
SUPPLEMENTARY MATERIAL FOR NONLINEAR BLIND
COMPRESSED SENSING UNDER SIGNAL-DEPENDENT NOISE

Rudrajit Das1 and Ajit Rajwade2

1Dept. of Electrical Engineering, 2Dept. of Computer Science & Engineering; IIT Bombay

I. MULTIPLICATIVE UPDATE RULE DERIVATION
In this section, we show the derivation of the multi-

plicative update rule discussed in Section 3 of the main
paper. Recall that all square root and division operations
are performed element-wise and the � operator denotes the
element-wise product of two vectors or matrices.

In order to estimate θ(t+1)
i (i.e. the sparse codes for the ith

signal, 1 ≤ i ≤ T , at the (t+ 1)th iteration), given θ(t)
i and

A(t), we must minimize the following objective function:

J
(i)
θ =

∥∥∥∥√y(1)
i + c1m1 −

√
Φ

(1)
i A(t)θi + c1m1

∥∥∥∥2 + λ‖θi‖1
(1)

such that θi � 0k,

The gradient (technically sub-gradient as ‖θi‖1 is not differ-
entiable at a zero value for any element of θi) of J (i)

θ with
respect to θi evaluated at θi = θ

(t)
i is:

∂J
(i)
θ

∂θi

∣∣∣∣
θ
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(1)
i A(t))T

(
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√
y
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Φ
(1)
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(t)
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+ λ1(θ
(t)
i ) (2)

As defined in the main paper, c , 3
8 and 1(z) = 1 for

z > 0 and 1(z) = 0 for z = 0. We use gradient descent to
update θ(t)

i with step size η(t)
i (represented as a vector due

to different step-sizes for each component of θ(t)
i ) chosen

as follows:

η
(t)
i =

θ
(t)
i

(Φ
(1)
i A(t))T1m1

(3)

Using the step-size in (3), θ(t+1)
i becomes:

θ
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Observe that the θ(t+1)
i in (4) is the θ(new)

i term in (5) of
the main paper. Empirically, we observed in our experiments
that this value of θ(t+1)

i obtained using the step-size in
(3) of this document (henceforth referred to as θ(new)

i ) does
indeed decrease the objective function value. However, due
to the intractability of the Hessian matrix, we cannot (at
present) theoretically guarantee whether the step-size in (3)
would indeed decrease the value of the objective function.
For this, we propose reducing the magnitude of the step-size
by multiplying it with a suitable scalar constant 0 < β

(t)
i ≤ 1

which ensures a decrease in the value of the objective
function. More specifically:

θ
(t+1)
i = θ

(t)
i − β

(t)
i η

(t)
i �

∂J
(i)
θ

∂θi
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θ
(t)
i

= (1− β(t)
i )θ

(t)
i + β

(t)
i θ

(new)
i (5)

In the above equation, θ(new)
i is as obtained in (4) of this

paper. This completes the derivation of (4) of the main paper.
Next, in order to estimateA(t+1), given θ(t+1)

i andA(t),
we must minimize the following objective function:

JA =

T
′∑

i=1

∥∥∥∥√y(1)
i + c1m1 −

√
Φ

(1)
i Aθ

(t+1)
i + c1m1

∥∥∥∥2 (6)

such that A � 0n×k.

The gradient of JA with respect to A evaluated at A = A(t)

is:

∂JA
∂A
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T
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(1)
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)
(7)

In this case, the step size η(t) (this time a matrix) is chosen
as follows:

η(t) =
A(t)∑T ′

i=1(Φ
(1)
i )T1m1(θ

(t+1)
i )T

(8)



Using the step-size in (8), A(t+1) becomes:

