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ABSTRACT
In this paper, we consider the problem of nonlinear blind
compressed sensing, i.e. jointly estimating the sparse codes
and sparsity-promoting basis, under signal-dependent noise.
We focus our efforts on the Poisson noise model, though
other signal-dependent noise models can be considered. By
employing a well-known variance stabilizing transform such
as the Anscombe transform, we formulate our task as a non-
linear least squares problem with the `1 penalty imposed for
promoting sparsity. We solve this objective function under
non-negativity constraints imposed on both the sparse codes
and the basis. To this end, we propose a multiplicative
update rule, similar to that used in non-negative matrix
factorization (NMF), for our alternating minimization algo-
rithm. To the best of our knowledge, this is the first attempt
at a formulation for nonlinear blind compressed sensing,
with and without the Poisson noise model. Further, we also
provide some theoretical bounds on the performance of our
algorithm.

Index Terms— Blind Compressed Sensing, Anscombe
Transform, Multiplicative Update, Performance Bounds.

I. INTRODUCTION

The field of compressed sensing famously presents an
excellent confluence between theory and practice. There
exist well-known theoretical performance bounds for the
estimation of a signal x ∈ Rn from its m� n noisy com-
pressive measurements of the form y = Φx+η, where y ∈
Rm is a noisy vector of measurements, η is the noise vector,
and Φ ∈ Rm×n is the sensing matrix [1]. These bounds hold
under two sufficient conditions: the first pertaining to the
sparsity/compressibility of x, and the second pertaining to
characteristics of Φ such as the restricted isometry property
(RIP). The latter property prohibits sparse signals from lying
in the null-space of Φ. The aforementioned bounds also
extend to the case where x is not itself sparse/compressible,
but instead has a sparse/compressible representation in a
(typically but not necessarily orthonormal) basis (also called
‘dictionary’) A ∈ Rn×n [2], [3]. That is x = Aθ where
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θ ∈ Rn is a sparse/compressible vector. In compressive
imaging, typical models for A include the discrete cosine
transform (DCT) or various wavelet transforms, since natural
images/image patches are known to be compressible in these
bases [3]. However the dictionary A can also be learned
offline in a manner tuned to a particular class of images
[4]. Such a process, however, is necessarily restricted to
specific image classes, and also requires the availability of
adequate training data. To overcome these limitations, there
is interest in inferring A directly from the compressive
measurements of a group of signals {xi}Ti=1 along with
their respective sparse codes {θi}Ti=1. Such a task is termed
blind compressive sensing (BCS) and has been successfully
applied to synthetic [5] and real compressive data [6]. De-
spite this experimental success, most attempts at a theoretical
development for BCS have had limitations. For example,
the work in [7] makes very specific/restrictive structural
requirements on the dictionary A. The very recent work in
[8] provides more general theoretical treatment, but the noise
model is not fully analyzed.

There are situations, however, when the linear compressive
acquisition model y = Φx+η is not valid. For example, this
happens in tomographic acquisition via non-linearity induced
by Beer’s law [9]. In another scenario, the measurements
may themselves be linear, but the noise may be heteroscedas-
tic or signal-dependent. In such a case, a (typically) non-
linear transformation f can be applied to the measurement
y so that the noise in f(y) is homoscedastic and signal-
independent. Examples of such transformations are [10]
(Sec. 14.6 and 14.7): (1) Square-root, i.e. f(y) ,

√
y if the

noise variance vn is directly proportional to the mean µn (or
the underlying signal). The Poisson distribution, ubiquitous
in optical and XRay imaging systems, is a special case where
vn = µn. (2) Logarithmic, i.e. f(y) , log y in case of
multiplicative noise or if

√
vn ∝ µn. (3) Reciprocal, i.e.

f(y) , 1./y if
√
vn ∝ µ2

n. In this paper, we consider the
case of non-linear blind compressed sensing in conjunction
with the square-root transformations on the noisy data, and
present rigorous theoretical derivations as well as experi-
mental results. To the best of our knowledge, ours is the first
piece of work to provide algorithms as well as theoretical
development for the case of nonlinear BCS of any type.



