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ABSTRACT

The analysis of reconstruction errors for compressed sensing
under Poisson noise is challenging due to the signal depen-
dent nature of the noise, and also because the Poisson nega-
tive log-likelihood is not a metric. In this paper, we present
error bounds for reconstruction of signals which are sparse
or compressible under any given orthonormal basis, given
compressed measurements corrupted by Poisson noise and
acquired in a realistic physical system. The concerned op-
timization problem is framed based on the well-known Vari-
ance Stabilization Transforms which transform the noise to
(approximately) Gaussian with a fixed variance. This prob-
lem also turns out to be convex. We demonstrate promising
numerical results on signals with different sparsity, intensity
levels and given different numbers of compressed measure-
ments.

Index Terms— Poisson Noise, nonlinear Compressed
Sensing, Variance Stabilization Transform, Reconstruction
Error Bounds

1. INTRODUCTION

Compressed Sensing (CS) theory predicts the ability to suc-
cessfully reconstruct a signal that is sparse or compressible
(in some orthonormal basis) from a sub-Nyquist number of
measurements. The forward model for compressive acquisi-
tion can be expressed as y = Φx+ η = ΦΨθ + η = Aθ +
η where yN×1 is the acquired measurement vector, AN×m
(N � m) is the product of the known measurement matrix
ΦN×m and the known orthonormal signal representation ma-
trix Ψm×m, θm×1 is the unknown sparse/compressible vector
of coefficients yielding the signal xm×1 = Ψm×mθm×1, and
η is the additive noise in the measurements. Under Gaussian
or bounded uniform noise, the signal x can be obtained near-
accurately within proven error limits [1, 2], by solving the
optimization problem:

(P1) : min ‖θ‖1such that ‖y −Φx‖2 ≤ ε. (1)
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However, the noise in practical imaging systems is known to
follow the Poisson distribution [3, 4, 5], i.e., y ∼ Poisson(Φx)
for non-negative signal x, for which the problem (P1) is
not suitable. The likelihood of y given x and Φ assuming
independence of the individual measurements is given by
p(y|Φx) =

∏N−1
i=0

[(Φx)i]
yie−(Φx)i

yi ! where the subscript i
represents the ith component of y. The corresponding opti-
mization problem involving the negative log-likelihood turns
out to be nonlinear and is given as follows:

(P2) : min λ‖θ‖q +

N−1∑
i=0

[(Φx)i − yi log(Φx)i], (2)

where q decides the sparsity-promoting penalty and λ is a reg-
ularization parameter.

Furthermore, practical imaging systems involve photon-
counting which imposes the constraint that y and x must
both be non-negative. Such systems are also photon-limited,
which imposes an additional constraint that the measurement
matrix Φ must be flux-preserving [6]. Flux-preservation im-
plies that the total photon count of the measurement vector
be less than or equal to the incident photon count, i.e., the
flux of the original signal. Thus for such a matrix, we must
have

∑N−1
i=0 (Φx)i ≤

∑m−1
i=0 xi. The sensing matrix created

under these two constraints does not obey the restricted isom-
etry property (RIP), a sufficient condition for successful CS
recovery. However using concepts from [6], starting from
Φ, another sensing matrix Φ̃ which obeys RIP can be recon-
structed.

1.1. Main Contribution

In this paper, we derive relative reconstruction error (RRE)
bounds for Poisson CS for a practical imaging system, us-
ing the well-known variance stabilization transforms (VST)
of the form

√
yi + c =

√
(Φx)i + c + ηi given constant

c, where it is known that ηi is approximately Gaussian dis-
tributed with mean 0 and variance 1

4 . The corresponding
optimization problem has been previously criticized in [6, 7]
as being unsuitable for Poisson inverse problems due to its



nonlinear nature. But in this paper, we present error bounds
for this problem, which are easy to derive and competitive
with the state of the art. To the best of our knowledge, this is
the first attempt to derive error bounds for Poisson CS using
the VST method. Our paper can also be viewed as a contri-
bution to the less explored sub-field of nonlinear compressed
sensing [8]. Moreover the proposed optimization problem is
also convex and hence affords efficient implementations, for
which we present extensive numerical results.