A(t+1) = A(t) − η(t) � ∂JA
∂A
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Observe that the A(t+1) in (9) is the A(new) term in (7)
of the main paper. Here also, empirically, we found that
this value of A(t+1) obtained using the step-size in (8)
of this document (henceforth referred to as A(new)) does
indeed decrease the objective function value. However, once
again, the Hessian is very complicated and we cannot (at
present) theoretically guarantee whether the step-size in (8)
would indeed decrease the value of the objective function. To
ensure a decrease in the objective function value, we once
again propose reducing the magnitude of the step-size by
multiplying it with a suitable scalar constant 0 < β(t) ≤ 1.
More specifically:

A(t+1) = A(t) − β(t)η(t) � ∂JA
∂A

∣∣∣∣
A(t)

= (1− β(t))A(t) + β(t)A(new) (10)

In the above equation, A(new) is as obtained in (9) of this
paper. This completes the derivation of (6) of the main paper
and concludes the derivation of the multiplicative update
rule.

II. ERROR BOUND DERIVATION
In this section, we show the derivations of Theorem 1 (as

well as Lemma 1, Lemma 2 and Lemma 3) and ε.
Firstly, we restate Theorem 1 for ready reference of the

reader.

Theorem 1. Consider that the entries of all the sens-
ing matrices {Φi}Ti=1 are independently drawn from a
{0, 1} Bernoulli distribution with probability of draw-
ing 1 (and 0) being 0.5, denoted by Bernoulli(0.5).
Let Ae and {(θi)e}Ti=T ′+1 be the estimates of A and
{θi}Ti=T ′+1 respectively, upon running NLBCS. Suppose
that the condition C in Eqn. (8) of the main paper holds.
Also suppose that V is large enough so that Êv ≈

Eval

[∥∥∥√y(2) + c1m2 −
√

Φ(2)Aeθe + c1m2

∥∥∥2] where

the symbol Eval indicates that the expectation is over signals
in V and including all possible Bernoulli(0.5) sensing
matrices. Then with probability p(δ, T − T ′

), we have the
following bound:

Eval
[
‖x− xe‖2

]
≤ O

(
Iε

1− δ

)

where x = Aθ and xe = Aeθe are the actual and estimated
(using the NLBCS Algorithm) values of the signal, I is
the upper bound on the `1 norm of each signal as defined
previously, δ is a parameter in (0, 1) and p(δ, T − T ′

) ≥
1 − O

(
exp
(
−c̃δ2m2

√
T − T ′

))
with c̃ > 0 for large

(T − T ′
) (i.e. the validation set is large enough).

Next, we first state Lemma 1 and then prove it.

Lemma 1. Under the settings of Theorem 1, we have:

Eval

[∥∥∥∥√Φ(2)x+ c1m2 −
√

Φ(2)xe + c1m2

∥∥∥∥2
]
≤ m2ε

4

Proof: Since we have a large number of validation exam-
ples, i.e. (T − T ′

)→∞, we have:

Êv =

T∑
i=T

′
+1

∥∥∥∥√y(2)
i + c1m2 −

√
Φ

(2)
i Ae(θi)e + c1m2

∥∥∥∥2
(T − T ′)

≈ Eval

[∥∥∥∥√y(2) + c1m2 −
√

Φ(2)Aeθe + c1m2

∥∥∥∥2
]
(11)

The above expectation is over the validation set. Now:

Eval

[∥∥∥∥√y(2) + c1m2 −
√

Φ(2)Aeθe + c1m2

∥∥∥∥2
]

= Eval
[
‖d(2) + z(2)‖2

]
(12)

where d(2) =
√

Φ(2)Aθ + c1m2 −
√

Φ(2)Aeθe + c1m2

and z(2) is the m2-dimensional noise term, each entry of
which is approximately distributed as N (0, 1/4) (as per the
Anscombe transform). Then (12) further simplifies as:

Eval
[
‖d(2) + z(2)‖2

]
=

Eval
[
‖d(2)‖2

]
+ Eval

[
‖z(2)‖2

]
+ 2Eval

[
〈d(2), z(2)〉

]
(13)

In (13), clearly Eval
[
‖z(2)‖2

]
= m2/4. Now recall that Ae

was computed over the training set and so it is independent
of the noise for the validation set. Also, θe was computed
(for both the training as well as the validation set) over φ(1)

and hence it depends only on z(1), i.e. the first m1 entries

of the overall m-dimensional noise vector z =

[
z(1)

z(2)

]
.

