Database of Macro-
molecular Movements [26] and had size 100 x 100. The value of
€ is chosen to be 1.15 and remains the same across all our experi-
ments. The value is chosen based on empirical observation of the
difference between projections of the same conformation at similar
angles. We analyze the algorithm with respect to (1) noise toler-
ance and (2) number of conformations. The error metric used to



assess the quality of reconstruction is the Relative Mean Squared
Error (RMSE) between the registered reconstruction (reconstruction
aligned with the test image) and the test image. The RMSE is de-
fined as RMSE(f, f) = ||f — fll2/||f|l2» where f is the registered
reconstructed estimate for f.

5.1. Noise Tolerance

The effect of additive noise on the reconstruction is depicted in Fig.
4. A total of Q@ = 3 x 10* projections are simulated, where each
projection may belong to either of the conformations. All projec-
tions were subjected to additive i.i.d. noise from A (0,0?). Here
we assume o = fa to be known in advance, where 8 € [0,1] is a
fraction, and a is the average noiseless projection value. As shown,
even in the presence of high noise variance, we can reconstruct all

the conformations of the object successfully.
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Fig. 4: Top: The three original conformations of holo-GAPDHase,
a macromolecular complex. Simultaneous reconstruction results for
different o, along with RMSE: ¢ = 0.0a (second row), ¢ = 0.1a
(third row), o = 0.2a (fourth row), and o = 0.3a (fifth row).

5.2. Number of conformations

In this section, we assess the algorithm with respect to its perfor-
mance as the number of discrete conformations increases. The re-
sults are shown in Fig. 5. A total of Q = K x 10* projections, where
K is the number of conformations, are considered. Each projection
is uniformly randomly simulated from either of the conformations.
In each case, the projections were subjected to noise from A/ (0, o2)
where ¢ = 0.3a. Fig. 6 presents the reconstructions in the case
of 8 distinct structures composed of a mixture of conformations of
Lipase (Fig. 5) and holo-GAPDHase (Fig. 4).

6. DISCUSSION AND CONCLUSION

From the results presented here, we conclude that the algorithm de-
scribed in this paper successfully tackles one of the most important
problems in Cryo-EM - heterogeneity - albeit in 2D. For example,
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Fig. 5: Top row: Five different conformations of Lipase, a protein
complex. Bottom: Reconstruction results for different number of
conformations. Second row: 2 conformations. Third row: 3 confor-
mations. Fourth row: 4 conformations. Fifth row: 5 conformations
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Fig. 6: The reconstruction results of all 8 structures. The original
eight structures correspond to the 5 conformations of Lipase (Fig. 5)
and 3 conformations of holo-GAPDHase (Fig. 4).

the importance of ‘the ability to obtain an entire inventory of coexist-
ing states of a macromolecule from a single sample’ has been promi-
nently emphasized in the field [27]. It is further stressed that much
room for improvement remains and that current methods have many
drawbacks such as the inability to automatically identify the num-
ber of conformational states. In contrast, the algorithm described in
this paper is capable of estimating the original underlying confor-
mations to a high degree of accuracy, without any prior knowledge
about the number of conformations or any prior structural informa-
tion. Further, our method applies to a broad range of proteins, with
the number of conformations ranging from two to eight, even under
high amounts of noise. In future works, our method will be extended
to the 3D case and tested on Cryo-EM datasets. Moreover, searching
for other invariant features over and above the zeroth order moments
is also an important avenue of investigation.

Supplemental material: For the authors implementation and addi-
tional results refer to the supplemental material [28].

Note: The authors have written a different paper [29] which exclu-
sively deals with reconstruction of a single conformation and focuses
on different types of outliers in the projections. The problem of
heterogeneity cannot be solved by simply considering projections
of other conformations as outliers, during the reconstruction of one
conformation. This is because the algorithm in [29] deals with a
limited percentage of outliers.
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