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Abstract—
We present a new, geometric approach for determining the

probability density of the intensity values in an image. We drop
the notion of an image as a set of discrete pixels, and assume
a piecewise-continuous representation. The probability density can
then be regarded as being proportional to the area between two
nearby isocontours of the image surface. Our paper extends this
idea to joint densities of image pairs. We demonstrate the application
of our method to affine registration between two or more images
using information theoretic measures such as mutual information.
We show cases where our method outperforms existing methods such
as simple histograms, histograms with partial volume interpolation,
Parzen windows, etc. under fine intensity quantization for affine
image registration under significant image noise. Furthermore, we
demonstrate results on simultaneous registration of multiple images,
as well as for pairs of volume datasets, and show some theoretical
properties of our density estimator. Our approach requires the
selection of only an image interpolant. The method neither requires
any kind of kernel functions (as in Parzen windows) which are
unrelated to the structure of the image in itself, nor does it rely on
any form of sampling for density estimation.

I. INTRODUCTION

Information theoretic tools have for a long time been estab-
lished as the de facto technique for image registration, especially
in the domains of medical imaging [22] and remote sensing
[3] which deal with a large number of modalities. The ground-
breaking work for this was done by Viola and Wells [32], and
Maes et al. [17] in their widely cited papers. A detailed survey
of subsequent research on information theoretic techniques in
medical image registration is presented in the works of Pluim
et al. [22] and Maes et al. [18]. A required component of all
information theoretic techniques in image registration is a good
estimator of the joint entropies of the images being registered.
Most techniques employ plug-in entropy estimators, wherein the
joint and marginal probability densities of the intensity values in
the images are first estimated and these quantities are then used to
obtain the entropy. There also exist recent methods which define
a new form of entropy using cumulative distributions instead
of probability densities (see [25]). Furthermore, there also exist
techniques which directly estimate the entropy, without estimating
the probability density or distribution as an intermediate step [1].
Below, we present a bird’s eye view of these techniques and their
limitations. Subsequently, we introduce our method and bring out
its salient merits.

The plug-in entropy estimators rely upon techniques for density
estimation as a key first step. The most popular density estimator
is the simple image histogram. The drawbacks of a histogram

are that it yields discontinuous density estimates and requires an
optimal choice of the bin width. Too small a bin width leads
to noisy, sparse density estimates (variance) whereas too large
a bin width introduces oversmoothing (bias). Parzen windows
have been widely employed as a differentiable density estimator
for several applications in computer vision, including image
registration [32]. Here the problem of choosing an optimal bin
width translates to the optimal choice of a kernel width and
the kernel function itself. The choice of the kernel function is
somewhat arbitrary [29] and furthermore the implicit effect of
the kernel choice on the structure of the image is an issue that
has been widely ignored1. The kernel width parameter can be esti-
mated by techniques such as maximum likelihood. Such methods,
however, require complicated iterative optimizations, and also a
training and validation set. From an image registration standpoint,
the joint density between the images undergoes a change in
each iteration, which requires re-estimation of the kernel width
parameters. This step is an expensive iterative process with a
complexity that is quadratic in the number of samples. Methods
such as the Fast Gauss transform [33] reduce this cost to some
extent but they require a prior clustering step. However, the Fast
Gauss transform is only an approximation to the true Parzen
density estimate, and hence, one needs to analyze the behavior
of the approximation error over the iterations if a gradient-based
optimizer is used. Also, as per [9] (Section 3.3.2), the ideal width
value for minimizing the mean squared error between the true and
estimated density is itself dependent upon the second derivative
of the (unknown) true density. Yet another drawback of Parzen
window based density estimators is the well-known “tail effect” in
higher dimensions, due to which a large number of samples will
fall in those regions where the Gaussian has very low value [29].
Mixture models have been used for joint density estimation in
registration [15], but they are quite inefficient and require choice
of the kernel function for the components (usually chosen to be
Gaussian) and the number of components. This number again
will change across the iterations of the registration process, as the
images move with respect to one another. Wavelet based density
estimators have also been recently employed in image registration
[9] and in conjunction with MI [21]. The problems with a wavelet
based method for density estimation include a choice of wavelet
function, as well as the selection of the optimal number of levels
or coefficients, which again requires iterative optimization.

Direct entropy estimators avoid the intermediate density esti-

1Parzen showed in [19] that sup |p̂(x)− p(x)| → 0, where p̂ and p refer to the
estimated and true density respectively. However, we stress that this is only an
asymptotic result (as the number of samples Ns → ∞) and therefore not directly
linked to the nature of the image itself, for all practical purposes.
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mation phase. While there exists a plethora of papers in this field
(surveyed in [1]), the most popular entropy estimator used in im-
age registration is the approximation of the Renyi entropy as the
weight of a minimal spanning tree [16] or a K-nearest neighbor
graph [5]. Note that the entropy used here is the Renyi entropy
as opposed to the more popular Shannon entropy. Drawbacks of
this approach include the computational cost in construction of the
data structure in each step of registration (the complexity whereof
is quadratic in the number of samples drawn), the somewhat
arbitrary choice of the α parameter for the Renyi entropy and
the lack of differentiability of the cost function. Some work has
been done recently, however, to introduce differentiability in the
cost function [27]. A merit of these techniques is the ease of
estimation of entropies of high-dimensional feature vectors, with
the cost scaling up just linearly with the dimensionality of the
feature space.

Recently, a new form of the entropy defined on cumulative dis-
tributions, and related cumulative entropic measures such as cross
cumulative residual entropy (CCRE) have been introduced in
the literature on image registration [25]. The cumulative entropy
and the CCRE measure have perfectly compatible discrete and
continuous versions (quite unlike the Shannon entropy, though
not unlike the Shannon mutual information), and are known to
be noise resistant (as they are defined on cumulative distributions
and not densities). Our method of density estimation can be easily
extended to computing cumulative distributions and CCRE.

All the techniques reviewed here are based on different prin-
ciples, but have one crucial common point: they treat the image
as a set of pixels or samples, which inherently ignores the fact
that these samples originate from an underlying continuous (or
piece-wise continuous) signal. None of these techniques take into
account the ordering between the given pixels of an image. As
a result, all these methods can be termed sample-based. Further-
more, most of the aforementioned density estimators require a
particular kernel, the choice of which is extrinsic to the image
being analyzed and not necessarily linked even to the noise model.
In this paper, we present an entirely different approach in which
the density estimate is built directly from a continuous image
representation (as opposed an arbitrary kernel on the density). Our
approach here is based on the earlier work presented in [24], the
essence of which is to regard the marginal probability density as
the area between two isocontours at infinitesimally close intensity
values. A similar approach to density estimation has also been
taken in the work of Kadir and Brady [13]. In our work, we have
also presented a detailed derivation for the joint density between
two or more images, and also extended the work to the 3D
case, besides testing it thoroughly on affine image registration for
varying noise level and quantization widths. Prior work on image
registration using such image based techniques includes [24],
[23], [10] and [14]. The work in [10], however, reports results
only on template matching with translations, whereas the main
focus of [14] is on estimation of densities in vanishingly small
circular neighborhoods. The formulae derived are very specific to
the shape of the neighborhood. Their paper [14] shows that local
mutual information values in small neighborhoods are related
to the values of the angles between the local gradient vectors
in those neighborhoods. The focus of this method, however is
too local in nature, thereby ignoring the robustness that is an
integral part of more global density estimates. There also exists
some related work by Hadjidemetriou et al. [12] in the context

of histogram preserving locally continuous image transformations
(the so-called Hamiltonian morphisms), which relates histograms
to areas between isocontours. The main practical applications
discussed in [12] are histograms under weak perspective and para-
perspective projections of 3D textured models.

Note that our method, based on finding areas between isocon-
tours, is significantly different from Partial Volume Interpolation
(PVI) [17], [30]. PVI uses a continuous image representation to
build a joint probability table by assigning fractional votes to
multiple intensity pairs when a digital image is warped during
registration. The fractional votes are assigned typically using a
bilinear or bicubic kernel function in cases of non-alignment with
pixel grids after image warping. In essence, the density estimate
in PVI still requires histogramming or Parzen windowing.