Thus, d(2) which depends on Ae and θe is independent
of z(2). Hence, we have Eval

[
〈d(2), z(2)〉

]
= 0. This is

the rationale for splitting the observations and sensing
matrices into two disjoint parts. Hence, we have:

Eval
[
‖d(2) + z(2)‖2

]
= Eval

[
‖d(2)‖2

]
+
m2

4
+ 0

=⇒ Eval
[
‖d(2)‖2

]
≈ Êv −

m2

4
≤ m2ε

4
. (14)



The last inequality in (14) follows from (8) of the main
paper. Recall that x = Aθ and xe = Aeθe. Thus, d(2)

becomes:

d(2) =
√

Φ(2)x+ c1m2 −
√

Φ(2)xe + c1m2 .

Using the above, (14) can be written as:

Eval

[∥∥∥∥√Φ(2)x+ c1m2 −
√

Φ(2)xe + c1m2

∥∥∥∥2
]
≤ m2ε

4
.

(15)
This finishes the proof of Lemma 1 of the main paper.

Now, we first state Lemma 2 and then prove it.

Lemma 2. Given that Lemma 1 holds, we have:

Eval
[
‖Φ(2)(x− xe)‖2

]
≤ O(Im2ε).

Proof: Here we try to upper bound the expected value of
the squared norm of Φ(2)(x − xe) over the validation set,
using (15) as follows:

Eval
[
‖Φ(2)(x− xe)‖2

]
=

Eval
[∥∥∥(Φ(2)x+ c1m2

)
−
(
Φ(2)xe + c1m2

)∥∥∥2]
≤ B Eval

[
‖d(2)‖2

]
where

B , max
1≤j≤m2

(√
Φ(2)x+ c1m2 +

√
Φ(2)xe + c1m2

)2

j

;

vj denotes the jth element of the vector v. (16)

In order to show how we can obtain the inequality in (16),
consider two d dimensional non-negative vectors u and v.
Then:

‖u− v‖2 =

d∑
r=1

(ur − vr)2 =

d∑
r=1

(ur − vr)2

=

d∑
r=1

(
√
ur−

√
vr)

2(
√
ur+

√
vr)

2 ≤
d∑
r=1

(
√
ur−

√
vr)

2M,

where M , max
1≤r≤d

(
√
ur +

√
vr)

2. Thus, we get:

‖u− v‖2 ≤M‖
√
u−
√
v‖2.

This completes the proof of the inequality in (16).
Now, noting that Φ is a Bernoulli(0.5) random matrix,

it is trivial to see that B = O(I), where I is the maximum
`1 norm of a signal (as specified in the main paper). Using
this as well (15) and (16), we get:

Eval
[
‖Φ(2)(x−xe)‖2

]
≤ m2ε

4
O(I) = O(Im2ε). (17)

This finishes the proof of Lemma 2 of the main paper.

Finally, we state the complete version of Lemma 3 (recall
that in the main paper, we had stated only an abridged ver-
sion of it) and then prove it, while also precisely quantifying
p(δ, T − T ′

). Before that let TV = T − T ′
.

Lemma 3. Let δ ∈ (0, 1). Then with probability p(δ, TV),
the following bound holds:

Eval
[
‖(x− xe)‖2

]
≤

Eval
[
‖Φ(2)(x− xe)‖2

]
m2(1− δ)

,

where p(δ, TV) = 1 − 2 exp(−c1c2δmin(c2δΓ2,Γ∞)), c1
and c2 are positive constants, and

Γ2 = m2

( T∑
i=T ′+1

‖xi − (xi)e‖2
)2/( T∑

i=T ′+1

‖xi − (xi)e‖4
)

Γ∞ = m2

( T∑
i=T ′+1

‖xi − (xi)e‖2
)/(

max
T ′<i≤T

‖xi − (xi)e‖2
)
.