II. THEORY
Here, we first define the computational problem. Consider

T different n-dimensional non-negative signals {xi}Ti=1

which are all s-sparse in some k-column dictionary such
that s ≤ k < n, i.e. xi = Aθi, where A is an n × k non-
negative dictionary, and where for all i from 1 to T , θi is
the k×1 s-sparse vector of coefficients for xi. We consider
compressive measurements of the form yi ∼ Poiss(ΦiAθi)
where yi is m-dimensional (m < n), Φi is a m × n non-
negative sensing matrix (different sensing matrices for all
i). Also u ∼ Poiss(v) denotes a vector of independent
Poisson random variables such that ∀i, ui ∼ Poiss(vi). The
problem is to estimate A and Θ , {θi}Ti=1, given {yi}Ti=1.
Throughout this paper, ‖r‖ and ‖r‖1 refer to the `2 and `1
norms of the vector r respectively.

II-A. Objective Function and Algorithm
According to the Anscombe transform, if u ∼ Poiss(v),

then
(√

u+ c −
√
v + c

)
with c , 3/8, is approximately

N (0, 0.25) [11]. We use this to convert our problem into a
non-linear least squares problem. Imposing the `1 sparsity
prior on θi, our objective function (negative log of a quasi-
likelihood function) is expressed as:

J(A,Θ) =

T∑
i=1

{∥∥∥√yi + c1m −
√

ΦiAθi + c1m

∥∥∥2+λ‖θi‖1}
such that A � 0n×k, and ∀i, ‖Aθi‖1 ≤ I,θi � 0k, (1)

where (i) 1m denotes an m× 1 vector of all ones and 0k

denotes a k × 1 vector of all zeros, (ii) the square root op-
eration is applied element-wise and a � 0 means that every
element of vector a is non-negative, (iii) λ is a regularization
parameter, and (iv) I is an a priori known upper bound on the
sum-total value (hereafter termed the ‘intensity’) of each xi.
We advise choosing λ by trying with several discrete values
and picking one which satisfies condition C defined in (8)
of Section II-B, if such a value exists. With this in mind,
we propose a modified constrained objective function given
below in (2). We use measurements of the first T

′
signals

as a ‘training set’ T for inferring the dictionary, and the
measurements of the remaining signals as a ‘validation set’
V . That is, T , {yi}T

′

i=1 form and V , {yi}Ti=T ′+1. This
splitting is done for the sake of exploiting certain statistical
independence properties for precise characterization of the
noise residual in our theoretical performance bounds (refer
to proof of Lemma 1 in supplementary material [12]), and
to prevent overfitting. For the same reason, we also split up
yi and Φi as follows:

yi =

[
y
(1)
i

y
(2)
i

]
, Φi =

[
Φ

(1)
i

Φ
(2)
i

]
,

where y
(1)
i and y

(2)
i are m1 × 1 and m2 × 1 vectors

respectively, Φ
(1)
i and Φ

(2)
i are m1×n and m2×n matrices

respectively and m1 +m2 = m.

Define ΘT ′ , {θi}T
′

i=1. Then the objective function over
the training set, J(A,ΘT ′) abbreviated by JT , using the
first m1 measurements becomes:

JT =

T
′∑

i=1

{∥∥∥∥√y(1)
i + c1m1 −

√
Φ

(1)
i Aθi + c1m1

∥∥∥∥2+λ‖θi‖1}
(2)

such that A � 0n×k, and ∀i,θi � 0k.

The optimization for JT proceeds only up to the point,
when a statistically driven termination condition C on the
validation set, defined in (8), is satisfied. Note that A is
estimated by minimizing JT (i.e. only using the training
set), however we need to estimate the sparse codes for the
training set (T ) as well as the validation set (V). The latter
is required for verifying condition C. Using the estimated
value of A obtained from (2), we estimate the sparse code
θi for the ith (T

′
< i ≤ T ) signal in V by minimizing:

J
(i)
V =

∥∥∥∥√y(1)
i + c1m1

−
√

Φ(1)
i Aθi + c1m1

∥∥∥∥2 + λ‖θi‖1
(3)

such that θi � 0k.