1.2. Organization of Paper

In section 2, we briefly discuss the variance stabilization
methods for Poisson noise. The proof for the RRE bounds
with our method is provided in Section 3. Section 4 presents
our experimental results. Finally, we present comparisons
to existing literature on error bounds in Poisson CS, and
conclude in Section 5.

2. VARIANCE STABILIZATION TRANSFORM

A VST essentially involves applying a function f to the un-
derlying data x so that the transformed data f(x) have a vari-
ance that is (nearly) constant and independent of x. For Pois-
son data where the variance is equal to the mean, the function
f turns out to be the square root. The transformed data, i.e.√
x, have a Gaussian distribution with mean equal to

√
x and

variance approximately 1
4 when x is large. In [9] (equations

2.8 to 2.12), it was proved that changing f(x) to
√
x+ 3

8 pro-

duced a variance that is closest to being a constant value of 1
4

for x as small as 4. This is called the Anscombe transform.
Thus given Poisson-corrupted compressed measurements of
the form yi ∼ Poisson((Φx)i), we apply the Anscombe trans-
form to yield data of the form

∀i ∈ {0, ..., N − 1},
√
yi +

3

8
∼ N

(√
(Φx)i +

3

8
,

1

4

)
.

(3)
In this paper, we derive error bounds for the case when c =
0, though the core of the analysis is applicable (with trivial
modifications) to the case c = 3

8 as well as to other VSTs
for Poisson noise such as the Freeman-Tukey transform [10]
f(x) =

√
x+
√
x+ 1.

3. DERIVATION

3.1. Sensing Matrix

Sensing matrices drawn randomly from the Gaussian or ±1
Bernoulli distributions do not satisfy the non-negativity and
flux preservation constraints for realistic Poisson imaging
systems. Therefore, by referring to the approach in [6], we
construct a sensing matrix Φ with entries either ones (scaled)

or zeros. Let ZN×m be a matrix with iid random variables
taking only zeros and scaled ones as entries, defined as

Zi,j =

−
√

1−p
p with probability p,√
p

1−p with probability 1− p.

A new matrix Φ̃ , Z√
N

is defined. When p = 1
2 , it is found

that Φ̃ (and hence Φ̃Ψ) obey RIP of order 2s with high prob-
ability [11]. Note that Φ̃ contains negative values with high
probability which is in contrast to our required constraints.
Thus, to obtain a flux-preserving and non-negative matrix Φ
from Φ̃, the following construction is used:

Φ =

√
p(1− p)
N

Φ̃ +
1− p
N

1N×m =
1

2
√
N

Φ̃ +
1

2N
1N×m.

(4)
The matrix Φ has entries either 0 or 1

N and its non-negativity
and flux-preservation can be easily verified.

3.2. Key Theorem and Proof

Theorem 1 : Consider a non-negative signal x with total in-
tensity I = ‖x‖1 expressed using the orthornormal basis Ψ in
the form x = Ψθ. Consider Poisson corrupted CS measure-
ments of the form y ∼ Poisson(Φx) where Φ is constructed
as per Eqn. 4. Let θ? be the result of the following optimiza-
tion problem:

(P3) : min‖θ‖1 such that ‖√y−
√
Aθ‖2 ≤ ε, ‖Ψθ‖1 = I,Ψθ � 0.

(5)
If Φ̃ obeys RIP of order 2s with RIC δ2s <

√
2 − 1, and θs

denotes a vector containing the s largest magnitude elements
of θ with the rest being 0, then we have:

‖θ − θ?‖2
I

≤ C1ε√
I

+
C2s

− 1
2 ‖θ − θs‖1
I

, and (6)

E

(
‖θ − θ?‖2

I

)
≤ C1

√
N

4
√
I

+
C2s

− 1
2 ‖θ − θs‖1
I

. (7)

Proof: We provide a sketch of the proof below, inspired from
[12], but modified to suit our problem.

1. Define a vector h , θ − θ?. Denote vector hT to
be equal to h only for index set T and zero for other
indices. Let T0 be the set containing s largest absolute
value indices of θ, T1 be the set containing s largest
absolute value indices of hT c

0
and so on, where T c is

the complement of the set T . Thus, vector h can be
decomposed as the sum of hT0,hT1

,hT2
,...