Further, when TV is large enough, we have p(δ, TV) ≥ 1−
O
(

exp
(
−c̃δ2m2

√
TV
))

with c̃ > 0.

Note that in the main paper, we had not introduced the
variable TV , due to which the abridged version of Lemma
3 in the main paper is stated in terms of (T − T ′

) instead
of TV .

Proof: We express Φ(2) = 1
2 (Φ̃(2) + 1m×n) where the

entries of Φ̃(2) are such that it contains 1 (and correspond-
ingly −1) wherever Φ(2) contains a 1 (and correspondingly
0) and 1m×n is a m×n matrix consisting of only 1’s. Thus,
we have:

Eval
[
‖Φ(2)(x− xe)‖2

]
=

Eval
[
‖Φ̃(2)(x− xe) + 1m×n(x− xe)‖2

]
=

Eval
[
‖Φ̃(2)(x− xe)‖2

]
+ Eval

[
‖1m×n(x− xe)‖2

]
+ Eval

[
(x− xe)T1Tm×nΦ̃(2)(x− xe)

]
(18)

Let us now analyze the last expectation (third term) obtained
in the final step of (18). As mentioned before, we are taking
expectation over all possible signals (drawn from the same
distribution as that of the training signals) as well as sensing
matrices (whose entries are i.i.d Bernoulli(0.5) random
variables) for the validation set. Let us first take expectation
with respect to the (modified) sensing matrix Φ̃(2) whose
entries are ±1 with 0.5 probability each. As a result the
value of EΦ̃(2)

[
1Tm×nΦ̃(2)

]
= 0n×n (i.e. the n × n zero

matrix). Therefore, the third expectation term turns out to
be 0, i.e. Eval

[
(x − xe)T1Tm×nΦ̃(2)(x − xe)

]
= 0. Also

the second expectation term (i.e. Eval
[
‖1m×n(x−xe)‖2

]
)



is non-negative. Using these two facts in (18) and (17), we
get:

Eval
[
‖Φ̃(2)(x− xe)‖2

]
≤ Eval

[
‖Φ(2)(x− xe)‖2

]
≤ O(Im2ε). (19)

Let us consider all the true and estimated signals be-
longing to the validation set, which are {xi}Ti=T ′+1

and
{(xi)e}Ti=T ′+1

. For ease of notation, let T
′′

= T
′

+ 1 and
∆xi = xi−(xi)e. Since the binary random variable taking
values of ±1 with 0.5 probability each is a sub-Gaussian
random variable with zero mean and unit variance, using
Theorem 1 of [1], we have:

P

(∣∣∣∣∣ T∑
i=T

′′

‖Φ̃(2)
i ∆xi‖2

m2TV
−

T∑
i=T

′′

‖∆xi‖2

TV

∣∣∣∣∣ > δ

T∑
i=T

′′

‖∆xi‖2

TV

)

≤ 2 exp

(
−c1 min

(
c22δ

2

‖φ‖4ψ2

Γ2,
c2δ

‖φ‖2ψ2

Γ∞

))
. (20)

In (20):

Γ2 = m2

( T∑
i=T ′′

‖∆xi‖2
)2/( T∑

i=T ′′

‖∆xi‖4
)

Γ∞ = m2

( T∑
i=T ′′

‖∆xi‖2
)/(

max
T ′<i≤T

‖∆xi‖2
)

‖φ‖ψ2
= supp≥1 p

−1/2
(
E
[
|φ|p

])1/p
(as defined in [1])

We get ‖φ‖ψ2 = 1 for binary ±1 random variables.

And finally, c1 and c2 are positive constants.

