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ABSTRACT

We present an algorithm for image denoising under Poisson
noise using the theory of variance stabilization transforms.
We derive worst-case performance bounds for our algorithm.
Our proposed estimator allows for easy and very principled
parameter tuning unlike existing approaches which require
specification of signal dependent parameters. Moreover our
estimator is computationally tractable. We also demonstrate
numerical results on image denoising under Poisson noise to
support the theoretical results.

Index Terms— Poisson noise, variance stabilization trans-
form, performance bounds in denoising

1. INTRODUCTION

It is well known that the noise affecting images acquired in
an optical or X-Ray based system is dominantly Poisson dis-
tributed [1, 2]. That is, the observed image intensity yi at
pixel i is given as yi ∼ Poisson(xi) where xi is the intensity
of the underlying ‘true’ image at pixel i. There is the implicit
assumption that yi is a non-negative integer and xi ≥ 0. The
Poisson noise model is signal dependent. For images affected
by Poisson noise, the restoration algorithms should ideally
account for this noise model. A plethora of algorithms have
been developed for Poisson image denoising [3, 4, 5, 6, 7, 8].
The work in [3, 4] exploits variance stabilizing transforms
(VSTs) in different ways, in conjunction with image sparsity
priors. Innovative sparsity priors have been developed in [5].
On the other hand, the work in [6, 7, 8] is based on different
forms of dictionary learning such as PCA adapted to Poisson
noise, variants of the KSVD dictionary learning algorithm [9],
or non-negative sparse coding [10].
However, relatively less work has been done on developing
theoretical performance bounds for the task of estimating {xi}ni=1

from {yi}ni=1. A notable exception is the work in [11], which
estimates the underlying signal using a dictionary-based ma-
trix factorization of the form X = DΘ where X ∈ Rn1×n2

≥0
is the unknown signal matrix, D ∈ Rn1×K is a dictionary
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with K columns and Θ ∈ RK×n2 is a matrix of signal co-
efficients in D, on which sparsity is imposed. The specific
estimator used is of the form argminD,Θ − log p(Y |DΘ) +
λ‖Θ‖0. Here the first term is the negative log-likelihood
of the Poisson distribution and the second term is a coding-
theoretic regularizer. The aforementioned estimator is not
computationally tractable due to the ‖Θ‖0 term. While in
practice, this term can be softened to ‖Θ‖1 to yield a tractable
estimator as in [12], there are no guiding principles on a signal-
independent choice of the regularizer parameter λ.
Contributions: Our work in this paper presents the following
contributions:

1. We present a constrained but tractable optimization al-
gorithm for Poisson denoising based on VSTs.

2. We present theoretical performance bounds for this al-
gorithm. Our algorithm requires no knowledge of the
underlying signal x, except for ‖x‖∞ (i.e. maximum
rate of the underlying Poisson process) which is needed
solely for the theoretical analysis.

Paper Organization: This paper is organized as follows.
The estimator is presented in Section 2, and its performance
bounds are presented in Section 3, followed by empirical re-
sults in Section 5 and a conclusion in Section 6.

2. PROPOSED ESTIMATOR

Consider noisy intensity yi ∼ Poisson(xi) at pixel location
i. It is well known that

√
yi + c is approximately Gaussian

distributed with mean
√
xi + c and variance 1/4 where c is

a non-negative constant [13]. Moreover the quality of the
approximation improves as xi → ∞. This result is called
the VST, specifically the Anscombe transform when c , 3/8
[14]. Let y and x = Ψθ respectively be the noisy and orig-
inal images in vectorized form, where Ψ is a sparsifying or-
thonormal basis and θ is a vector of sparse/compressible co-
efficients. Inspired by the VST, we propose the following es-
timator:

Q1 :min ‖θ‖1 s. t. ‖
√
y + c−

√
Ψθ + c‖2 ≤ ε,Ψθ � 0, (1)

‖Ψθ‖∞ ≤ L.