In this paper, we also present in detail the problems that lead
to singularities in the probability density as estimated by the
suggested procedure and also suggested principled modifications.
The main merit of the proposed geometric technique is the fact
that it side-steps the parameter selection problem that affects other
density estimators and also does not rely on any form of sampling.
The accuracy of our techniques will always upper bound all
sample-based methods if the image interpolant is known (see
Section IV). In fact, the estimate obtained by all sample-based
methods will converge to that yielded by our method only in the
limit when the number of samples tends to infinity. Empirically,
we demonstrate the robustness of our technique to noise, and
superior performance in image registration. We conclude with a
discussion and clarification of some properties of our method.

II. MARGINAL AND JOINT DENSITY ESTIMATION

In this section, we show the derivation of the probability
density function (PDF) for the marginal as well as the joint
density for a pair of 2D images. We point out practical issues
and computational considerations, as well as outline the density
derivations for the case of 3D images, as well as multiple images
in 2D.
A. Estimating the Marginal Densities in 2D

Consider the 2D gray-scale image intensity to be a continuous,
scalar-valued function of the spatial variables, represented as
w = I(x,y). Let the total area of the image be denoted by A.
Assume a location random variable Z =< X ,Y > with a uniform
distribution over the image field of view (FOV). Further, assume
a new random variable W which is a transformation of the
random variable Z and with the transformation given by the gray-
scale image intensity function W = I(X ,Y ). Then the cumulative
distribution of W at a certain intensity level α is equal to the
ratio of the total area of all regions whose intensity is less than
or equal to α to the total area of the image

Pr(W ≤ α) =
1
A

∫ ∫
I(x,y)≤α

dxdy. (1)

Now, the probability density of W at α is the derivative of the
cumulative distribution in (1). This is equal to the difference in
the areas enclosed within two level curves that are separated by
an intensity difference of ∆α (or equivalently, the area enclosed
between two level curves of intensity α and α + ∆α), per unit
difference, as ∆α → 0 (see Figure 1). The formal expression for
this is

p(α) =
1
A

lim
∆α→0

∫ ∫
I(x,y)≤α+∆α

dxdy−
∫ ∫

I(x,y)≤α
dxdy

∆α
. (2)
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Hence, we have

p(α) =
1
A

d
dα

∫ ∫
I(x,y)≤α

dxdy. (3)

We can now adopt a change of variables from the spatial
coordinates (x,y) to u(x,y) and I(x,y), where u and I are the
directions parallel and perpendicular to the level curve of intensity
α , respectively. Observe that I points in the direction of the image
gradient, or the direction of maximum intensity change. Noting
this fact, we now obtain the following:

p(α) =
1
A

∫
I(x,y)=α

∣∣∣∣∣ ∂x
∂ I

∂y
∂ I

∂x
∂u

∂y
∂u

∣∣∣∣∣du. (4)

Note that in Eq. (4), dα and dI have “canceled” each other out,
as they both stand for intensity change. Upon a series of algebraic
manipulations, we are now left with the following expression
for p(α) (with a more detailed derivation to be found in the
Appendix):

p(α) =
1
A

∫
I(x,y)=α

du√
( ∂ I

∂x )
2 +( ∂ I

∂y )
2
. (5)

From the above expression, one can make some important
observations. Each point on a given level curve contributes a
certain measure to the density at that intensity which is inversely
proportional to the magnitude of the gradient at that point.
In other words, in regions of high intensity gradient, the area
between two level curves at nearby intensity levels would be
small, as compared to that in regions of lower image gradient
(see Figure 1). When the gradient value at a point is zero (owing

Level Curve   at  α+∆α

Level curve at α

Area between level curves

Fig. 1. p(α) ∝ area between level curves at α and α +∆α (i.e. region with red
dots)

to the existence of a peak, a valley, a saddle point or a flat region),
the contribution to the density at that point tends to infinity. (The
practical repercussions of this situation are discussed later on in
the paper. Lastly, the density at an intensity level can be estimated
by traversing the level curve(s) at that intensity and integrating the
reciprocal of the gradient magnitude. One can obtain an estimate
of the density at several intensity levels (at intensity spacing of h
from each other) across the entire intensity range of the image.

B. Estimating the Joint Density

Consider two images represented as continuous scalar valued
functions w1 = I1(x,y) and w2 = I2(x,y), whose overlap area is
A. As before, assume a location random variable Z = {X ,Y}
with a uniform distribution over the (overlap) field of view.
Further, assume two new random variables W1 and W2 which
are transformations of the random variable Z and with the
transformations given by the gray-scale image intensity functions
W1 = I1(X ,Y ) and W2 = I2(X ,Y ). Let the set of all regions whose

intensity in I1 is less than or equal to α1 and whose intensity in
I2 is less than or equal to α2 be denoted by L. The cumulative
distribution Pr(W1 ≤ α1,W2 ≤ α2) at intensity values (α1,α2) is
equal to the ratio of the total area of L to the total overlap area
A. The probability density p(α1,α2) in this case is the second
partial derivative of the cumulative distribution w.r.t. α1 and α2.
Consider a pair of level curves from I1 having intensity values α1
and α1 + ∆α1, and another pair from I2 having intensity α2 and
α2 + ∆α2. Let us denote the region enclosed between the level
curves of I1 at α1 and α1 + ∆α1 as Q1 and the region enclosed
between the level curves of I2 at α2 and α2 + ∆α2 as Q2. Then
p(α1,α2) can geometrically be interpreted as the area of Q1∩Q2,
divided by ∆α1∆α2, in the limit as ∆α1 and ∆α2 tend to zero. The
regions Q1, Q2 and also Q1∩Q2 (dark black region) are shown
in Figure 2(left). Using a technique very similar to that shown
in Eqs. (2)-(4), we obtain the expression for the joint cumulative
distribution as follows:

Pr(W1 ≤ α1,W2 ≤ α2) =
1
A

∫ ∫
L

dxdy. (6)

By doing a change of variables, we arrive at the following
formula:

Pr(W1 ≤ α1,W2 ≤ α2) =
1
A

∫ ∫
L

∣∣∣∣∣ ∂x
∂u1

∂y
∂u1

∂x
∂u2

∂y
∂u2

∣∣∣∣∣du1du2. (7)

Here u1 and u2 represent directions along the corresponding level
curves of the two images I1 and I2. Taking the second partial
derivative with respect to α1 and α2, we get the expression for
the joint density:

p(α1,α2) =
1
A

∂ 2

∂α1∂α2

∫ ∫
L

∣∣∣∣∣ ∂x
∂u1

∂y
∂u1

∂x
∂u2

∂y
∂u2

∣∣∣∣∣du1du2. (8)

It is important to note here again, that the joint density in (8)
may not exist because the cumulative may not be differentiable.
Geometrically, this occurs if (a) both the images have locally
constant intensity, (b) if only one image has locally constant
intensity, or (c) if the level sets of the two images are locally
parallel. In case (a), we have area-measures and in the other
two cases, we have curve-measures. These cases are described
in detail in the following section, but for the moment, we shall
ignore these degeneracies.

To obtain a complete expression for the PDF in terms of
gradients, it would be highly intuitive to follow purely geometric
reasoning. One can observe that the joint probability density
p(α1,α2) is the sum total of “contributions” at every intersec-
tion between the level curves of I1 at α1 and those of I2 at
α2. Each contribution is the area of parallelogram ABCD [see
Figure 2(right)] at the level curve intersection, as the intensity
differences ∆α1 and ∆α2 shrink to zero. (We consider a paral-
lelogram here, because we are approximating the level curves
locally as straight lines.) Let the coordinates of the point B be
(x̃, ỹ) and the magnitude of the gradient of I1 and I2 at this point be
g1(x̃, ỹ) and g2(x̃, ỹ). Also, let θ(x̃, ỹ) be the acute angle between
the gradients of the two images at B. Observe that the intensity
difference between the two level curves of I1 is ∆α1. Then, using
the definition of gradient, the perpendicular distance between the
two level curves of I1 is given as ∆α1

g1(x̃,ỹ) . Looking at triangle CDE
(wherein CE is perpendicular to the level curves) we can now
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Level Curves of Image 1
at levels α1 and α1+∆α1 

Level Curves of Image 2
at levels α2 and α2+∆α2 

Region P

Region Q

Intersection of P and Q

(a)

A

D C

B

Level Curves of I1
at α1 and α1+∆α1

The level curves of I1 and I2
make an angle θ  w.r.t. each other

E

Level Curves of I2
at α2 and α2+∆α2 

length(CE) = ∆α1/g1(x,y);
intensity spacing = ∆α1

(b)

