STRONGER RECOVERY GUARANTEES FOR SPARSE SIGNALS EXPLOITING
COHERENCE STRUCTURE IN DICTIONARIES

Eeshan Malhotra*, Karthik Gurumoorthy**, Ajit Rajwade*'

*Dept. of CSE, IIT Bombay & *International Center for Theoretical Sciences, TIFR
*{eeshan,ajitvr} @cse.iitb.ac.in, karthik.gurumoorthy @icts.res.in

ABSTRACT

This paper presents a method for improving the recovery
guarantee for signals that are sparse or compressible in some
general basis (dictionary) using a splitting and reordering
approach. The splitting algorithm applies existing results for
dictionaries that are naturally characterized as a concatena-
tion of two sub-parts, to arbitrary dictionaries, by devising the
optimal artificially induced split in the dictionary. A complete
approach is presented for partitioning arbitrary dictionaries
into two parts, so as to obtain the optimal coherence bounds
on recovery, along with a proof of optimality. A heuristic is
provided for recursive application of the splitting algorithm
to further improve upon these bounds, using a multi-way
dictionary split. We analyze cases where an appropriate split
in the dictionary predicts less conservative signal sparsity
bounds for successful recovery than those considering the
dictionary as a monolithic block. Our present work does not
provide a new algorithm for sparse signal recovery but rather
mines for structures in the dictionary, towards strengthening
the existing coherence-based recovery bounds.

Index Terms— Sparse signal recovery, coherence bound,
recovery guarantee, dictionary splitting

1. BACKGROUND AND CONTRIBUTION

Consider the setting familiar in compressive sensing ([1], [2]).
We have measurements y € R from the k-sparse signal
x € RV generated using the model

y=Dx+n @))]

where D € RM*N is the measurement matrix or dictionary
with unit-normalized columns, and 1 € RM is the measure-
ment noise, with ||n||2 < e.

The signal can be recovered using basis pursuit ([3]),
and a coherence-based recovery guarantee is well known in
compressive sensing literature ([4]). In special cases, the
bound can be improved.

*Thanks to the AIRBUS Group Corporate Foundation Chair in Mathe-
matics of Complex Systems established in ICTS-TIFR
T AR is grateful to support from IIT Bombay Seed Grant #14IRCCSGO012

Existing work ([5], [6], [7]) explores the case where D
and x have the special structure: D = [A B] , zT =
[x]] where A € RM*Ne B ¢ RMXNo 2. ¢ RY,
xp € Rév , N, + N, = N. We specifically use results from
[7], which show that the guarantee can be expressed in terms
of the coherence values of the individual sub-dictionaries A

and B

Hq = 1AX |AzTAj‘v Pp = Imax. |BiTBj"
i,3,7#] ,J,7#]

and their mutual coherence, defined as

pim = max |A] Bjl.
ij

Consequently, the coherence for dictionary D can be ex-
pressed as

pa = max |Df Dj| = max {ta, o, ttm }
1,587]
where X; indicates the i*" column of matrix X.
Assuming without loss of generality that p, < p,, the basis
pursuit bound, then, says (Theorem 4 in [7]):
If

2(1 + pra) 1+ud})

k < max
{Mﬂ+2,ud+ \/:u’g+ﬂ72n’ Q’ud

then the solution & of the basis pursuit problem
minimize ||Z||;
subject to ||y — DZ||2 <
satisfies || — |2 < C(e + 1) + C'(||lz — zs||1) (B)

where k is the number of non-zero entries in x, x, is x after
setting all but the & largest components to 0, and C,C’ > 0
are constants. Further, it holds that (Appendix D, [7])

(1= 8)l2ll3 < ||Dall < (1+0)ll|[3)

with

5 = min {

(1o =204 BT) = 1)
o)

DO =

The requirement in equation (2) improves on the bound
for a general D (requiring k£ < Z—‘Zd).

This is the key result that we build on and extend. While
the work of Studer and Baraniuk [7] applies to dictionaries
and signals with an inherent characteristic structure composed
of two well-separated parts, we apply the result to an arbi-
trary dictionary D, by inducing a partition that optimizes the
requirement on the sparsity of the signal. While the recovery
algorithm itself is unchanged, our proposed algorithm pro-
duces a tighter coherence-based bound for recovery using ba-
sis pursuit, for a given dictionary D.

2. TWO-WAY DICTIONARY SPLITTING

First, it is abundantly clear that swapping any two columns
D; and D; of a dictionary, while swapping the correspond-
ing elements ; and ; has no impact on the product Dz. In
fact, if D’ is a permutation of the columns of D, and «’ the
corresponding transformation of x, then Dz = D’x’. More-
over, x and x’ clearly have the same sparsity, and if the order
of permutation is known, x’ determines x exactly. Therefore,
the problem of recovering the signal x, given D, and mea-
surements y = Dx + 7 is equivalent to recovering «’, given
D, D’ and y.