Here L is an upper bound on the maximum pixel intensity
value of the unknown image, and ε is a statistically motivated
bound on the magnitude of the residual vector r(y,x) ,√
y + c −

√
Ψθ + c. The choice of ε is based on the fol-

lowing theorem, proved in our unpublished work [15] (see
Theorem 1).
Theorem 1: If y is a vector of n Poisson corrupted values
with underlying intensity in x such that ∀i, yi ∼ Poisson(xi),
then we have the following:

1. E[‖r(y,x)‖2] ≤
√
n/2.

2. Define v , Var[‖r(y,x)‖2]. If ∀i, xi ≥ 1 and n ≥
29, then we have v ≤ 3n/4

n(2c+1)/(8(1+c)2) ≈ 6.48 and

P
(
‖r(y,x)‖2 ≤

√
n( 1√

2
+ 2.55)

)
≥ 1− 1/n. �

The complete proof is omitted here owing to lack of space.
The main advantage of this theorem is that it derives a bound
on the residual magnitude which is (a) signal-independent,
and (b) does not require the residual vector to be Gaussian
distributed. A bound based on the Gaussian approximation
would not be rigorous enough, because the distribution is only
asymptotically Gaussian when the elements ofx have infinitely
large values. Instead, our tail bound is based on Chebyshev’s
inequality.
Poisson denoising based on VSTs is not new, however exist-
ing techniques such as [8, 3] denoise the Anscombe transform
of the noisy image using Gaussian denoising techniques, fol-
lowed by inversion of the Anscombe transform in one of many
different ways to remove statistical bias [3]. From a rigorous
theoretical standpoint such an approach is not fully accurate,
since the elements of the Anscombe transformed image are
only approximately Gaussian distributed. Moreover proving
performance bounds for this method is quite challenging, and
has not been attempted so far. As against this, our approach
directly solves for the underlying image (without any further
inversion step) as is evident from the estimator in Eqn. 2. Our
approach is partly similar to that in [4], where a regularized
estimator of the following form is used:

Q2 :min λ‖θ‖1 + ‖
√
y + c−

√
Ψθ + c‖22, s. t. Ψθ � 0.

(2)
For Q2, no performance bounds are derived in [4], and there
is no theoretical treatment for choice of λ, which is instead
picked by cross-validation. It should be noted that Q1 (just
like Q2) is a convex estimator as the objective function as well
as constraints are all convex. The constraint on ‖r(y,x)‖2 is
convex as it represents the sub-level set of a convex set (see
Section 3.1.6 of [16]). Moreover it has bounded derivatives
even at low intensity levels due to the factor c 6= 0 (unlike the
negative log-likelihood of the Poisson distribution). Hence
Q1 is a tractable estimator.

3. PERFORMANCE BOUNDS FOR OUR
ESTIMATOR

In this section, we put forth our key theorem regarding per-
formance of the estimator Q1.
Theorem 2: Consider y ∼ Poisson(x) where x = Ψθ ∈
Rn≥0 as defined in Theorem 1, and y ∈ Zn. Let ‖Ψθ‖∞ ≤ L,
‖Ψθ‖1 = I . Let θ? be the result of the optimization prob-
lem in Q1 with ε set to

√
n( 1√

2
+ 2.55/κ) for some κ > 0.

Then, if n ≥ 29 and ∀i, xi ≥ 1, we have the following in-
equality with probability exceeding 1 − 1/n for any integer
s ≤ O(n/ log n):
‖θ − θ?‖2

I
≤ 16(2.55/κ+1/

√
2)

√
n(L+ c)

I
+

2s−
1
2 ‖θ − θs‖1
I

,
where θs is the best s-sparse approximation to θ. �
Comments on Theorem 2: Even though it is required for
the theoretical proof, the constraint ‖Ψθ‖∞ ≤ L is not re-
quired in practice in the numerical experiments with Q1 (see
Section 5). The bounds presented in this theorem scale as
O(
√
n). Those in [11] scale as O(

√
(n+ s) log n), where

the (i) O(
√
n log n) factor is due to the fact that the dictio-

nary matrix Ψ is also inferred from the noisy data, and (ii)
the O(

√
s log n) factor is because of the employment of a

LASSO-like estimator [17] (see Theorem 11.1 and Eqn. 11.15
and comments on it) in constrast to our estimator that is simi-
lar to basis pursuit denoising [18].

4. PROOF OF THEOREM 2

The proof presented here for denoising error bounds using
the residual magnitude estimator is inspired from the proof
presented in [15] for the task of Poisson compressive recon-
struction with a sensing matrix Φ. The proof is adapted here
meticulously for the case of Poisson denoising where Φ is the
n× n identity matrix.

1. Define a vector h , θ − θ?. The vector denoted by
hT is equal to h only for index set T and zero for other
indices. Define T0 as the set having s largest absolute
value indices of θ, similarly T1 is the set containing s
largest absolute value indices of hT c

0
and so on, where

T c is the complement of the set T . Hence h can be
broken down as the sum of hT0,hT1

,hT2
,...