Fig. 2. Left: Intersection of level curves of I1 and I2: p(α1,α2) ∝ area of
dark black regions. Right: Parallelogram approximation: PDF contribution = area
(ABCD)

deduce the length of CD (or equivalently that of AB). Similarly,
we can also find the length CB. The two expressions are given
by:

|AB|= ∆α1

g1(x̃, ỹ)sinθ(x̃, ỹ)
, |CB|= ∆α2

g2(x̃, ỹ)sinθ(x̃, ỹ)
. (9)

Now, the area of the parallelogram is equal to |AB||CB|sinθ(x̃, ỹ),
which evaluates to ∆α1∆α2

g1(x̃,ỹ)g2(x̃,ỹ)sinθ(x̃,ỹ) . With this, we finally obtain
the following expression for the joint density:

p(α1,α2) =
1
A ∑

C

1
g1(x,y)g2(x,y)sinθ(x,y)

(10)

where the set C represents the (countable) locus of all points
where I1(x,y) = α1 and I2(x,y) = α2. It is easy to show through
algebraic manipulations that Eqs. (8) and (10) are equivalent
formulations of the joint probability density p(α1,α2). These
results could also have been derived purely by manipulation of
Jacobians (as done while deriving marginal densities), and the
derivation for the marginals could also have proceeded following
geometric intuitions.

The formula derived above tallies beautifully with intuition in
the following ways. Firstly, the area of the parallelogram ABCD
(i.e. the joint density contribution) in regions of high gradient
[in either or both image(s)] is smaller as compared to that in
the case of regions with lower gradients. Secondly, the area of
parallelogram ABCD (i.e. the joint density contribution) is the
least when the gradients of the two images are orthogonal and
maximum when they are parallel or coincident [see Figure 3(a)].
In fact, the joint density tends to infinity in the case where either
(or both) gradient(s) is (are) zero, or when the two gradients align,
so that sinθ is zero. The repercussions of this phenomenon are
discussed in the following section.
C. From Densities to Distributions

In the two preceding sub-sections, we observed the divergence

(a)

Level Curves of I1

Level Curves of I2

Level Curves of I3

(b)

Fig. 3. (a) Area of parallelogram increases as angle between level curves
decreases (left to right). Level curves of I1 and I2 are shown in red and blue
lines respectively. (b) Joint probability contribution in the case of three images.

of the marginal density in regions of zero gradient, or of the joint
density in regions where either (or both) image gradient(s) is
(are) zero, or when the gradients locally align. The gradient goes
to zero in regions of the image that are flat in terms of intensity,
and also at peaks, valleys and saddle points on the image surface.
We can ignore the latter three cases as they are a finite number
of points within a continuum. The probability contribution at a
particular intensity in a flat region is proportional to the area of
that flat region. Some ad hoc approaches could involve simply
“weeding out” the flat regions altogether, but that would require
the choice of sensitive thresholds. The key thing is to notice that
in these regions, the density does not exist but the probability
distribution does. So, we can switch entirely to probability distri-
butions everywhere by introducing a non-zero lower bound on the
“values” of ∆α1 and ∆α2. Effectively, this means that we always
look at parallelograms representing the intersection between pairs
of level curves from the two images, separated by non-zero
intensity difference, denoted as, say, h. Since these parallelograms
have finite areas, we have circumvented the situation of choosing
thresholds to prevent the values from becoming unbounded, and
the probability at α1,α2, denoted as p̂(α1,α2) is obtained from
the areas of such parallelograms. We term this area-based method
of density estimation as AreaProb. Later on in the paper, we shall
show that the switch to distributions is principled and does not
reduce our technique to standard histogramming in any manner
whatsoever.

(a) (b)

Fig. 4. A retinogram [31] and its rotated negative.

The notion of an image as a continuous entity is one of the
pillars of our approach. We adopt a locally linear formulation
in this paper, for the sake of simplicity, though the technical
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Fig. 5. Joint densities of the retinogram images computed by histograms (top 2
rows) and by our area-based method (bottom 2 rows) using 16, 32, 64 and 128
bins.

contributions of this paper are in no way tied to any specific
interpolant. For each image grid point, we estimate the intensity
values at its four neighbors within a horizontal or vertical distance
of 0.5 pixels. We then divide each square defined by these
neighbors into a pair of triangles. The intensities within each
triangle can be represented as a planar patch, which is given by
the equation z1 = A1x+B1y+C1 in I1. Iso-intensity lines at levels
α1 and α1 +h within this triangle are represented by the equations
A1x + B1y +C1 = α1 and A1x + B1y +C1 = α1 + h (likewise for
the iso-intensity lines of I2 at intensities α2 and α2 + h, within
a triangle of corresponding location). The contribution from this
triangle to the joint probability at (α1,α2), i.e. p̂(α1,α2) is the
area bounded by the two pairs of parallel lines, clipped against
the body of the triangle itself, as shown in Figure 7. In the
case that the corresponding gradients from the two images are
parallel (or coincident), they enclose an infinite area between
them, which when clipped against the body of the triangle, yields
a closed polygon of finite area, as shown in Figure 7. When both
the gradients are zero (which can be considered to be a special
case of gradients being parallel), the probability contribution is
equal to the area of the entire triangle. In the case where the
gradient of only one of the images is zero, the contribution is
equal to the area enclosed between the parallel iso-intensity lines
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Fig. 6. Marginal densities of the retinogram image computed by histograms (top
2 rows) and our area-based method (bottom 2 rows) using 16, 32, 64 and 128
bins (row-wise order).

of the other image, clipped against the body of the triangle (see
Figure 7). Observe that though we have to treat pathological
regions specially (despite having switched to distributions), we
now do not need to select thresholds, nor do we need to deal
with a mixture of densities and distributions. The other major
advantage is added robustness to noise, as we are now working
with probabilities instead of their derivatives, i.e. densities.

The issue that now arises is how the value of h may be
chosen. It should be noted that although there is no “optimal”
h, our density estimate would convey more and more information
as the value of h is reduced (in complete contrast to standard
histogramming). In Figure 5, we have shown plots of our joint
density estimate and compared it to standard histograms for P
equal to 16, 32, 64 and 128 bins in each image (i.e. 322, 642 etc.
bins in the joint), which illustrate our point clearly. We found
that the standard histograms had a far greater number of empty
bins than our density estimator, for the same number of intensity
levels. The corresponding marginal discrete distributions for the
original retinogram image [31] for 16, 32, 64 and 128 bins are
shown in Figure 6.

D. Joint Density Between Multiple Images in 2D

For the simultaneous registration of multiple (d > 2) images,
the use of a single d-dimensional joint probability has been
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INFINITY

Fig. 7. Left: Probability contribution equal to area of parallelogram between
level curves clipped against the triangle, i.e. half-pixel. Middle: Case of parallel
gradients. Right: Case when the gradient of one image is zero (blue level lines) and
that of the other is non-zero (red level lines). In each case, probability contribution
equals area of the dark black region.

advocated in previous literature [2], [35]. Our joint probability
derivation can be easily extended to the case of d > 2 images
by using similar geometric intuition to obtain the polygonal area
between d intersecting pairs of level curves [see Figure 3(right)
for the case of d = 3 images]. Note here that the d-dimensional
joint distribution lies essentially in a 2D subspace, as we are
dealing with 2D images. A naïve implementation of such a
scheme has a complexity of O(NPd) where P is the number
of intensity levels chosen for each image and N is the size of
each image. Interestingly, however, this exponential cost can be
side-stepped by first computing the at most ( d(d−1)

2 )P2 points of
intersection between pairs of level curves from all d images with
one another, for every pixel. Secondly, a graph can be created,
each of whose nodes is an intersection point. Nodes are linked
by edges labeled with the image number (say kth image) if they
lie along the same iso-contour of that image. In most cases,
each node of the graph will have a degree of four (and in the
unlikely case where level curves from all images are concurrent,
the maximal degree of a node will be 2d). Now, this is clearly a
planar graph, and hence, by Euler’s formula, we have the number
of (convex polygonal) faces F̃ = d(d−1)