Now since TV is large (as mentioned earlier), (20) in this
document is approximately:

P

(∣∣∣∣∣ 1

m2
Eval

[
‖Φ̃(2)∆x‖2

]
−Eval

[
‖∆x‖2

]∣∣∣∣∣ > δ Eval
[
‖∆x‖2

])

≤ 2 exp(−c1c2δmin(c2δΓ2,Γ∞)) (21)

Thus from (21), we have:

P
(
m2(1− δ)Eval

[
‖∆x‖2

]
< Eval

[
‖Φ̃(2)∆x‖2

]
< m2(1 + δ)Eval

[
‖∆x‖2

])
≥

1− 2 exp(−c1c2δmin(c2δΓ2,Γ∞)) = p(δ, TV). (22)

We want p(δ, TV) to be close to 1 for large values of TV
for δ not too small. For this, we need to estimate the order
of Γ2 and Γ∞. We provide estimates for Γ2 and Γ∞ in the
regime of large TV , where the quantities in the numerators
and denominators of Γ2 and Γ∞ can be approximated by
(and will be close to) their respective expected values.

Let E
[
‖∆x‖2

]
= e and E

[
‖∆x‖4

]
= αE

[
‖∆x‖2

]2
= αe2 where α ≥ 1 is a positive constant (since for a random
variable X , we have E[X2] ≥ E[X]

2). Further, we have:

Γ2 = m2

(∑T
i=T ′′ ‖∆xi‖4

)
+
(∑T

i,j=T ′′ ‖∆xi‖2‖∆xj‖2
)

(∑T
i=T ′′ ‖∆xi‖4

)
≈ m2

TVαe
2 + TV(TV − 1)e2

TVαe2
∼ O(m2TV).

The above approximate equality is obtained by replacing all
the summations by their respective expected values which
should hold approximately for large TV .
Now, let the PDF and CDF of ‖∆x‖2 be denoted by f(.) and
F (.), respectively. Then the CDF of maxT ′<i≤T ‖∆xi‖2 is
simply given by F (.)TV . Thus:

E
[

max
T ′<i≤T

‖∆xi‖2
]

=

∫ ∞
t=0

TV [F (t)](TV−1)f(t)tdt

≤ TV
(∫ ∞

t=0

[F (t)](2TV−2)f(t)dt
)0.5(∫ ∞

t=0

t2f(t)dt
)0.5

.

The last step follows from the Cauchy-Schwarz inequality
for integrals. It is easy to see that in the obtained inequality,
the first integral (inside square root) using the substitution
u = F (t), becomes:∫ 1

0

u(2TV−2)du = 1/(2TV − 1).

Also, the second integral (also inside square root) is equal
to E

[
‖∆x‖4

]
= αe2. So, we have:

E
[

max
T ′<i≤T

‖∆xi‖2
]
≤ TV

1√
2TV − 1

√
E
[
‖∆x‖4

]
=

TV
√
αe√

2TV − 1
.

Using the above estimate, we have:

Γ∞ & m2(TVe)/
( TV

√
αe√

2TV − 1

)
∼ O(m2

√
TV).

Therefore, min(c2δΓ2,Γ∞)) ≥ O(δm2

√
TV). So with

probability greater than
{

1 − O(exp
(
−c̃δ2m2

√
TV
)
)
}

, the
following holds:

Eval
[
‖∆x‖2

]
<

Eval
[
‖Φ̃(2)∆x‖2

]
m2(1− δ)

or

Eval
[
‖(x− xe)‖2

]
≤

Eval
[
‖Φ̃(2)(x− xe)‖2

]
m2(1− δ)

≤
Eval

[
‖Φ(2)(x− xe)‖2

]
m2(1− δ)

. (23)



This finishes the proof of Lemma 3.
Finally, combining Lemma 1, Lemma 2 and Lemma 3,

we get:

Eval
[
‖(x− xe)‖2

]
≤ O

(
Iε

1− δ

)
. (24)

This completes the proof of Theorem 1.

Next, we first state and then prove Corollary 1.