Secondly, for a given D, the quantity in the RHS of equa-
tion (2) can be maximised directly by maximising the quantity

2(1 + pa)

F:
fa + 2p1q +\/pd + B2,

where p, > pp.

We can now define the problem of dictionary split induc-
tion as: Given a dictionary D € RM*N devise matrices A,
B, such that the columns of D’ can be permuted to give D,
where D’ = [A B], and F is maximised.

(6)

2.1. Algorithm

We solve the problem of dictionary splitting by mapping it to
an equivalent graph problem. The transformation is as fol-
lows:

Let G = (V,E) be a complete, undirected, weighted
graph, with vertices V' and edges FE, such that each vertex
corresponds to a column of the matrix D, and the weight of
edge uv equals the dot product of the columns correspond-
ing to vertices u and v. The problem, then, is to define a
cut through G that partitions it into two disjoint components,
A(V,, E,) and B(V,, Ep). Let E, be all the edges crossing
the cut, and V,, be the set of vertices connected by edges in
FE .. Note that

(a) Vagva‘/bgv,vau‘/bzv

(b) B, CE,E,CE,E,CFE,E,UE,UE, = E.

Let us also define the following quantities on the graph G:

pa = maxw(e) ; p = maxw(e)

o, = iré%;iw(e)

ta = maxw(e) = max {iq, oy fm
ecE

where w(e) denotes the weight of edge e.

There is a one-to-one correspondence between the terms
Lha» b m, g defined on the graph G and the equivalent co-
herence values defined on the dictionary D. The matrix A
can be constructed by selecting the columns from D corre-
sponding to sets V, and concatenating them in an arbitrary
order. Similarly, the matrix B can be constructed from V},.

This is essentially a greedy algorithm. Intuitively, we try
to process edges starting from the heaviest, and to add each
to the set £, of cut edges, as long as doing so does not create
a contradiction in the colouring of vertices. After each step,
the edges in consideration are those that are adjacent to edges
already included in E,.. In the following iteration, the heaviest
of these is selected as the candidate for inclusion.

Algorithm 1 Two-way Splitting Algorithm
1: forv e Vdo
colour(v) < 0
L(v) + edges from v, in decreasing order of weight

2
3
4: end for

5. E, = cutedges < ¢

6: Q = list of edges to process <— ¢
7: processed <— ¢

: e = uv < heaviest edge in G
. colour(u) + 1

10: L(u) < L(u) \{e}

1: Q<+ L(u)

12: processed + {u}

O 0

13: while size(processed) < n do

14: if one of {u, v} (say v) is s.t. colour(v) == 0 then
15: if colour(u) == 1 then colour(v) + 2

16: if colour(u) == 2 then colour(v) + 1

17: L(v) + L(v) \{e}

18: Merge L(v) into Q

19: processed <— processed U {v}

20: end if

21: if colour(u)! = colour(v) then E, < E, U {e}
22: e = uv < Pop heaviest edge from Q

23: end while

24: Vo < {v | colour(v) == 1}
25: Vy « {v | colour(v) == 2}
26: Output V,, 'V,

Initially, each vertex is unassigned (i.e. colour(v) = 0),
and the @, the queue of edges yet to be processed, is empty
(Q = ¢). As vertices are processed, they are assigned to
set A(colour(v) = 1) or B(colour(v) = 2), and the edges
emanating from the vertex are added to the queue Q).

This algorithm provides us with a two-way split in the dic-
tionary that allows for the tightest recovery guarantee. The
process for recovering the signal (i.e. basis pursuit) is unal-
tered.

2.2. Running time complexity

Let the number of vertices in graph G be n (This corre-
sponds to the number of columns in dictionary D). Steps 1
through 7 involve n sorting operations, each consuming time
O(nlogn), for a total of O(n?logn) operations. Steps 8
through 12 consist of one time assignments, and hence, can
be performed in O(1) time.

The while loop in steps 13 through 23 runs for at most
O(n?) iterations, since each iteration processes one edge. All
operations inside the loop are O(1) complexity, except the
merge operation (step 18) and the pop operation (step 22). Al-
though, with a naive implementation, a merge might take time
O(n?), with the use of an appropriate data structure, such as a
Fibonacci heap ([8]) for representing () and L, we can get the
amortised time complexity of a single merge operation down
to O(1), while still getting a time complexity of a single pop
operation of O(logn?) = O(logn). Since a merge operation
only happens when we encounter an unprocessed vertex (in-
side the if clause), there are O(n) merges. A pop operation
occurs in every iteration of the loop, so there are O(n?) pops.
Thus, all iterations collectively consume time O(n? log n).
Hence, overall, the algorithm consumes time O(n? logn).