2 ∗ 4P2− d(d−1)
2 P2 + 2 =

O(P2d2), which is quadratic in the number of images. The area
of the polygonal faces are contributions to the joint probability
distribution. In a practical implementation, there is no requirement
to even create the planar graph. Instead, we can implement a
simple incremental face-splitting algorithm ([7], section 8.3). In
such an implementation, we create a list of faces F which
is updated incrementally. To start with, F consists of just the
triangular face constituting the three vertices of a chosen half-
pixel in the image. Next, we consider a single level-line l at
a time and split into two any face in F that l intersects. This
procedure is repeated for all level lines (separated by a discrete
intensity spacing) of all the d images. The final output is a listing
of all polygonal faces F created by incremental splitting which
can be created in just O(F̃Pd) time. The storage requirement can
be made polynomial by observing that for d images, the number
of unique intensity tuples will be at most F̃N in the worst case
(as opposed to Pd). Hence all intensity tuples can be efficiently
stored and indexed using a hash table.
E. Extensions to 3D

When estimating the probability density from 3D images, the
choice of an optimal smoothing parameter is a less critical issue,
as a much larger number of samples are available. However,
at a theoretical level this still remains a problem, which would
worsen in the multiple image case. In 3D, the marginal probability
can be interpreted as the total volume sandwiched between two

iso-surfaces at neighboring intensity levels. The formula for the
marginal density p(α) of a 3D image w = I(x,y,z) is given as
follows:

p(α) =
1
V

d
dα

∫ ∫ ∫
I(x,y,z)≤α

dxdydz. (11)

Here V is the volume of the image I(x,y,z). We can now adopt
a change of variables from the spatial coordinates x, y and z to
u1(x,y,z), u2(x,y,z) and I(x,y,z), where I is the perpendicular
to the level surface (i.e. parallel to the gradient) and u1 and u2
are mutually perpendicular directions parallel to the level surface.
Noting this fact, we now obtain the following:

p(α) =
1
V

∫ ∫
I(x,y,z)=α

∣∣∣∣∣∣∣
∂x
∂ I

∂y
∂ I

∂ z
∂ I

∂x
∂u1

∂y
∂u1

∂ z
∂u1

∂x
∂u2

∂y
∂u2

∂ z
∂u2

∣∣∣∣∣∣∣du1du2. (12)

Upon a series of algebraic manipulations just as before, we are
left with the following expression for p(α):

p(α) =
1
V

∫ ∫
I(x,y,z)=α

du1du2√
( ∂ I

∂x )
2 +( ∂ I

∂y )
2 +( ∂ I

∂ z )
2
. (13)

For the joint density case, consider two 3D images represented
as w1 = I1(x,y,z) and w2 = I2(x,y,z), whose overlap volume (the
field of view) is V . The cumulative distribution Pr(W1 ≤ α1,W2 ≤
α2) at intensity values (α1,α2) is equal to the ratio of the total
volume of all regions whose intensity in the first image is less
than or equal to α1 and whose intensity in the second image is less
than or equal to α2, to the total image volume. The probability
density p(α1,α2) is again the second partial derivative of the
cumulative distribution. Consider two regions R1 and R2, where
R1 is the region trapped between level surfaces of the first image
at intensities α1 and α1 +∆α1, and R2 is defined analogously for
the second image. The density is proportional to the volume of
the intersection of R1 and R2 divided by ∆α1 and ∆α2 when the
latter two tend to zero. It can be shown through some geometric
manipulations that the area of the base of the parallelepiped
formed by the isosurfaces is given as ∆α1∆α2

|~g1×~g2|
= ∆α1∆α2
|g1g2 sin(θ)| , where

~g1 and ~g2 are the gradients of the two images, and θ is the angle
between them. Let ~h be a vector which points in the direction of
the height of the parallelepiped (parallel to the base normal, i.e.
~g1× ~g2), and d~h be an infinitesimal step in that direction. Then
the probability density is given as follows:

p(α1,α2) =
1
V

∂ 2

∂α1∂α2

∫ ∫ ∫
Vs

dxdydz

=
1
V

∂ 2

∂α1∂α2

∫ ∫ ∫
Vs

d~u1d~u2d~h
|~g1× ~g2|

=
1
V

∫
C

d~h
|~g1× ~g2|

.(14)

In Eq. (14), ~u1 and ~u2 are directions parallel to the iso-
surfaces of the two images, and ~h is their cross-product
(and parallel to the line of intersection of the individual
planes), while C is the 3D space curve containing the points
where I1 and I2 have values α1 and α2 respectively and

Vs
def= {(x,y,z) : I1(x,y,z)≤ α1, I2(x,y,z)≤ α2}.

F. Implementation Details for the 3D case

The density formulation for the 3D case suffers from the same
problem of divergence to infinity, as in the 2D case. Similar
techniques can be employed, this time using level surfaces that
are separated by finite intensity gaps. To trace the level surfaces,
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Center of
voxel

Face of one of
the tetrahedra

(a)

Center of
voxel

Each square face is the base
of four tetrahedra

(b)

Fig. 8. (a) Splitting a voxel into 12 tetrahedra, two on each of the six faces of
the voxel; (b) Splitting a voxel into 24 tetrahedra, four on each of the six faces
of the voxel.

each cube-shaped voxel in the 3D image can be divided into
12 tetrahedra. The apex of each tetrahedron is located at the
center of the voxel and the base is formed by dividing one of
the six square faces of the cube by one of the diagonals of that
face [see Figure 8(a)]. Within each triangular face of each such
tetrahedron, the intensity can be assumed to be a linear function
of location. Note that the intensities in different faces of one and
the same tetrahedron can thus be expressed by different functions,
all of them linear. Hence the isosurfaces at different intensity
levels within a single tetrahedron are non-intersecting but not
necessarily parallel. These level surfaces at any intensity within a
single tetrahedron turn out to be either triangles or quadrilaterals
in 3D. This interpolation scheme does have some bias in the
choice of the diagonals that divide the individual square faces.
A scheme that uses 24 tetrahedra with the apex at the center of
the voxel, and four tetrahedra based on every single face, has
no bias of this kind [see Figure 8(b)]. However, we still used
the former (and faster) scheme as it is simpler and does not
noticeably affect the results. Level surfaces are again traced at
a finite number of intensity values, separated by equal intensity
intervals. The marginal density contributions are obtained as the
volumes of convex polyhedra trapped in between consecutive
level surfaces clipped against the body of individual tetrahedra.
The joint distribution contribution from each voxel is obtained
by finding the volume of the convex polyhedron resulting from
the intersection of corresponding convex polyhedra from the two
images, clipped against the tetrahedra inside the voxel. We refer
to this scheme of finding joint densities as VolumeProb.
G. Joint Densities by Counting Points and Measuring Lengths

For the specific case of registration of two images in 2D, we
present another method of density estimation. This method, which
was presented by us earlier in [23], is a biased estimator that does
not assume a uniform distribution on location. In this technique,

the total number of co-occurrences of intensities α1 and α2 from
the two images respectively, is obtained by counting the total
number of intersections of the corresponding level curves. Each
half-pixel can be examined to see whether level curves of the
two images at intensities α1 and α2 can intersect within the half-
pixel. This process is repeated for different (discrete) values from
the two images (α1 and α2), separated by equal intervals and
selected a priori (see Figure 9). The co-occurrence counts are
then normalized so as to yield a joint probability mass function
(PMF). We denote this method as 2DPointProb. The marginals
are obtained by summing up the joint PMF along the respective
directions. This method, too, avoids the histogramming binning
problem as one has the liberty to choose as many level curves as
desired. However, it is a biased density estimator because more
points are picked from regions with high image gradient. This
is because more level curves (at equi-spaced intensity levels)
are packed together in such areas. It can also be regarded as
a weighted version of the joint density estimator presented in the
previous sub-section, with each point weighted by the gradient
magnitudes of the two images at that point as well as the sine of
the angle between them. Thus the joint PMF by this method is
given as

p(α1,α2) =
∂ 2

∂α1∂α2

1
K

∫ ∫
D

g1(x,y)g2(x,y)sinθ(x,y)dxdy (15)

where D denotes the regions where I1(x,y)≤α1, I2(x,y)≤α2 and
K is a normalization constant. This simplifies to the following:

p(α1,α2) =
1
K ∑

C
1. (16)

Hence, we have p(α1,α2) = |C|
K , where C is the (countable) set

of points where I1(x,y) = α1 and I2(x,y) = α2. The marginal
(biased) density estimates can be regarded as lengths of the
individual isocontours. With this notion in mind, the marginal
density estimates are seen to have a close relation with the total
variation of an image, which is given by TV =

∫
I=α
|∇I(x,y)|dxdy

[26]. We clearly have TV =
∫

I=α
du, by doing the same change

of variables (from x,y to u, I) as in Eqs. (4) and (5), thus giving
us the length of the isocontours at any given intensity level.