We note the following regarding the optimization of JT
in (2): (i) It is biconvex, i.e. it is convex in Θ

T
′ if A is

fixed and vice-versa. The constraints are also all convex. (ii)
We can optimize this objective function using an alternating
projected gradient descent algorithm with an adaptive step
size. The convergence of such a procedure is guaranteed
[13]. (iii) Note that the constraint ‖Aθi‖1 ≤ I present
in (1) has been omitted in (2) and (3) since it is only
required for obtaining theoretical performance bounds and
is not necessary in practical simulations.
Instead of the adaptive step-size, we also derived multiplica-
tive update rules for Θ as well as A. Details of these can
be found in [12]. We mention the update rules here briefly.
Before that, let the estimated values of A and Θ at the
end of the tth iteration of gradient descent be A(t) and
Θ(t) , {θ(t)i }Ti=1. Then, under the multiplicative update
rules, we have:

θ
(t+1)
i = (1− β(t)

i )θ
(t)
i + β

(t)
i θ

(new)
i where (4)

0 < β
(t)
i ≤ 1, θ(new)

i = max

(
0,

[
θ
(t)
i

(Φ
(1)
i A(t))T1m1

�

{
(Φ(1)

i A(t))T
( √

y(1)
i + c1m1√

Φ(1)
i A(t)θ(t)

i + c1m1

)
−λ1(θ(t)

i )

}])
,

(5)
where 0 < β

(t)
i ≤ 1 and 1(z) = 1 if z > 0 else 1(z) = 0.

Also, we have

A(t+1) = (1− β(t))A(t) + β(t)A(new) where (6)

0 < β(t) ≤ 1, A(new) =

[
A(t)∑T

′

i=1(Φ
(1)
i )T1m1(θ

(t+1)
i )T

�



T
′∑

i=1

(Φ(1)
i )T

( √
y(1)
i + c1m1√

Φ(1)
i A(t)θ(t+1)

i + c1m1

)
(θ(t+1)

i )T
]
.

(7)
In (5) and (7), the � operator denotes the element-wise
product of two vectors or matrices. The division operations
are also performed element-wise. Empirically, we saw that
in almost all cases, βi = 1 ∀i and β = 1 does indeed reduce
the objective function value. However, theoretically, we were
not able to establish this (refer to [12]).

II-B. Termination condition for the Algorithm
Here, we provide the following condition for termination:

Condition C : m2/4 ≤ Êv ≤ m2(1 + ε)/4, (8)

Êv ,
T∑

i=T
′
+1

∥∥∥∥√y(2)
i + c1m2 −

√
Φ

(2)
i A(t)θi

(t) + c1m2

∥∥∥∥2
(T − T ′)

.

The condition in (8) is chosen in order to prevent overfitting.
The idea behind (8) is that Êv is the sum of the squares
of m2(T − T

′
) approximately zero-mean Gaussian random

variables with variance 1/4, divided by (T − T
′
). Given

enough data in V , i.e. (T − T ′
) is large enough, we expect

Êv ≈ 0.25(m2(T − T
′
))/(T − T ′

) = m2/4.
We now present a statistical criterion for choice of ε. The

criterion is such that P
(
Êv > m2(1 + ε)/4

)
< p where

p = exp
(
−ζ2(T − T ′)

)
where ζ is a non-zero constant

of our choice. Observe that p reduces exponentially as
the number of validation examples increases. In this case,
using concentration inequalities for the chi-squared random
variable Êv [14], we get (detailed proof included in [12]):

ε = 2ζ/
√
m2. (9)

However, it might not always be possible to converge to
a solution which satisfies (8). In that case, we stop when:

Êt ≤ m1/4 where (10)

Êt ,
T

′∑
i=1

∥∥∥∥√y(1)
i + c1m1 −

√
Φ

(1)
i A(t)θi

(t) + c1m1

∥∥∥∥2
T ′ .