2.3. Proof of Optimality

Consider the heaviest edge in G, say, e* = wv. At the end
of any possible assignment, either max {4, pp} = w(e*), or
tm = w(e*). With this consideration in mind, it is clear from
equation (6) that the latter case is always advantageous i.e. to
maximize F, e* € E,. By the same logic, the same reasoning
can be applied to the next heaviest edge, the ones after, and so
on, until it is impossible to add an edge to E, - because doing
so will create an inconsistent assignment of the vertices. In
other words, adding edge e to F, will create an odd length
cycle, which cannot possibly occur in a graph cut.

But this addition is precisely the kind that is not allowed
by our algorithm. E, < E, U {e} only if one of the vertices
is unassigned (colour(v) == 0). It can also be verified by an
exchange argument that the edge e that is not included in E,
must be the lightest edge in the cycle.

Thus, the assignment returned by Algorithm 1 must be
optimal i.e., the tightest bound can be provided by exploiting
the dictionary structure as suggested by Algorithm 1.

3. HIGHER ORDER RECURSIVE ALGORITHM

Algorithm 1 gives us an optimal two-way split for D. The
split is optimal in the sense of maximising F’ in equation (6),
and minimizing 4 in equation (5). The process, in theory, can
be generalized to splitting D into any number of splits to im-
prove the bound. However, to consider each possible split
naively would require exponential time, and would be pro-
hibitively expensive, for any reasonable size dictionary. We
now describe a recursive, polynomial-time heuristic to create
a multi-way split in D, to further tighten the bounds.

Consider equation (5). When the value of §is equal to the
first term in the minimization, we can imagine the dictionary
D being equivalent to a hypothetical dictionary D, with

1
alk = 1) = 5 (1 (b= 2) + b/ +03,) . (D)

For this bound to be better than that obtained by consider-
ing no structure in the dictionary, iy must be less than the
second term in the minimization in equation (5). That is,
ta < pg. By construction, Algorithm 1 produces fi,,, = g
(Since the heaviest edge in the graph is first placed in the set
of cut edges). Therefore, this condition can be expressed as

1
5 (1o (k= 2) + k2 +122,) < il = 1)

La k [k —2
—<l—=[(1—4/—.
- um< 2(k—l) ()

As k increases, £ asymptotically converges to a value of %,
as show in the graph below.

60 80 100

0
Sparsity, k

0 20

Fig. 1. p1o/tim vs k

In fact, for large &, equation 7 reduces to:

1

fia =5 (1o + V02 +12,). ©

That is, the role of coherence of the hypothetical dictio-
nary is played by the quantity (,ua + /12 + ufn)

It also follows that iy < ftm = ptg when pq < 2 gy, (for
large k), resulting in tighter bounds for recovery.

These results use the coherence values of sub-dictionaries
A and B as g, and p; respectively. However, we can re-
cursively apply the dictionary splitting algorithm to each of
these, to improve the effective coherence values (iiy in equa-
tion 9), fig, and fip.

3.1. Algorithm

The algorithm presented below uses a greedy approach, us-
ing the optimal 2-way split at each level, leveraging equation
9 at each step to determine the equivalent coherence of the
split pair. The algorithm uses a call to Split 2Way(D), a
function designed as presented in Algorithm 1, to return the
optimal two-way split for dictionary D. The multi-way split
algorithm executed to depth [, achieves a 2!-way split.

Algorithm 2 Depth [multi-way Split Algorithm
1: function EFFECTIVE_COHERENCE(D, ()

2: A, B = Split 2Way(D)

3: ttq < Effective_Coherence (A, (I — 1))

4: y < Effective_Coherence (B, (I — 1))

5 pm + max; ; |AT B,

6: a — max {[iq, (o, m }

7: if I==1 then

8: return p

9: else

10: return min {ud, : (ua + /2 + u%)}

11: end function

12: | <— maximum depth to explore
13: Output Effective_Coherence (D,)

Unfortunately, unlike Algorithm 1, this algorithm is not
guaranteed to produce the optimal split from the set of all pos-
sible 2/-way splits, and counter-examples can be constructed
to prove its sub-optimality. However, it is guaranteed to pro-
duce an effective-coherence that is at least as good as the split
in Algorithm 1, since this case is subsumed in Algorithm 2.