2. Following simple algebraic manipulation we have

‖Ψh‖22 = ‖Ψ(θ − θ?)‖22
= ΣNi=1((

√
(Ψθ)i + c−

√
(Ψθ?)i + c)2

(3)

(
√

(Ψθ)i + c+
√

(Ψθ?)i + c)2).

(a) Consider an upper bound of ε on ‖
√
y + c−

√
Ψθ + c‖2.

At the end of the proof, we shall assign a statisti-
cal meaning to ε based on Theorem 1. Based on
the triangle inequality and the constraint in Q1,



we get ‖
√

Ψθ + c−
√

Ψθ? + c‖2 ≤ ‖
√
y + c−√

Ψθ + c‖2 + ‖
√
y + c−

√
Ψθ? + c‖2 ≤ 2ε.

(b) For scalars v1 ≥ 0, v2 ≥ 0, we have (
√
v1 +√

v2)2 ≤ 4max(v1, v2). We also have (Ψθ)i =
xi ≤ L. Likewise we also have (Ψθ?)i ≤ ‖x?‖∞
= L based on the constraints defined in Q1. Hence
we obtain (

√
(Ψθ)i + c+

√
(Ψθ?)i + c)2 ≤

4(L+ c).

(c) Using the earlier two results with Step 2(a), we
have ‖Ψh‖2 ≤ 4ε

√
L+ c.

3. As shown in [15] to prove the bound on ‖h(T0∪T1)c‖2,
on following steps similar to [18] we get

‖h(T0∪T1)c‖2 ≤ ‖h(T0)‖2 + 2s−1/2‖θ − θs‖1. (4)

4. The following construct was used to prove error bounds
on ‖h(T0∪T1)‖2 based on steps in [18]. Consider the
restricted isometry property (RIP) of the identity matrix
with a restricted isometry constant (RIC) δ2s = 0 for
order s such that n ≥ O(s log n). Using this and the
Cauchy-Schwartz inequality, we can prove that

‖hT0∪T1
‖2 ≤ C ′ε+ C ′′s−1/2‖θ − θ?‖1 (5)

where C ′ , 8
√

(1+δ2s)(L+c)

1−δ2s(
√
2+1)

and C ′′ , 2
√
2δ2s

1−δ2s(
√
2+1)

.

Since δ2s = 0 for an identity matrix, C ′ = 8
√
L+ c

and C ′′ = 0. Putting these values in the above equation
we get

‖hT0∪T1
‖2 ≤ 8ε

√
L+ c. (6)

5. Combining the bounds on ‖hT0∪T1‖2 and ‖hT0∪T1
c‖2,

we have

‖h‖2 ≤ 16ε
√
L+ c+ C2

√
2‖θ − θs‖1 (7)

where C2 , 2 + 2C ′′ = 2 (as C ′′ = 0 for this case).

Finally, we divide by I to obtain upper bounds on the relative
reconstruction error:

‖θ − θ?‖2
I

≤ 16ε

√
L+ c

I
+

2s−
1
2 ‖θ − θs‖1
I

. (8)

Using Theorem 1, we see that ε ≤
√
n(2.55/κ+ 1/

√
2) with

a probability of 1−κ2/n for any κ > 0. This proves Theorem
2. �

5. EXPERIMENTAL RESULTS

5.1. Experiments on Sparse 1D Signals

The denoising experiments were first performed on non-negative
1D Poisson corrupted signals with 250 elements each. Each

signal was generated from a sparse random linear combina-
tion of DCT basis vectors, with the DC component adjusted
to yield non-negative signals. Different signals had different
supports in the DCT basis, and the coefficient values were in-
dependently drawn from Unif[0, 1]. Corresponding to each
Total Intensity (I , ‖x‖1) and sparsity level s, we gener-
ated 20 signals. Post denoising by one of different competing
methods (see later in this section), the relative mean squared
reconstruction error (RMSE = ‖xtrue − xest‖2/‖xtrue‖2)
was recorded for each of these signals, and a median error was
recorded. The signals were scaled suitably so that they had a
desired Total Intensity I . In Fig. 1, we show plots of median
RMSE vs Total Intensity at a fixed sparsity level s = 50%,
and likewise for RMSE vs sparsity at a fixed Total Intensity
I = 10000. The box-plots for these are provided in the sup-
plemental material [19].

Methods Compared:

1. Q1 using CVX package with c = 3
8 , ε = 0.2

√
n and

without the ‖Ψθ‖∞ ≤ L constraint (as its inclusion
made very little difference to the results).