Neighbors of
grid point

Pixel grid point

Square divided into
two triangles

Iso-intensity 
line of I1 at α1

Iso-intensity 
line of I2 at α2

A vote for p(α1,α2)

A vote for p(α1+∆,α2+∆)

Fig. 9. Counting level curve intersections within a given half-pixel.

In 3D, we consider the segments of intersection of two iso-
surfaces and calculate their lengths, which become the PMF
contributions. We refer to this as LengthProb [see Figure 10(a)].

Both 2DPointProb and LengthProb, however, require us to
ignore those regions in which level sets do not exist because the
intensity function is flat, or those regions where level sets from
the two images are parallel. The case of flat regions in one or
both images can be fixed to some extent by slight blurring of
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Line of intersection
of two planes

Planar Isosurfaces
from the two images

Line of intersection
of two planes
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from the three images
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Fig. 10. (a) Segment of intersection of planar isosurfaces from the two images,
(b) Point of intersection of planar isosurfaces (each shown in a different color)
from the three images

Method 2D/3D Density Contr. Bias No. of images
AreaProb 2D Area No Any

VolumeProb 3D Volume No Any
LengthProb 3D Length Yes 2 only

2DPointProb 2D Point count Yes 2 only
3DPointProb 3D Point count Yes 3 only

TABLE I
COMPARISON BETWEEN DIFFERENT METHODS OF DENSITY ESTIMATION

W.R.T. NATURE OF DOMAIN, BIAS, SPEED, AND GEOMETRIC NATURE OF

DENSITY CONTRIBUTIONS.

the image. The case of aligned gradients is trickier, especially
if the two images are in complete registration. However, in the
multi-modality case or if the images are noisy/blurred, perfect
registration is a rare occurrence, and hence perfect alignment of
level surfaces will rarely occur.

To summarize, in both these techniques, location is treated
as a random variable with a distribution that is not uniform,
but instead peaked at (biased towards) locations where specific
features of the image itself (such as gradients) have large magni-
tudes or where gradient vectors from the two images are closer
towards being perpendicular than parallel. Such a bias towards
high gradients is principled, as these are the more salient regions
of the two images. Empirically, we have observed that both these
density estimators work quite well on affine registration, and
that LengthProb is more than 10 times faster than VolumeProb.
This is because the computation of segments of intersection of
planar isosurfaces is much faster than computing polyhedron
intersections. Joint PMF plots for histograms and LengthProb for
128 bins and 256 bins are shown in Figure 11.

There exists one more major difference between AreaProb and
VolumeProb on one hand, and LengthProb or 2DPointProb on
the other. The former two can be easily extended to compute
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Fig. 11. Joint probability plots using: (a) histograms, 128 bins, (b) histograms,
256 bins, (c) LengthProb, 128 bins and (d) LengthProb, 256 bins.

joint density between multiple images (needed for co-registration
of multiple images using measures such as modified mutual
information (MMI) [2]). All that is required is the intersection
of multiple convex polyhedra in 3D or multiple convex polygons
in 2D (see Section II-D). However, 2DPointProb is strictly
applicable to the case of the joint PMF between exactly two
images in 2D, as the problem of intersection of three or more level
curves at specific (discrete) intensity levels is over-constrained.
In 3D, LengthProb also deals with strictly two images only, but
one can extend the LengthProb scheme to also compute the joint
PMF between exactly three images. This can be done by making
use of the fact that three planar iso-surfaces intersect in a point
(excepting degenerate cases) [see Figure 10(b)]. The joint PMFs
between the three images are then computed by counting point
intersections. We shall name this method as 3DPointProb. The
differences between all the aforementioned methods: AreaProb,
2DPointProb, VolumeProb, LengthProb and 3DPointProb are
summarized in Table I for quick reference. It should be noted
that 2DPointProb, LengthProb and 3DPointProb compute PMFs,
whereas AreaProb and VolumeProb compute cumulative measures
over finite intervals.

H. Image Entropy and Mutual Information

We are ultimately interested in using the estimated values
of p(α1,α2) to calculate (Shannon) joint entropy and MI. A
major concern is that, in the limit as the bin-width h → 0,
the Shannon entropy does not approach the continuous entropy,
but becomes unbounded [6]. There are two ways to deal with
this. Firstly, a normalized version of the joint entropy (NJE)
obtained by dividing the Shannon joint entropy (JE) by logP
(where P is the number of bins), could be employed instead of
the Shannon joint entropy. As h→ 0 and the Shannon entropy
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tends toward +∞, NJE would still remain stable, owing to the
division by logP, which would also tend toward +∞ (in fact,
NJE will have a maximal upper bound of logP2

logP = 2, for a uniform
joint distribution). Alternatively (and this is the more principled
strategy), we observe that unlike the case with Shannon entropy,
the continuous MI is indeed the limit of the discrete MI as h→ 0
(see [6] for the proof). Now, as P increases, we effectively obtain
an increasingly better approximation to the continuous mutual
information.

In the multiple image case (d > 2), we avoid using a pair-wise
sum of MI values between different image pairs, because such
a sum ignores the simultaneous joint overlap between multiple
images. Instead, we can employ measures such as modified
mutual information (MMI) [2], which is defined as the KL
divergence between the d-way joint distribution and the product
of the marginal distributions, or its normalized version (MNMI)
obtained by dividing MMI by the joint entropy. The expressions
for MI between two images and MMI for three images are given
below:

MI(I1, I2) = H1(I1)+H2(I2)−H12(I1, I2) (17)

which can be explicitly written as

MI(I1, I2) = ∑
j1

∑
j2

p( j1, j2) log
p( j1, j2)

p( j1)p( j2)
(18)

where the summation indices j1 and j2 range over the sets of
possibilities of I1 and I2 respectively. For three images,

MMI(I1, I2, I3) = H1(I1)+H2(I2)+H3(I3)−H123(I1, I2, I3) (19)

which has the explicit form

MMI(I1, I2, I3) = ∑
j1

∑
j2

∑
j3

p( j1, j2, j3) log
p( j1, j2, j3)

p( j1)p( j2)p( j3)
(20)

where the summation indices j1, j2 and j3 range over the sets of
possibilities of I1, I2 and I3 respectively. Though NMI (normal-
ized mutual information) and MNMI are not compatible in the
discrete and continuous formulations (unlike MI and MMI), in
our experiments, we ignored this fact as we chose very specific
intensity levels.

III. EXPERIMENTAL RESULTS

In this section, we describe our experimental results on es-
timation of PDFs and a comparison between our area-based
method for 2D images, versus standard histogramming with sub-
pixel sampling. Further, we present results for (a) the case of
registration of two images in 2D, (b) the case of registration of
multiple images in 2D and (c) the case of registration of two
images in 3D.
A. Area-based PDFs versus histograms with several sub-pixel
samples

The accuracy of the histogram estimate will no doubt approach
the true PDF as the number of samples Ns (drawn from sub-pixel
locations) tends to infinity. However, we wish to point out that
our method implicitly and efficiently considers every point as a
sample, thereby constructing the PDF directly, i.e. the accuracy
of what we calculate with the area-based method will always
be an upper bound on the accuracy yielded by any sample-based
approach, under the assumption that the true interpolant is known
to us. We show here an anecdotal example for the same, in which

the number of histogram samples Ns is varied from 5000 to 2×
109. The L1 and L2 norms of the difference between the joint PDF
of two 90 x 109 images (down-sampled MR-T1 and MR-T2 slices
obtained from Brainweb [4]) as computed by our method and that
obtained by the histogram method, as well as the Jensen-Shannon
divergence (JSD) between the two joint PDFs, are plotted in the
figures below versus logNs (see Figure 12). The number of bins
used was 128×128 (i.e. h = 128). Visually, it was observed that
the joint density surfaces begin to appear ever more similar as Ns
increases. The timing values for the joint PDF computation are
shown in Table II, clearly showing the greater efficiency of our
method.
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Fig. 12. Plots of the difference between the true joint PDF as computed by the
area-based method and the PDF computed by histogramming with Ns sub-pixel
samples versus logNs using (b) L1 norm, (c) L2 norm, and (d) JSD. The relevant
images are in sub-figure (a).