It is clear that Êt above is the expected value of the squared
loss part of the objective function over the training set (and
the first m1 measurements).

The complete procedure is summarized in Algorithm 1.

II-C. Performance Bounds for NLBCS
We firstly present our main theorem on NLBCS:

Theorem 1. Consider that the entries of all the sens-
ing matrices {Φi}Ti=1 are independently drawn from a
{0, 1} Bernoulli distribution with probability of draw-
ing 1 (and 0) being 0.5, denoted by Bernoulli(0.5).
Let Ae and {(θi)e}Ti=T ′+1 be the estimates of A and

Algorithm 1 Nonlinear Blind Compressed Sensing
(NLBCS) Algorithm

1: Initialize iteration counter t = 0, A(0) and θ(0)i ’s with
random non-negative entries. Fix ε as per (9).

2: while (8) and (10) is false do

3: for 1 ≤ i ≤ T do

4: Update θ(t+1)
i as per (4) with a suitable β(t)

i .

5: end for

6: Update A(t+1) as per (6) with a suitable β(t).

7: t← (t+ 1)

8: end while

{θi}Ti=T ′+1 respectively, upon running NLBCS. Suppose
that the condition C in (8) holds when NLBCS termi-
nates. Also suppose that V is large enough so that Êv ≈

Eval

[∥∥∥√y(2) + c1m2 −
√

Φ(2)Aeθe + c1m2

∥∥∥2] where

the symbol Eval indicates that the expectation is over signals
in V and over all possible Bernoulli(0.5) sensing matrices.
Then with probability p(δ, T − T ′

), we have the following
bound:

Eval

[
‖x− xe‖2

]
≤ O(Iε/(1− δ)),

where x = Aθ and xe = Aeθe are the actual and estimated
(using the NLBCS Algorithm) values of the signal, I is
the upper bound on the `1 norm of each signal as defined
previously, δ is a parameter in (0, 1) and p(δ, T − T ′

) ≥
1 − O

(
exp
(
−c̃δ2m2

√
T − T ′

))
with c̃ > 0 for large

(T − T ′
) (i.e. the validation set is large enough).

We present the detailed proof of Theorem 1 and the
precise quantification of p(δ, T − T

′
) in [12]. In order to

provide a proof sketch here, we mention the following three
key lemmas (which have also been proved in [12]) used in
the proof.

Lemma 1. Under the settings of Theorem 1, we have:

Eval

[∥∥∥∥√Φ(2)x+ c1m2 −
√

Φ(2)xe + c1m2

∥∥∥∥2
]
≤ m2ε

4
.

Lemma 2. Given that Lemma 1 holds, we have:

Eval

[
‖Φ(2)(x− xe)‖2

]
≤ O(Im2ε).

Lemma 3. (Abridged version) Let δ ∈ (0, 1). Then with
probability p(δ, T−T ′

) ≥ 1−O
(
exp
(
−c̃δ2m2

√
T − T ′

))
(c̃ > 0) for large (T − T ′

), the following bound holds:

Eval

[
‖x−xe‖2

]
≤ Eval

[
‖Φ(2)(x− xe)‖2

]
/(m2(1− δ)).



[12] contains the full version of Lemma 3 where p(δ, T−
T

′
) is properly quantified. Combining Lemma 1, Lemma 2

and Lemma 3, we can prove Theorem 1. We also have the
following corollary of Theorem 1 (proof in [12]):

Corollary 1. Suppose on running the NLBCS Algorithm
under the same settings as described in Theorem 1, (8)
holds with ε given by (9), then the following bound holds
with probability p(δ, T − T ′

):

Eval

[
‖x− xe‖
‖x‖

]
≤ O

(√
ζn

I
√
m2(1− δ)

)
. (11)

Remarks about the bounds: Observe that the bound
improves as m2 (dependent on the number of measurements)
and I increase, which makes intuitive sense. Also the prob-
ability p(δ, T − T ′) increases in T − T ′ (see [12]).

