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ABSTRACT
We present an estimator, based on the Anscombe transform,
for the problem of low-rank matrix recovery under Poisson
noise. We derive an upper bound on the matrix reconstruction
error for this estimator, considering a linear sensing operator
which obeys realistic constraints like non-negativity and flux-
preservation. Besides being computationally tractable (con-
vex), our estimator also allows for principled parameter tun-
ing. Moreover, our method is capable of handling Poisson-
Gaussian noise and the case where the Poisson or Poisson-
Gaussian corrupted measurements are uniformly quantized.
In addition to our theoretical results, we present some numer-
ical results for Poisson low-rank matrix recovery under vary-
ing intensity levels and number of measurements.

Index Terms— Low-rank matrix recovery, Poisson noise,
Anscombe transform, reconstruction error bounds

1. INTRODUCTION

In the Low-Rank Matrix Recovery (LRMR) problem, the aim
is to recover or reconstruct a (nearly) low rank matrix, from
certain measurements of the matrix which may be corrupted
by noise. A nearly low-rank matrix refers to one that can be
approximated well by a low-rank matrix, i.e., the vector of
singular values of this matrix is compressible. Typically, the
number of measurements is much smaller than the number of
entries in the matrix. While there exists a large body of work
on the LRMR problem based on nuclear norm (i.e., sum of
singular values) minimization [1, 2, 3], most of the theoretical
work makes the assumption of additive signal-independent
noise. However the noise in many compressive imaging sys-
tems is better modelled as non-additive and signal-dependent
Poisson noise due to the photon-counting devices in the sys-
tem [4, 5], while in many cases, the signal can be modelled
as a nearly low-rank matrix. In Poisson LRMR, we consider
the forward model y ∼ Poisson(A(M)). Here y ∈ ZN+
is a vector of independent measurements of the form yi ∼
Poisson[(A(M))i], M ∈ Rd1×d2+ is a low-rank or nearly
low-rank non-negative matrix and A : Rd1×d2 → RN (N �
d1d2) is the linear sensing operator.
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Since we are modelling a practical imaging system, the
linear sensing operator A must satisfy certain physical con-
straints. The resulting measurements from A must be non-
negative. Also, the total intensity of the measurements must
be less than or equal to the total intensity of the original ma-
trix (flux-preservation) [6]. Sensing operators satisfying the
above two properties may not obey the Restricted Isometry
Property (RIP) for matrices [2] which is often used to derive
performance bounds for LRMR. To overcome this challenge,
we design the sensing operator in a particular way [7] which
is described in Section 2.

There exists previous work [7, 8] on Poisson LRMR
where a regularized maximum likelihood estimator has been
analyzed. There also exists previous work on the related
problem of Poisson Matrix Completion [9, 10, 11], where
the aim is to recover a matrix from a subset of its Poisson
corrupted entries. However, we do not consider this problem
in this paper. The work in [7], based on the penalized Pois-
son maximum likelihood, applies to low-rank/nearly low-rank
matrices and linear operators which obey physical constraints.
However, their bounds are derived for a computationally in-
tractable estimator. Moreover, their work explores only the
case of Poisson noise and not Poisson-Gaussian noise (which
is a more accurate model for the noise in imaging systems
[12] since the electronic fluctuations in the system give rise
to a signal-independent Gaussian component of the noise as
well). The regularization parameter in their implemented
estimator is also difficult to choose in practice and does not
have theoretical treatment.

In our work, we derive an upper bound on the reconstruc-
tion error for an estimator based on the Anscombe transform
(AT) [13, 14]. The transform f(X) =

√
X + 3/8 converts

a Poisson random variable X ∼ Poisson(λ) into one with an
approximately Gaussian distribution with mean≈

√
λ+ 3/8

and variance ≈ 1
4 . This motivates the following estimator:

min
M
‖M‖∗ subject to ‖

√
y + c−

√
A(M) + c‖2 ≤ ε, (1)

M � 0, ‖M‖1,1 = I,

where y ∼ Poisson(A(M)), M is a non-negative matrix
which is low-rank or nearly low-rank with nuclear norm (i.e.,
sum of singular values) ‖M‖∗ and intensity I , ‖M‖1,1 =