Method Time (secs.) Diff. with isocontour PDF
Isocontours 5.1 0

Hist. 106 samples 1 0.0393
Hist. 107 samples 11 0.01265
Hist. 108 samples 106 0.0039

Hist. 5×108 samples 450 0.00176
Hist. 2×109 samples 1927 8.58×10−4

TABLE II
TIMING VALUES FOR COMPUTATION OF JOINT PDFS AND L1 NORM OF

DIFFERENCE BETWEEN PDF COMPUTED BY SAMPLING WITH THAT

COMPUTED USING ISOCONTOURS. NUMBER OF BINS IS 128×128, SIZE OF

IMAGES 122×146.

B. Registration of two images in 2D

For this case, we took pre-registered MR-T1 and MR-T2
slices from Brainweb [4], down-sampled to size 122× 146 (see
Figure 12) and created a 20◦ rotated version of the MR-T2 slice.
To this rotated version, zero-mean Gaussian noise of different
variances was added using the imnoise function of MATLAB R©.
The chosen variances were 0.01, 0.05, 0.1, 0.2, 0.5, 1 and 2. All
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these variances are chosen for an intensity range between 0 and
1. To create the probability distributions, we chose bin counts of
16, 32, 64 and 128. For each combination of bin-count and noise,
a brute-force search was performed so as to optimally align the
synthetically rotated noisy image with the original one, as deter-
mined by finding the maximum of MI or NMI between the two
images. Six different techniques were used for MI estimation: (1)
simple histograms with bilinear interpolation for image warping
(referred to as “Simple Hist”), (2) our proposed method using
isocontours (referred to as “Isocontours”), (3) histogramming
with partial volume interpolation (referred to as “PVI”) (4)
histogramming with cubic spline interpolation (referred to as
“Cubic”), (5) the method 2DPointProb proposed in [23], and
(6) simple histogramming with 106 samples taken from sub-pixel
locations uniformly randomly followed by usual binning (referred
to as “Hist Samples”). These experiments were repeated for 30
noise trials at each noise standard deviation. For each method, the
mean and the variance of the error (absolute difference between
the predicted alignment and the ground truth alignment) was
measured (Figure 13). The same experiments were also performed
using a Parzen-window based density estimator using a Gaussian
kernel and σ = 5 (referred to as “Parzen”) over 30 trials. In each
trial, 10,000 samples were chosen. Out of these, 5000 were chosen
as centers for the Gaussian kernel and the rest were used for the
sake of entropy computation. The error mean and variance was
recorded (see Table III).

Noise Variance Avg. Error Std. Dev. of Error
0.05 0.0667 0.44
0.2 0.33 0.8
1 3.6 3
2 4.7 12.51

TABLE III
AVERAGE AND STD. DEV. OF ERROR IN DEGREES (ABSOLUTE DIFFERENCE

BETWEEN TRUE AND ESTIMATED ANGLE OF ROTATION) FOR MI USING

PARZEN WINDOWS. THE ISOCONTOUR METHOD CONSISTENTLY GAVE BETTER

RESULTS THAN PARZEN WINDOWING UNDER HIGHER NOISE.

The adjoining error plots (Figure 13) show results for all these
methods for all bins counts, for noise levels of 0.05, 0.2 and 1. The
accompanying trajectories (for all methods except histogramming
with multiple sub-pixel samples) with MI for bin-counts of 32 and
128 and noise level 0.05, 0.2 and 1.00 are shown as well, for sake
of comparison, for one arbitrarily chosen noise trial (Figure 14).
From these figures, one can appreciate the superior resistance to
noise shown by both our methods, even at very high noise levels,
as evidenced both by the shape of the MI and NMI trajectories,
as well as the height of the peaks in these trajectories. Amongst
the other methods, we noticed that PVI is more stable than simple
histogramming with either bilinear or cubic-spline based image
warping. In general, the other methods perform better when the
number of histogram bins is small, but even there our method
yields a smoother MI curve. However, as expected, noise does
significantly lower the peak in the MI as well as NMI trajectories
in the case of all methods including ours, due to the increase in
joint entropy. Though histogramming with 106 sub-pixel samples
performs well (as seen in Figure 13), our method efficiently and
directly (rather than asymptotically) approaches the true PDF and
hence the true MI value, under the assumption that we have access

to the true interpolant. Parzen windows with the chosen σ value
of 5 gave good performance, comparable to our technique, but
we wish to re-emphasize that the choice of the parameter was
arbitrary and the computation time was much more for Parzen
windows.

All the aforementioned techniques were also tested on affine
image registration (except for histogramming with multiple sub-
pixel samples and Parzen windowing, which were found to be
too slow). For the same image as in the previous experiment, an
affine-warped version was created using the parameters θ = 30◦

= 30, t = -0.3, s = -0.3 and φ = 0. During our experiments, we
performed a brute force search on the three-dimensional param-
eter space so as to find the transformation that optimally aligned
the second image with the first one. The exact parametrization for
the affine transformation is given in [34]. Results were collected
for a total of 20 noise trials and the average predicted parameters
were recorded as well as the variance of the predictions. For a
low noise level of 0.01 or 0.05, we observed that all methods
performed well for a quantization up to 64 bins. With 128 bins,
all methods except the two we have proposed broke down, i.e.
yielded a false optimum of θ around 38◦, and s and t around
0.4. For higher noise levels, all methods except ours broke down
at a quantization of just 64 bins. The 2DPointProb technique
retained its robustness until a noise level of 1, whereas the area-
based technique still produced an optimum of θ = 28◦, s = -0.3,
t = -0.4 (which is very close to the ideal value). The area-based
technique broke down only at an incredibly high noise level of
1.5 or 2. The average and standard deviation of the estimate of
the parameters θ , s and t, for 32 and 64 bins, for all five methods
and for noise levels 0.2 and 1.00 are presented in Tables IV and
V. We also performed two-sided Kolmogorov-Smirnov tests [11]
for statistical significance on the absolute error between the true
and estimated affine transformation parameters for 64 bins and
a noise of variance 1. We found that the difference in the error
values for MI, as computed using standard histogramming and our
isocontour technique, was statistically significant, as ascertained
at a level of 0.01.

We also performed experiments on determining the angle of
rotation using larger images with varying levels of noise (σ =
0.05,0.2,1). The same Brainweb images, as mentioned before,
were used, except that their original size of 183× 219 was
retained. For a bin count up to 128, all/most methods performed
quite well (using a brute-force search) even under high noise.
However with a large bin count (256 bins), the noise resistance of
our method stood out. The results of this experiment with different
methods and under varying noise are presented in Tables VI, VII
and VIII.

C. Registration of multiple images in 2D

The images used were pre-registered MR-PD, MR-T1 and MR-
T2 slices (from Brainweb) of sizes 90 x 109. The latter two
were rotated by θ1 = 20◦ and by θ2 = 30◦ respectively (see
Figure 15). For different noise levels and intensity quantizations,
a set of experiments was performed to optimally align the latter
two images with the former using modified mutual information
(MMI) and its normalized version (MNMI) as criteria. These
criteria were calculated using our area-based method as well as
simple histogramming with bilinear interpolation. The range of
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Method Bins θ s t
MI Hist 32 30, 0 -0.3, 0 -0.3, 0

NMI Hist 32 30, 0 -0.3, 0 -0.3, 0
MI Iso 32 30, 0 -0.3, 0 -0.3, 0

NMI Iso 32 30, 0 -0.3, 0 -0.3, 0
MI PVI 32 30, 0 -0.3, 0 -0.3, 0

NMI PVI 32 30, 0 -0.3, 0 -0.3, 0
MI Spline 32 30.8,0.2 -0.3, 0 -0.3, 0

NMI Spline 32 30.6,0.7 -0.3, 0 -0.3, 0
MI 2DPt. 32 30, 0 -0.3, 0 -0.3, 0

NMI 2DPt. 32 30, 0 -0.3, 0 -0.3, 0
MI Hist 64 29.2,49.7 0.4, 0 0.27, 0.07

NMI Hist 64 28.8,44.9 0.4, 0 0.33, 0.04
MI Iso 64 30, 0 -0.3, 0 -0.3,0

NMI Iso 64 30, 0 -0.3, 0 -0.3, 0
MI PVI 64 30, 0 -0.3, 0 -0.3, 0

NMI PVI 64 30, 0 -0.3, 0 -0.3, 0
MI Spline 64 24,21.5 0.4, 0 0.33, 0.04

NMI Spline 64 24.3,20.9 0.4,0 0.33, 0.04
MI 2DPt. 64 30, 0 -0.3, 0 -0.3, 0

NMI 2DPt. 64 30, 0 -0.3, 0 -0.3, 0

TABLE IV
AVERAGE VALUE AND VARIANCE OF PARAMETERS θ , s AND t PREDICTED BY

VARIOUS METHODS (32 AND 64 BINS, NOISE σ = 0.2). GROUND TRUTH:
θ = 30, s = t =−0.3.

angles was from 1◦ to 40◦ in steps of 1◦. The estimated values
of θ1 and θ2 are presented in Table IX.
D. Registration of volume datasets
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Fig. 16. MI computed using (a) histogramming and (b) LengthProb (plotted
versus θY and θZ ); MMI computed using (c) histogramming and (d) 3DPointProb
(plotted versus θ2 and θ3).