2. Penalized negative log-likelihood (PNLL) using the method
‘SPIRAL-TAP’ from [12] with an omniscient choice of
λ for every I value, i.e. the optimal value of λ (in the
RMSE sense, assuming full knowledge of the underly-
ing image) for every I was selected by brute force from
a set L of 100 evenly spaced candidate values of λ in
the range [0.01, 1].

3. PNLL with λ obtained using cross-validation, i.e. the
optimal value of λ was obtained by brute force from
the set L defined earlier, for an image with a fixed I
and s value, and then the same value of λ was used for
images with other values of I .

Observations and Comments: From the plots in Fig. 1, we
see that the RMSE decreases with I for the Q1 estimator (as
for other estimators too). For Q1, the plots show relative in-
sensitivity to s (the RMSE varies from 0.012 at low s to 0.024
for higher s), because the intensity term dominates the bound
(see Theorem 2) and we are considering I = 104, which is
large in value. At low I , the omniscient PNLL approach out-
performs Q1 with ε = 0.2

√
n (which is a fixed, statistically

motivated choice) although at higher I their performance is
almost the same. The cross-validation based PNLL approach
suffers in performance at low as well as high I . This ex-
periment therefore highlights the sensitivity of PNLL based
methods to choice of the regularization parameter λ, which
is in fact dependent on properties of the underlying signal.
The cross validation approach ensures good performance only
close to the intensity level on which the cross-validation was
performed, while for other I the performance is adversely af-
fected. In other words, PNLL outperforms Q1 (with a fixed
ε = 0.2

√
n) only when the λ value for the former is picked in

an intensity-dependent fashion. Further analysis of box plots
at various intensities and sparsities is provided in the supple-
mental material[19].



Fig. 1: Median RMSE plots for Q1, PNLL with omniscient
λ and PNLL with cross validated λ. Top plot: (a) Across dif-
ferent values of I with s = 0.5n, (b) Across different values
of s with I = 104.

5.2. Image Denoising Experiments

We also performed denoising experiments for two different
images: Barbara and House. Our estimator Q1 was tested on
portions of size 128 × 128 from the images at 3 different in-
tensity levels. We used an overlapping patch based denoising
approach, with sliding window averaging to avoid patch-seam
artifacts. We denoised 8 × 8-sized image patches, and used
a window stride of 2 pixels. Reconstruction RMSE for both
images, each at different intensity levels given by fI0 where
0 < f ≤ 1 and I0 , ‖x‖1/n, are reported in Table 1. I0 val-
ues for the Barbara and House image are 127.89 and 145.837
respectively. Denoising results are shown in Fig. 2. These
show the performance of Q1 on actual image. The results im-
prove with increase in I as expected intuitively, and predicted
from the term

√
L/I in Theorem 2. We compared the per-

formance of Q1 with that of PNLL for the same patch-size
and window stride. For PNLL, the λ value was picked omni-
sciently from a global denoising routine using SPIRAL-TAP,
and then used for patch-based denoising with the SPIRAL-
TAP method. Results for another image - a collage of textures
- are shown in [19].

Original Noisy Q1 PNLL

Fig. 2: The rows corresponds to Intensities 0.4I0 (row 1 and
3) and 0.1I0 (row 2 and 4). I0 denotes the average value per
pixel of the original image which is then Poisson corrupted
after scaling to a desired intensity level.

Table 1: Tabulated RMSE values

Barbara
(0.1I0)

Barbara
(0.4I0)

House
(0.4I0)

House
(0.1I0)

Q1 5.72% 1.35% 1.80% 5.06%
PNLL 11.89% 2.40% 4.17% 13.98%
Noisy 25.11% 8.30% 9.72% 21.19%

6. CONCLUSION

We have presented an algorithm for Poisson image denoising
inspired from the Anscombe transform. The proposed esti-
mator is computationally tractable and we have also proved
performance bounds for it with principled choice for ε. This is
unlike earlier denoising estimators that are either not tractable,
or for which provable bounds do not exist, or for which prin-
cipled choices of estimator parameters have not been devel-
oped. A notable exception is the work in [20] which uses a
weighted LASSO or weighted group LASSO formulation for
denoising. However the image model used there is of the form
x = exp(Ψθ), unlike the linear model x = Ψθ considered
here. The numerical results of our estimator Q1 are promising
and comparable to negative log-likelihood based estimators.
There are many directions for future work. First, our frame-
work could be extended to jointly denoise groups of similar
patches which could yield superior performance. Second, the
prospect of deriving performance bounds in conjunction with
tractable inference of Ψ as well as θ in situ from the noisy
data is also very interesting.
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