Unfortunately, we are unable to provide any bounds on
the performance of our algorithm should it terminate when
(10) holds. This is because of the non-zero correlation term
between the noise and the difference

√
Φ(2)x+ c1m2 −√

Φ(2)xe + c1m2 when considering the training set. Please
refer to the detailed proof of Theorem 1 for more details.

III. EXPERIMENTS
In this section, we describe proof-of-concept experiments

- two with different synthetic data, and one with patches
from an actual image. In practice, we should try with
several values of λ and choose the one which results in
the best performance. To evaluate the results, we used the
RRMSE metric defined as Eval

[
‖x−xe‖/‖x‖

]
(same as

in Corollary 1), where xe is an estimate for the signal x. All
experiments were performed using Φ(i) ∼ Bernoulli(0.5).

NLBCS on Synthetic Data: Firstly, we considered n =
80, k = 20, s = 8, T = 4000, T

′
= 3000. We set A to con-

tain the element-wise absolute values of the first k columns
of the DCT matrix. We drew the non-zero elements of θi (for
all i) from an exponential distribution with mean α(> 0) in
order to control I . We tried with m = {10, 20, 30, 40, 50, 60}
and m1 = m − 5 (m2 = 5). We used λ = 1.5m1. Table I
shows the obtained RRMSE values for I = {24, 244}.

RRMSE- m=10 m=20 m=30 m=40 m=50 m=60
I = 24 0.2251 0.2218 0.2185 0.2180 0.1954 0.1918
I = 244 0.2132 0.2079 0.1959 0.1922 0.1841 0.1828

Table I. RRMSE values for first synthetic dataset.

In the second case, we took n = 150, k = 25, s = 15, T =
8000, T

′
= 6000. We set A to contain the element-wise

absolute values of an n × k random matrix whose entries
are drawn from N (0, 1). We drew the non-zero elements
of θi from Unif[0, α] (α > 0) to control I . We tried with
m = {20, 40, 60, 80, 100}. For m = 20, 40 and 60, we chose
m1 = m−5 and m2 = 5, whereas for m = 80 and 100, we
chose m1 = m−10 and m2 = 10. We set λ = 0.6m1. Table

RRMSE- m=20 m=40 m=60 m=80 m=100
I = 2 0.2263 0.2040 0.1896 0.1864 0.1796
I = 58 0.1835 0.1792 0.1748 0.1711 0.1673

Table II. RRMSE values for second synthetic dataset.

II shows the obtained RRMSE values for I = {2, 58}.
NLBCS on Image Patches: We performed experiments on
the famous Barbara image of size 512 × 512, divided into
64× 64 = 4096 = T non-overlapping (to maintain indepen-
dence of the signals) patches of size 8 × 8 each, followed
by reshaping of each patch to form a 64(= n) × 1 vector.
We estimated a dictionary consisting of k = 16 columns
using T

′
= 3600 signals in our training set and the rest in

our validation set. We worked with m = {16, 24, 32, 40}.
For m = 16 and 24, we chose m1 = m − 4 and m2 = 4,
whereas for m = 32 and 40, we chose m1 = m − 5 and
m2 = 5. We set the value of λ = 0.375m1 in all cases.
Table III shows the RRMSE values and Fig. 1 shows the
reconstructed image with m = 40 alongside the original one.

m=16 m=24 m=32 m=40
RRMSE- 0.1824 0.1821 0.1751 0.1291

Table III. RRMSE values for the Barbara experiment.

(a) Reconstructed image (b) Original image

Fig. 1. Barbara experiment with m = 40.

It can be observed that in all our experiments, the obtained
RRMSE decreases as m and I increase. [12] contains ad-
ditional experiments to show that learning a data-dependent
dictionary using our algorithm is better than just using an
off the shelf dictionary (and optimizing only over the sparse
codes).

IV. CONCLUSION
In this paper, we have presented a nonlinear blind com-

pressed sensing algorithm for a realistic noise model, to-
gether with theoretical performance bounds. To the best of
our knowledge, this is the first algorithmic or theoretical
attempt at this problem. Future work will involve deriving
convergence rates for the algorithm, and extending the theory
to other non-linear models apart from square-root.
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