Experiments were performed on subvolumes of size 41×
41× 41 from MR-PD and MR-T2 datasets from the Brainweb
simulator [4]. The MR-PD portion was warped by 20◦ about the
Y as well as Z axes. A brute-force search (from 5 to 35◦ in
steps of 1◦, with a joint PMF of 64× 64 bins) was performed
so as to optimally register the MR-T2 volume with the pre-

Method Bins θ s t
MI Hist 32 33.7, 18.1 0.4, 0 0.13,0.08

NMI Hist 32 34.3, 15.9 0.4, 0 0.13, 0.08
MI Iso 32 30,0.06 -0.3, 0 -0.3, 0

NMI Iso 32 30,0.06 -0.3, 0 -0.3, 0
MI PVI 32 28.1, 36.25 0.26, 0.08 0.19, 0.1

NMI PVI 32 28.1, 36.25 0.3, 0.05 0.21,0.08
MI Spline 32 30.3,49.39 0.4, 0 0.09,0.1

NMI Spline 32 31.2,48.02 0.4, 0 0.05,0.1
MI 2DPt. 32 30.3,0.22 -0.3, 0 -0.3, 0

NMI 2DPt. 32 30.3,0.22 -0.3, 0 -0.3, 0
MI Hist 64 27.5, 44.65 0.4, 0 0.25,0.08

NMI Hist 64 27,43.86 0.4, 0 0.246, 0.08
MI Iso 64 30.5, 0.12 -0.27, 0.035 -0.28, 0.02

NMI Iso 64 31.2, 0.1 -0.27, 0.058 -0.28, 0.02
MI PVI 64 26.2,36.96 0.4, 0 0.038,0

NMI PVI 64 26.8,41.8 0.4, 0 0.038,0
MI Spline 64 25.9,40.24 0.4, 0 0.3, 0.06

NMI Spline 64 25.7,26.7 0.4, 0 0.3, 0.06
MI 2DPt. 64 30.5, 0.25 -0.24, 0.0197 -0.23, 0.01

NMI 2DPt. 64 30.5, 0.25 -0.26, 0.0077 -0.22, 0.02

TABLE V
AVERAGE VALUE AND VARIANCE OF PARAMETERS θ , s AND t PREDICTED BY

VARIOUS METHODS (32 AND 64 BINS, NOISE σ = 1). GROUND TRUTH:
θ = 30, s = t =−0.3.

Method 128 bins 256 bins
MI Hist. 0,0 0.13,0.115

NMI Hist. 0,0 0.067,0.062
MI Iso. 0,0 0,0

NMI Iso. 0,0 0,0
MI PVI 0,0 0,0

NMI PVI 0,0 0,0
MI Spline 0,0 0.33,0.22

NMI Spline 0,0 0.33,0.22
MI 2DPt. 0,0 0,0

NMI 2DPt. 0,0 0,0

TABLE VI
AVERAGE ERROR (ABSOLUTE DIFF.) AND VARIANCE IN MEASURING ANGLE

OF ROTATION USING MI, NMI CALCULATED WITH DIFFERENT METHODS,
NOISE σ = 0.05.

warped MR-PD volume. The PMF was computed both using
LengthProb as well as using simple histogramming, and used to
compute the MI/NMI just as before. The computed values were
also plotted against the two angles as indicated in the top row of
Figure 16. As the plots indicate, both the techniques yielded the
MI peak at the correct point in the θY ,θZ plane, i.e. at 20◦,20◦.
When the same experiments were run using VolumeProb, we
observed that the joint PMF computation for the same intensity
quantization was more than ten times slower. Similar experiments
were performed for registration of three volume datasets in 3D,
namely 41×41×41 subvolumes of MR-PD, MR-T1 and MR-T2
datasets from Brainweb. The three datasets were warped through
−2◦, −21◦ and −30◦around the X axis. A brute force search was
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Method 128 bins 256 bins
MI Hist. 0.07,0.196 0.2,0.293

NMI Hist. 0.07,0.196 0.13,0.25
MI Iso. 0,0 0,0

NMI Iso. 0,0 0,0
MI PVI 0,0 0,0

NMI PVI 0,0 0,0
MI Spline 2.77,10 4.77,10

NMI Spline 2.77,10 18,0.06
MI 2DPt. 0,0 0,0

NMI 2DPt. 0,0 0,0

TABLE VII
AVERAGE ERROR (ABSOLUTE DIFF.) AND VARIANCE IN MEASURING ANGLE

OF ROTATION USING MI, NMI CALCULATED WITH DIFFERENT METHODS,
NOISE σ = 0.2.

Method 128 bins 256 bins
MI Hist. 1.26,31 27.9,3.1

NMI Hist. 1.2,30 28,3.3
MI Iso. 0,0 0,0

NMI Iso. 0,0 0,0
MI PVI 0,0.26 26.9,14.3

NMI PVI 0,0.26 26.8,14.5
MI Spline 10,0.2 18,0.33

NMI Spline 9.8,0.15 18,0.06
MI 2DPt. 0.07,0.06 0.07,0.06

NMI 2DPt. 0.267,0.32 0.07,0.06

TABLE VIII
AVERAGE ERROR (ABSOLUTE DIFF.) AND VARIANCE IN MEASURING ANGLE

OF ROTATION USING MI, NMI CALCULATED WITH DIFFERENT METHODS,
NOISE σ = 1.

performed so as to optimally register the latter two datasets with
the former using MMI as the registration criterion. Joint PMFs of
size 64×64×64 were computed and these were used to compute
the MMI between the three images. The MMI peak occurred
when the second dataset was warped through θ2 = 19◦ and the
third was warped through θ3 = 28◦, which is the correct optimum.
The plots of the MI values calculated by simple histogramming
and 3DPointProb versus the two angles are shown in Figure 16
(bottom row) respectively.

The next experiment was designed to check the effect of zero
mean Gaussian noise on the accuracy of affine registration of the
same datasets used in the first experiment, using histogramming
and LengthProb. Additive Gaussian noise of variance σ2 was
added to the MR-PD volume. Then, the MR-PD volume was
warped by a 4× 4 affine transformation matrix (expressed in
homogeneous coordinate notation) given as A = SHRzRyRxT
where Rz, Ry and Rx represent rotation matrices about the Z, Y
and X axes respectively, H is a shear matrix and S represents
a diagonal scaling matrix whose diagonal elements are given
by 2sx , 2sy and 2sz . (A translation matrix T is included as
well. For more information on this parametrization, please see
[28].) The MR-T1 volume was then registered with the MR-
PD volume using a coordinate descent on all parameters. The

Noise Variance Method 32 bins 64 bins
0.05 MMI Hist. 21,30 22,31
0.05 MNMI Hist. 21,30 22,31
0.05 MMI Iso. 20,30 20,30
0.05 MNMI Iso. 20,30 20,30
0.2 MMI Hist. 15,31 40,8
0.2 MNMI Hist. 15,31 40,8
0.2 MMI Iso. 22,29 20,30
0.2 MNMI Iso. 22,29 20,30
1 MMI Hist. 40,9 38,4
1 MNMI Hist. 40,9 34,4
1 MMI Iso. 22,30 35,23
1 MNMI Iso. 22,30 40,3

TABLE IX
THREE IMAGE CASE: ANGLES OF ROTATION USING MMI, MNMI

CALCULATED WITH THE ISOCONTOUR METHOD AND SIMPLE HISTOGRAMS,
FOR NOISE VARIANCE σ = 0.05,0.1,1 (GROUND TRUTH 20◦ AND 30◦).