Corollary 1. Suppose on running the NLBCS Algorithm
under the same settings as described in Theorem 1, (8) in
the main paper holds with ε given by (9) in the main paper,
then the following bound holds with probability p(δ, T−T ′

):

Eval

[
‖x− xe‖
‖x‖

]
≤ O

(√
ζn

I
√
m2(1− δ)

)
.

Proof: We have:

Eval

[
‖x− xe‖
‖x‖

]
≤

√√√√Eval

[
‖x− xe‖2
‖x‖2

]

≤

√√√√Eval

[
n‖x− xe‖2

κI2

]
=

√
n

κI2
Eval

[
‖x− xe‖2

]
.

The first step follows from the fact that E[X2] ≥ E[X]2 for
any random variable X . The second step follows from the
fact that n‖x‖2 ≥ ‖x‖21 = κI2 where 0 < κ < 1 (since I is
the maximum signal intensity), which is obtained using the
Cauchy-Schwarz inequality. Now putting ε = 2ζ/

√
m2 from

(9) of the main paper into Theorem 1 and then substituting
it in the above inequality, we get:

Eval

[
‖x− xe‖
‖x‖

]
≤ O

(√
n

κI2
I

(1− δ)
2ζ
√
m2

)

= O

(√
ζn

I
√
m2(1− δ)

)
.

This finishes the proof of Corollary 1.

III. CHOOSING ε

Recall that the condition to terminate our algorithm, i.e.
(8) of the main paper, is:

m2/4 ≤ Êv ≤ m2(1 + ε)/4.

We also provide a value of ε in (9) of the main paper which
is:

ε = 2ζ/
√
m2.

In this section, we show how to obtain the above value of
ε. We choose ε such that:

P

(
Êv >

m2(1 + ε)

4

)
< p.

or

P

(
ÊSv >

m2TV(1 + ε)

4

)
< p where (25)

ÊSv =

T∑
i=T ′+1

∥∥∥∥√y(2)
i + c1m2 −

√
Φ

(2)
i Ae(θi)e + c1m2

∥∥∥∥2

=

T∑
i=T ′+1

m2∑
j=1

(√
y

(2)
i + c1m2

−
√

Φ
(2)
i Ae(θi)e + c1m2

)2

j

.

In the above equation p is a probability value of our choice
and we would ideally want to choose a small value of p. We
set p = exp

(
−ζ2TV

)
where ζ is a non-zero constant of our

choice.
Now notice that ÊSv is just the sum of the squares of

m2TV i.i.d Gaussian random variables with mean 0 and
variance 1/4. They are identically distributed because of the
Anscombe transform. The independence holds because every
component of the measurement vector (i.e. (yi)j) made for a
particular signal (i.e. xi) is corrupted with noise independent
of the other components and the same logic also applies to
two different signals (i.e. xi and xi′ ). Hence, 4ÊSv is a chi-
squared random variable with m2TV degrees of freedom.

Let ẼSv = 4ÊSv and Mval = m2TV . Thus (25) reduces to:

P

(
ẼSv > Mval(1 + ε)

)
< p = exp

(
−ζ2TV

)
. (26)

The bound given in [2] (Lemma 1 page 1325) states that if Z
is a chi-squared random variable with u degrees of freedom
then:

P(Z > u+ 2
√
uz + 2z) < exp(−z).

For our case, u = Mval = m2TV . Thus, we have:

u

2
+

(√
u

2
+
√

2z

)2

= u(1 + ε).

z =
u

2
(1 + ε−

√
1 + 2ε) ≈ uε2

4
for ε→ 0.

The above approximate equality is obtained using the bino-
mial expansion of

√
1 + 2ε upto the second order term and

neglecting all other higher order terms for small ε.
But we also want: p = exp

(
−ζ2TV

)
= exp(−z) or z =

ζ2TV . This gives us:

uε2

4
= ζ2TV =⇒ ε = 2

ζ
√
m2

. (27)

This proves (9) of the main paper and completes the discus-
sion on how to obtain ε.