2. DefineA , ΦΨ. We have

‖Ah‖22 = ‖A(θ − θ?)‖22
= Σi(

√
(Aθ)i −

√
(Aθ?)i)

2(
√

(Aθ)i +
√

(Aθ?)i)
2.

(8)



(a) By triangle inequality and the nature of the con-
straint in (P3), we have

‖
√
Aθ −

√
Aθ?‖2 ≤ ‖

√
y −
√
Aθ‖2+ (9)

‖√y −
√
Aθ?‖2 ≤ 2ε.

(b) For scalars v1 ≥ 0, v2 ≥ 0, we have (
√
v1 +√

v2)2 ≤ 4max(v1, v2). We also have (Aθ)i =

(Φx)i = ΣjΦijxj ≤
‖x‖1
N

=
I

N
. Likewise

(Aθ?)i ≤
I

N
as well, since ‖x?‖1 = I . Hence

(
√

(Aθ)i +
√

(Aθ?)i)
2 ≤ 4I

N
.

(c) Combining the earlier two results with Eqn. 8, we

have ‖Ah‖2 ≤ 4ε

√
I

N
.

3. To prove the bound on ‖h(T0∪T1)c‖2, we follow steps
similar to [12] to obtain

‖h(T0∪T1)c‖2 ≤ ‖h(T0)‖2 + 2s−1/2‖θ − θs‖1. (10)

4. To prove error bounds on ‖h(T0∪T1)‖2, we adopt the
following steps.

(a) Given the construction for Φ in Eqn. 4, we have

ΦΨ(θ − θ?) =
1

2
√
N

Φ̃Ψ(θ − θ?)+

(‖Ψθ‖1 − ‖Ψθ?‖1)

=
1

2
√
N

Φ̃Ψ(θ − θ?) (11)

since we know that ‖Ψθ‖1 = ‖Ψθ?‖1 = I .
DefiningB , Φ̃Ψ, we get

‖Bh‖2 = 2
√
N‖Ah‖2 ≤ 8ε

√
I. (12)

(b) Following steps in [12] using the RIP and the
Cauchy-Schwarz inequality, we can prove that

‖hT0∪T1
‖2 ≤ C ′ε

√
I + C ′′s−1/2‖θ − θ?‖1

(13)

whereC ′ , 8
√

1+δ2s
1−δ2s(

√
2+1)

andC ′′ , 2
√

2δ2s
1−δ2s(

√
2+1)

.

5. Combining the bounds on ‖hT0∪T1
‖2 and ‖hT0∪T1

c‖2,
we have

‖h‖2 ≤ C1ε
√
I + C2s

− 1
2 ‖θ − θs‖1 (14)

where C1 , 2C ′ and C2 , 2 + 2C ′′.

Finally, we divide by I to obtain upper RRE bounds:

‖θ − θ?‖2
I

≤ C1ε√
I

+
C2s

− 1
2 ‖θ − θs‖1
I

. (15)

Since ε is equal to the magnitude of a vector with elements
drawn from N (0, 1

4 ), it follows a chi-distribution with N de-
grees of freedom. Therefore, the expected RRE (expectation
over noise instances for fixedA,x) can be given as:

E

(
‖θ − θ?‖2

I

)
≤ C1

√
N

4
√
I

+
C2s

− 1
2 ‖θ − θs‖1
I

. (16)

Remarks on Proof:

1. Our proof architecture is inspired from [12], but the
points of departure are steps 2(a), 2(b), 2(c) as well as
step 4(a) which gives a relationship between ‖Ah‖2
and ‖Bh‖2. These steps exploit the non-negativity and
flux-preserving property of Φ.

2. Given that we are dealing with a Poisson inverse prob-
lem, it is more intuitive to analyze the relative recon-
struction error (RRE) rather than the (absolute) recon-
struction error. This is because as the mean of the Pois-
son distribution increases, so does its variance, causing
an increase in the mean squared error but a decrease in
the relative mean squared error.