4. EMPIRICAL RESULTS

For empirical tests, each dictionary, D, was designed by shuf-
fling together the columns of two orthogonal matrices. D will
have a low value of coherence. However, using the two-way
splitting algorithm described in Section 2, we were able to re-
duce the effective coherence even further. The improvement
in the bound on k and & vary with the size of the matrix. The
details are summarized in the following table.

For each experiment, the orthogonal matrices were per-
fectly recovered, giving us p, and pp of 0. gy, = pg, by
construction, as specified in Algorithm 1. The bound on &

and & improved, typically by a factor of approximately 2 in
each case.

Unsplit dictionary

N 200 500 1000
d 0.141 | 0.0894 | 0.0632
Upper bound on k& 4.036 | 6.090 | 8.406
b 6.930 | 31.216 | 44.209
Split dictionary

La 0 0 0

i 0 0 0

o, 0.141 | 0.0894 | 0.0632
hd 0.141 | 0.0894 | 0.0632
Effective coherence fig | 0.720 | 0.0448 | 0.0317
Upper bound on & 7.521 | 11.648 | 16.289
) 3.536 | 15.652 | 22.136

Since our proposed method only presents an approach to
improve the recovery bounds (like in Theorem 4, [7]), and not
anew algorithm for actual recovery, we refrain from showcas-
ing experiments that empirically compare the recovered sig-
nal to the true signal. We employ the well known basis pursuit
denoising algorithms for recovery.

5. CONCLUSIONS

We extended existing results on recovery guarantees for
sparse and compressible signals, using the fact that mea-
surement matrices often incorporate some structure that may
not be automatically visible. In fact, the first algorithm pro-
posed in the paper discovers (in polynomial time) the optimal
partition of the measurement matrix that provides the tightest
bound. Additionally, a further extension - the multi-way split-
ting algorithm is also presented, which provides a heuristic to
extend the result by recursively applying the two-way split-
ting algorithm to each partition, and provides an even stronger
bound on the recovery. While the multi-way splitting algo-
rithm improves the bound, it is not guaranteed to return the
optimal split (unlike the two-way splitting algorithm).

It is likely that the bounds shown here may be looser than
RIP bounds. However, computation of the RIC is a computa-
tionally expensive task. Our algorithm trades off some tight-
ness for an efficiently computable bound. Simulation based
empirical bounds are also preferred sometimes. However,
with large-scale reconstruction, it is extremely expensive to
compute these, especially since they must be tuned to varying
noise levels and signal sparsity levels.

With the proposed splitting algorithms for deriving bounds,
neither the algorithm for actually recovering the signal nor
the objective function is modified. The splitting schemes
proposed only improve the theoretical bound on recovery
for a given dictionary. Both algorithms are applicable to
any generic dictionary. We hope to, in the future, provide
an efficient algorithm for a general order, multi-way split in
dictionaries as well.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

6. REFERENCES

Emmanuel J Candés and Michael B Wakin, “An introduc-
tion to compressive sampling,” IEEE signal processing
magazine, vol. 25, no. 2, pp. 21-30, 2008.

Emmanuel J Candes, Justin Romberg, and Terence Tao,
“Robust uncertainty principles: Exact signal reconstruc-
tion from highly incomplete frequency information,”
IEEE Transactions on information theory, vol. 52, no. 2,
pp- 489-509, 2006.

Scott Shaobing Chen, David L Donoho, and Michael A
Saunders, “Atomic decomposition by basis pursuit,”
SIAM review, vol. 43, no. 1, pp. 129-159, 2001.

Tony Cai, Lie Wang, and Xu Guangwu, “Stable recovery
of sparse signals and an oracle inequality,” IEEE Trans-
actions on Information Theory, vol. 7, no. 56, pp. 3516—
3522, 2010.

Patrick Kuppinger, Giuseppe Durisi, and Helmut
Bolcskei, “Uncertainty relations and sparse signal recov-
ery for pairs of general signal sets,” IEEE Transactions
on Information Theory, vol. 58, no. 1, pp. 263-277,2012.

Christoph Studer, Patrick Kuppinger, Graeme Pope, and
Helmut Bolcskei, “Recovery of sparsely corrupted sig-
nals,” IEEE Transactions on Information Theory, vol. 58,
no. 5, pp. 3115-3130, 2012.

Christoph Studer and Richard G Baraniuk, “Stable
restoration and separation of approximately sparse sig-
nals,” Applied and Computational Harmonic Analysis,
vol. 37, no. 1, pp. 12-35, 2014.

Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest, and Clifford Stein, Introduction to Algorithms,
MIT press, 2009.