IV. ADDITIONAL EXPERIMENTS
In this section, we present the results of some experiments

which show that learning a data-dependent dictionary using
our algorithm is better than just using an off the shelf
dictionary (and optimizing only over the sparse codes). We
used non-negative matrix factorization (NMF) to obtain a
decent off the shelf matrix.

We took nine 512 × 512 gray scale images. The 9
images along with their names (used in this section) are
shown in Fig. 3. Similar to the experiment in the main
paper, we divided each image into 64 × 64 = 4096 = T
non-overlapping (to maintain independence of the signals)
patches of size 8 × 8 each, followed by reshaping of each
patch to form a 64(= n)×1 vector. Thus, we had T signals
of dimension n × 1, per image. The size of the dictionary
used in all our experiments was k = 16. We present the
results for two different cases.

Expt. 1: Here, we considered all the images except Lena
(i.e. 8 images). We performed NMF on the 8T (since there
are T signals per image) signals with size of the basis set
to n × k (recall that k = 16). We then used the obtained
NMF basis as our off the shelf dictionary (call it ANMF ) to
recover the Lena image given compressive measurements of
each of its 8× 8 patches, corrupted with Poisson noise (i.e.
our measurement and noise model). In one case (call this
Case 1), we kept the dictionary fixed equal to ANMF and
only optimized over the sparse codes by minimizing (1) of
this paper (while keeping A(t) = ANMF ∀ t, i). In another
case (call this Case 2), we applied our algorithm using
ANMF as the initialization for A (i.e. A(0) = ANMF ),
and evolved both A as well as the sparse codes. In both the
cases, we worked with m = {16, 24, 32, 40}. For m = 16
and 24, we chose m1 = m − 4 and m2 = 4, whereas for
m = 32 and 40, we chose m1 = m − 5 and m2 = 5. We
set the value of λ = 0.125m1 for both cases.

Table I shows the RRMSE values for both cases in
Expt. 1. Observe that the RRMSE values in Case 1 are
significantly higher than those in Case 2 for m = 16, 24.
For m = 32, 40, the RRMSE values in the two cases are
much closer (although they are still lower in Case 2).

RRMSE- m=16 m=24 m=32 m=40
Case 1 0.2383 0.1678 0.1368 0.1201
Case 2 0.1295 0.1156 0.1085 0.1015

Table I. RRMSE values in Expt. 1.

Fig. 1 shows the reconstructed Lena images in both the
cases with m = 16. Visually, the reconstructed image in
Case 1 is quite noisy. The reconstructed image in Case 2 is
much cleaner although it has artifacts from other images.

Expt. 2: Here, everything was the same as in Expt. 1
except that we replaced Lena in Expt. 1 with Peppers here.

Table II shows the RRMSE values for both cases in
Expt. 2. Here, the RRMSE values in Case 1 are much

(a) Case 1 (b) Case 2

Fig. 1. Recovered Lena images in Expt. 1 with m = 16.

higher than those in Case 2 for m = 16, 24, 32. For m =
40, the RRMSE values in the two cases are much closer
(although they are still lower in Case 2).

RRMSE- m=16 m=24 m=32 m=40
Case 1 0.3320 0.2240 0.1822 0.1418
Case 2 0.1714 0.1515 0.1414 0.1325

Table II. RRMSE values in Expt. 2.

Fig. 2 shows the reconstructed Peppers images in both
the cases with m = 16. Even here, the reconstructed image
in Case 1 is quite noisy while Case 2’s is much cleaner
although with artifacts from other images.

(a) Case 1 (b) Case 2

Fig. 2. Recovered Peppers images in Expt. 2 with m = 16.

From the two experiments, we conclude that our algorithm
initialized with the separately learnt NMF basis performs
better than just using the same NMF basis as a fixed
dictionary, especially when the number of measurements
is small.



(a) Barbara (b) Lena (c) Woman

(d) Man (e) Baboon (f) Peppers

(g) Sailboat (h) Splash (i) Aerial

Fig. 3. The 9 images used in our experiments.
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