∑
i,j |Mij |, c , 3

8 and ε is a statistically motivated upper
bound on ‖

√
y + c−

√
A(M) + c‖2. As we shall later show,

our specific choice of ε does not rely on the exact Gaussianity
of (
√
yi + c −

√
(A(M))i + c). The symbol � in A � B

means that aij ≥ bij for all i, j in matricesA andB.
This estimator (along with the performance bounds) can

be easily modified for the Poisson-Gaussian case. For the
Poisson-Gaussian noise model where the measurements are
of the form y ∼ Poisson(A(M)) + η where ηi ∼ N (0, σ2),
we can apply the Generalized AT [15] to the noisy measure-
ments in place of the AT. This is equivalent to using c =
3
8 + σ2 in the estimator (1), and leads to similar (though not
identical) performance bounds as in Theorem 3.1.

The contribution of our work is summarized as follows:

1. We have derived performance bounds for a computa-
tionally tractable (convex) estimator, with practical lin-
ear sensing operators and for low-rank or nearly low-
rank matrices.

2. We have a unified approach to handle Poisson as well
as Poisson-Gaussian noise.

3. Our estimator allows for principled, statistically mo-
tivated parameter tuning since (as we show later) the
term ‖

√
y + c −

√
A(M) + c‖2 has a bounded vari-

ance which does not depend on the original signal or
the number of measurements.

2. LINEAR SENSING OPERATOR

First, we explicitly state the form of the linear operator that
we have used. As shown in [2], we define the linear op-
erator A such that it can be represented by a series of ma-
trices {Ai ∈ Rd1×d2} such that [A(M)]i = 〈Ai,M〉 =∑d1
k=1

∑d2
l=1(Ai)klMkl. In other words, we can write

A(M) =


vec(A1)

T

vec(A2)
T

...
vec(Am)T

 vec(M),

where vec(M) is a vector obtained by stacking the columns
ofM . This kind of a linear operator actually models the mea-
suring process in compressive imaging systems like the Rice
single pixel camera [4].

The non-negativity property means that [A(M)]i ≥ 0 ∀ i
while the flux-preservation property means that∑N
i=1[A(M)]i ≤

∑d1
i=1

∑d2
j=1Mij . We construct a non-

negative and flux-preserving linear operator based on the ap-
proach in [7]. Let Zi ∈ Rd1×d2 be a matrix in which each
entry is either +1 or −1 with equal probability. We define
Bi =

Zi√
N

. We construct the matrixAi as follows:

Ai =
Bi

2
√
N

+
1d1×d2
2N

. (2)

Now each entry of Ai is either 0 or 1
N . We can easily

verify that the linear operator A associated with the se-
ries of matrices {Ai} satisfies both the non-negativity and
flux-preservation properties. Let B be the linear operator
associated with the series of matrices {Bi}. Theorem 2.3 of
[2] shows that B satisfies the matrix RIP at rank r with high
probability forO(dr) measurements where d , max(d1, d2).

3. THEORETICAL RESULTS

In this section, we first state a theorem from [16] which
mentions some properties of R(y,A(M)) , ‖

√
y + c −√

A(M) + c‖2 where c = 3
8 . Using this result, we then

formulate Theorem 3.2 below for the upper bound on the
reconstruction error for Poisson LRMR.

Theorem 3.1. Let y ∈ ZN+ be a vector of independent
measurements such that yi ∼ Poisson[(A(M))i] where
M ∈ Rd1×d2+ is a non-negative matrix and A is con-
structed according to the discussion in Section 2. We de-
fine γi , (A(M))i. Then for R(y,A(M)), the following
properties hold:

1. E[R(y,A(M))] ≤
√
N/2

2. Define v , Var[R(y,A(M))]. If for all i, γi ≥ 1 and
N ≥ 29, then we have v ≤ 3/4

(2c+1)/(8(1+c)2) ≈ 6.48

and P
(
R(y,A(M)) ≤

√
N( 1√

2
+2.55)

)
≥ 1−1/N .