Noise Level Error with LengthProb Error with histograms
0 0.09, 0.02 0.088, 0.009√
50R 0.135, 0.029 0.306, 0.08√

100R 0.5, 0.36 1.47, 0.646√
150R 0.56, 0.402 1.945, 0.56

TABLE X
ERROR (AVERAGE, STD. DEV.) VALIDATED OVER 10 TRIALS WITH LengthProb

AND HISTOGRAMS FOR 128 BINS. R REFERS TO THE INTENSITY RANGE OF

THE IMAGE.

actual transformation parameters were chosen to be 7◦ for all
angles of rotation and shearing, and 0.04 for sx, sy and sz. For
a smaller number of bins (32), it was observed that both the
methods gave good results under low noise and histogramming
occasionally performed better. Table X shows the performance
of histograms and LengthProb for 128 bins, over 10 different
noise trials. Summarily, we observed that our method produced
superior noise resistance as compared to histogramming when
the number of bins was larger. To evaluate the performance on
real data, we chose volumes from the Visible Human Dataset2

(Male). We took subvolumes of MR-PD and MR-T1 volumes of
size 101×101×41 (slices 1110 to 1151). The two volumes were
almost in complete registration, so we warped the former using
an affine transformation matrix with 5◦ for all angles of rotation
and shearing, and value of 0.04 for sx, sy and sz resulting in a
matrix with sum of absolute values 3.6686. A coordinate descent
algorithm for 12 parameters was executed on mutual information
calculated using LengthProb so as to register the MR-T1 dataset
with the MR-PD dataset, producing a registration error of 0.319
(see Figure 17).

IV. DISCUSSION

We have presented a new density estimator which is essentially
geometric in nature, using continuous image representations and
treating the probability density as area sandwiched between

2Obtained from the Visible Human Project R© (http://www.nlm.nih.
gov/research/visible/getting_data.html).
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isocontours at intensity levels that are infinitesimally apart. We
extended the idea to the case of joint density between two
images, both in 2D and 3D, as also the case of multiple images
in 2D. Empirically, we showed superior noise resistance on
registration experiments involving rotations and affine transforma-
tions. Furthermore, we also suggested a faster, biased alternative
based on counting pixel intersections which performs well, and
extended the method to handle volume datasets. The relationship
between our techniques and histogramming with multiple sub-
pixel samples was also discussed. Here are a few clarifications
about our technique in question/answer format.

(1) How does our method compare to histogramming on
an up-sampled image?

If an image is up-sampled several times and histogramming is
performed on it, there will be more samples for the histogram. At
a theoretical level, though, there is still the issue of not being able
to relate the number of bins to the available number of samples.
Furthermore, it is recommended that the rate of increase in the
number of bins be less than the square root of the number of
samples for computing the joint density between two images [35],
[8]. If there are d images in all, the number of bins ought to be
less than N

1
d , where N is the total number of pixels, or samples

to be taken [35], [8]. Consider that this criterion suggested that N
samples were enough for a joint density between two images with
χ bins. Suppose that we now wished to compute a joint density
with χ bins for d images of the same size. This would require
the images to be up-sampled by a factor of at least N

d−2
2 , which

is exponential in the number of images. Our simple area-based
method clearly avoids this problem.

(2) How does one choose the optimal number of bins or
the optimal interpolant for our method?

One can choose as many bins as needed for the application,
constrained only by availability of appropriate hardware (proces-
sor speed or memory). We chose a (piece-wise) linear interpolant
for the sake of simplicity, though in principle any other interpolant
could be used. It is true that we are making an assumption on
the continuity of the intensity function which may be violated
in natural images. However, given a good enough resolution
of the input image, interpolation across a discontinuity will
have a negligible impact on the density as those discontinuities
are essentially a measure zero set. One could even incorporate
an edge-preserving interpolant [20] by running an anisotropic
diffusion to detect the discontinuities and then taking care not
to interpolate across the two sides of an edge.

(3) What are the limitations of our technique?
As of now, our technique is not differentiable, which is

important for non-rigid registration. Differentiability could be
achieved by fitting (say) a spline to the obtained probability tables.
However, this again requires smoothing the density estimate in
a manner that is not tied to the image geometry. Hence, this
goes against the philosophy of our approach. For practical or
empirical reasons, however, there is no reason why one should
not experiment with this.

(4) Other avenues for future research:
Currently, we do not have a closed form expression for our

density estimate. Expressing the marginal and joint densities
solely in terms of the parameters of the chosen image interpolant
is a challenging theoretical problem. We could also apply our
density estimation scheme to images whose pixel values belong
to a non-Euclidean manifold, such as unit vectors or covariance

matrices, or to data fields that are defined on non-Euclidean
surfaces.

APPENDIX

In this section, we derive the expression for the marginal density
of the intensity of a single 2D image. We begin with Eq. (4)
derived in Section II-A:

p(α) =
1
A

∫
I(x,y)=α

∣∣∣∣∣ ∂x
∂ I

∂y
∂ I

∂x
∂u

∂y
∂u

∣∣∣∣∣du. (21)

Consider the following two expressions that appear while per-
forming a change of variables and applying the chain rule:

[
dx dy

]
= [ dI du ]

[
∂x
∂ I

∂y
∂ I

∂x
∂u

∂y
∂u

]
. (22)

[
dI du

]
= [ dx dy ]

[
∂ I
∂x

∂u
∂x

∂ I
∂y

∂u
∂y

]
= [ dx dy ]

[
Ix ux
Iy uy

]
.

(23)
Taking the inverse in the latter, we have[

dx dy
]
=

1
Ixuy− Iyux

[
uy −ux
−Iy Ix

]
[ dI du ]. (24)

Comparing the individual matrix coefficients, we obtain∣∣∣∣∣ ∂x
∂ I

∂y
∂ I

∂x
∂u

∂y
∂u

∣∣∣∣∣= Ixuy−uxIy

(Ixuy− Iyux)2 =
1

Ixuy− Iyux
. (25)

Now, clearly the unit vector ~u is perpendicular to ~I, i.e. we have
the following:

uy =
Ix√

I2
x + I2

y

, and (26)

ux =
−Iy√
I2
x + I2

y

. (27)

This finally gives us∣∣∣∣∣ ∂x
∂ I

∂y
∂ I

∂x
∂u

∂y
∂u

∣∣∣∣∣= 1√
I2
x + I2

y

. (28)

Hence the expression in Eq. (5) for the marginal density (i.e.
p(α) = 1

A
∫

I(x,y)=α
du√
I2
x +I2

y
) follows.
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Fig. 13. Graphs showing the average error A (i.e. abs. diff. between the estimated
and the true angle of rotation) and error standard deviation S with MI as the
criterion for 16, 32, 64, 128 bins (row-wise) with a noise of 0.05 [Top Two Rows:
(a) to (d)], with a noise of 0.2 [Middle Two Rows: (e) to (h)] and with a noise
of 1 [Bottom Two Rows: (i) to (l)]. Inside each sub-figure, errorbars are plotted
for six diff. methods, in the foll. order: Simple Histogramming, Isocontours, PVI,
Cubic, 2DPointProb, Histogramming with 106 samples. Errorbars show the values
of A−S, A, A+S. If S is small, only the value of A is shown.
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Fig. 14. First two: MI for 32, 128 bins with noise level of 0.05; Third and
fourth: with a noise level of 0.2; Fifth and sixth: with a noise level of 1.0. In
all plots, dark blue: isocontours, cyan: 2DPointProb, black: cubic, red: simple
histogramming, green: PVI. (Note: These plots should be viewed in color.)

(a) (b) (c)

Fig. 15. (a) MR-PD slice, (b) MR-T1 slice rotated by 20 degrees, (c) MR-T2
slice rotated by 30 degrees.

Fig. 17. TOP ROW: original PD image (left), warped T1 image (middle),
image overlap before registration (right), MIDDLE ROW: PD image warped using
predicted matrix (left), warped T1 image (middle), image overlap after registration
(right). BOTTOM ROW: PD image warped using ideal matrix (left), warped T1
image (middle), image overlap after registration in the ideal case (right).