3. Notice that our derived RRE bound is inversely pro-
portional to the signal intensity I . For a fixed I , if N
is increased, the incident photon flux I is distributed
across theN measurements, causing a decrease in SNR
per measurement and possibly degrading performance.
This phenomenon differs from CS under Gaussian
noise, and has earlier been noted in [6, 13, 14].

4. Prior knowledge of total signal intensity I might look
like a strong assumption, but in some compressive cam-
era architectures, such as the Rice Single Pixel Camera
[3], I can be easily estimated during acquisition. More-
over our experimental results in the next section show
that knowledge of I is not necessary, although we re-
quired it for our theoretical analysis.

5. The RRE bounds are also applicable to the Anscombe
or Freeman-Tukey transforms with minor changes to
the constant C1.

4. EXPERIMENTAL RESULTS

We perform experiments on 1D signals that are sparse in
the canonical basis, though our analysis and experiments
are equally applicable to 1D or higher-D signals sparse or
compressible in an arbitrary orthonormal basis Ψ. In partic-
ular, we solve the following optimization problem (which is
equivalent to P3 except for the ‖x‖1 = I constraint):

(P4) : ‖√y −
√
Ax‖22 + λ‖x‖1 s.t. x � 0 (17)



where λ is the regularization parameter. Since P4 is convex,
we use the CVX package [15] with the MOSEK solver [16]
for all our experiments. The chosen signals had a length
of 100 and the sensing matrices were as per Eqn. 4. The
signals and sensing matrices were generated randomly sub-
ject to required constraints. We generated a box-plot of
the relative mean square error (RMSE) values computed as
RMSE(x,x∗) = ‖x−x∗‖2

‖x‖2 where x and x∗ denote the true
and estimated signals respectively. In Fig 1, the RMSE box-
plots were generated against differing values of I , signal
sparsity s and number of measurements N . For all experi-
ments, the value of λ that gave the best RMSE was selected
from a range of values, assuming the original signal was
known. Figure 1 clearly shows (a) rapid improvement in per-
formance with increase in I , as is to be expected for Poisson
noise, (b) a degradation in performance as s increases, and
(c) that as the number of measurements increases, the RMSE
decreases but stabilizes to a non-zero value unlike the case
of CS with Gaussian noise. We found that the results with
problem (P4) were similar to those obtained with the LASSO
or with problem (P2). Also, though our theoretical analysis
requires the explicit constraint ‖x∗‖1 = I where I is known
a priori, we obtained good estimation results in practice even
without this constraint.

5. DISCUSSION AND RELATION TO PRIOR WORK

Error bounds for the problem (P2) with q = 0 were derived
in the pioneering work in [6] and further tightened in [17],
but the associated estimators are computationally intractable.
Moreover the analysis of [17] applies to strictly sparse (not
compressible) signals. The bounds were extended to the
problem of low-rank matrix estimation under Poisson noise
in [14, 13]. Error bounds for other tractable estimators for
Poisson CS have been derived: for example, LASSO and
weighted-LASSO in [18] (which assume a Gaussian approx-
imation with appropriate variance), and problem (P2) in [19].
However, unlike our work, these papers do not account for
the flux-preservation constraint explicitly which is important
for realistic imaging systems. Our work stands out as (1) it is
based on an elegant extension of the bounds from [12], (2) it
produces error bounds for a computationally tractable estima-
tor, and (3) is designed for a flux-preserving sensing matrix.
VSTs have been used for Poisson inverse problems such as
deconvolution in earlier work [20], but no error bounds were
derived, and the case of Poisson CS was not dealt with.

Currently our upper bounds are directly proportional to√
N though Figure 1 (third) shows a decreasing trend w.r.t.

N . This is a common feature between our work as well as
[6, 13, 14]. Future work would involve tightening these error
bounds, extensions to other Poisson regression problems such
as low rank matrix recovery, developing criteria for automated
selection of λ (related to the unknown ε in P3), and refining
theoretical analysis to avoid dependence on knowledge of I .

Fig. 1. Top to bottom: RMSE(x,x∗) v/s Intensity I at s =
10, N = 50; RMSE(x,x∗) v/s Sparsity at I = 108, N = 50;
RMSE(x,x∗) v/s Measurements at s = 10, I = 108
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