For completeness, we have included a proof of Theorem 3.1
in our supplemental material at [17]. This theorem does not
require (

√
yi + c−

√
(A(M))i + c) to be a Gaussian random

variable. Such an assumption would not be rigorous because
as shown in [13], Gaussianity is obeyed only asymptotically
when the mean of yi tends to infinity. Theorem 3.1 provides
us with a signal-independent upper bound for R(y,A(M))
and thus allows principled parameter tuning in our estima-
tor. In our experiments, we have observed that the mean and
variance of R(y,A(M)) are bounded by smaller values than
those stated in the theorem above. This can be seen from Fig-
ures 1 and 2 in [16].

Theorem 3.2. Consider corrupted measurements of the form
y ∼ Poisson(A(M)). Let M? be the solution of the follow-
ing optimization problem:

min
M
‖M‖∗ subject to ‖

√
y + c−

√
A(M) + c‖2 ≤ ε, (3)

M � 0, ‖M‖1,1 = I,

where c = 3
8 and ε , τ

√
N such that τ = (2.55κ + 1√

2
) for

some κ > 0. Let Mr denote the best r rank approximation
to M . If N ≥ 29, B obeys the matrix RIP such that δ4r <√
2− 1 and the condition A(M) � 1 holds, then we have:

P
(
‖M −M?‖F

I
≤ 8C1

√
Nτ

√
1

I
+
cN

I2
+
C2r

− 1
2 ‖M −Mr‖∗

I

)
≥ 1− κ2/N



where C1 = 2
√
1+δ4r

1−(1+
√
2)δ4r

and C2 =
√
2 + 4δ4r

1−(1+
√
2)δ4r

.

Remarks:

1. The proof for Theorem 3.2, which can be accessed in
the supplemental material at [17], is inspired from [2]
and [18]. These proof techniques have been modified
to handle the non-negativity and flux-preserving prop-
erty of the linear sensing operator, and the constraints
‖M‖1,1 = I ,M � 0.

2. Since we are dealing with a Poisson inverse problem,
we analyze the relative reconstruction error (RRE) in-
stead of the (absolute) reconstruction error. This is be-
cause as the mean of the Poisson distribution increases,
its variance also increases, causing an increase in the
mean squared error but a decrease in the relative mean
squared error.

3. The above bound is inversely proportional to the signal
intensity I . For a fixed I , if N is increased, then the
incident photon flux I is distributed across more mea-
surements, causing a decrease in SNR per measurement
and possibly degrading performance. In fact, this af-
fects our bound.

4. As r increases, δ4r of the sensing operator will in-
crease. Hence the constants C1 and C2 will increase
since they are monotonically increasing functions of
δ4r. Hence, the upper bound on the performance may
actually increase with r.

5. Our experimental results in the next section show that
the constraint ‖M‖1,1 = I is not necessary, although
we required it for our theoretical analysis.

6. We can extend Theorem 3.2 to handle the Poisson-
Gaussian case where the measurements are y ∼
Poisson(A(M))+η, ηi ∼ N (0, σ2). For this case, we
replace c in the estimator with c̃ , c + σ2. The bound
for this model can be derived by following steps sim-
ilar to those shown in the proofs of Theorem 3.2 and
making use of Theorem 2 in [16]. In fact, this theorem
can also be extended to include uniform quantization
noise (with or without the Gaussian noise).

4. EXPERIMENTS

Matrix and Measurement Generation: We ran experiments
for reconstruction of Q = 50 non-negative 50× 50 low-rank
matrices, from their Poisson corrupted compressive measure-
ments. We constructed the sensing operator A as per the
model in Section 2. A matrix of rank r < 50 was gener-
ated by the multiplication of two non-negative matrices of the
dimensions 50 × r and r × 50 respectively. The entries of
these two matrices were drawn randomly from Unif[0, 1]. Fi-
nally, we scaled the elements of the 50× 50 matrix to ensure
the desired value of I (see description of experiments later in
this section).

Methods Compared: We ran our simulations for the fol-
lowing three optimization problems:

P1 : min
M
‖M‖∗ s.t. ‖

√
y + c−

√
A(M) + c‖2 ≤ ε,M � 0

P2 : min
M
‖
√
y + c−

√
A(M) + c‖2+λ‖M‖∗ s.t. M � 0,

P3 : min
M

N∑
i=1

([A(M)]i−yi log[A(M)]i)+λ‖M‖∗ s.t. M � 0,

where c = 3
8 in P1 and P2. The problem P3 is a variant

of the matrix recovery optimization problem presented in [7].
Note that we have excluded the constraint ‖M‖1,1 = I in all
the three problems, as it had negligible impact on the results.
All three problems are convex. We solved P1 and P2 using
CVX [19] with the SDPT3 solver, and P3 using the PMLSVT
algorithm [7] with parameters K = 5000, t = 10−5 and
η = 1.1 (see [7] for their meaning).

Study of variation of matrix/measurement parameters:
We show results for two experiments described below. In
both the experiments we have used the RRMSE (relative
root mean-squared error) metric , ‖M −M?‖F /‖M‖F ,
where M and M? denote the true/original and recon-
structed matrix respectively. In the Experiment 1, we studied
the effect of change in intensity I on the reconstruction
results. For this, we generated Poisson corrupted mea-
surements of Q different matrices in R50×50, each with
a fixed number of measurements N = 1250 and rank
r = 5. The signal intensity was varied according to the set
{104, 105, 2.5×105, 5×105, 7.5×105, 106, 5×106, 107, 5×
107, 108}. For each value of I , the median RRMSE value
was recorded over the Q matrices. In the Experiment 2, for
the Q different matrices, the rank of the matrices was fixed
to r = 5, and their intensity was fixed to I = 108. The
number of measurements was varied according to the set
{250, 500, 750, 1000, 1250, 1500, 1750, 2000, 2250, 2500}.
For each value of N , the median RRMSE value was recorded
over the Q matrices.

In P1, the bound ε was set to 2
√
N based on the tail

bound from Theorem 3.1 (note that 2
√
N =

√
N/
√
2 +√

N(2.55/2), and that this bound holds with probability 1 −
(2)2/N , i.e. κ = 2). The same value of ε was used in both
the experiments, and we refer to this variant as P1-1. Since
2
√
N is a conservative upper bound, we also ran both the ex-

periments with ε = µ + 3σ where µ and σ are the empiri-
cal mean and standard deviation of R(y,A(M)), simulated
over 100 randomly chosen matrices (termed P1-2 in Fig. 1).
This choice of ε is principled since by Theorem 3.1, the statis-
tics of R(y,A(M)) are signal-independent. For P2, in the
Experiment 1, we chose the regularizer parameter λ omni-
sciently from set S , {10−10, 10−9, ..., 10}, i.e. choosing
the particular value of λ ∈ S that yielded the least squared
difference between the trueM (assuming it were known) and
its estimate. For the Experiment 2 (where I = 108), we set



λ = 10−3 as this was the value of λ which gave the smallest
error corresponding to I = 108 in the Experiment 1. The
problem P3 is based on the negative log-likelihood of the
Poisson distribution. For P3, the regularization parameter λ
was chosen omnisciently from S in the Experiment 1. For the
Experiment 2, we chose λ = 10−3 (for the same reason as in
the P2 case).

Fig. 1: Top figure: Median RRMSE comparisons (for fixed N = 1250
and r = 5, varying I) between (P1 − 1) with ε = 2

√
N , (P1 − 2) with

ε = µ+3σ (see text), P2 with omnisciently chosen λ, P3 with omnisciently
chosen λ, P2 with cross-validation for λ, P3 with cross-validation for λ.
Bottom figure: Median RRMSE comparisons (fixed I = 108 and r = 5,
varying N ) between (P1− 1) with ε = 2

√
N , (P1− 2) with ε = µ+3σ,

(P2−1) with λ = 10−3, (P3−1) with λ = 10−3, (P2−2) with λ = 1,
(P3− 2) with λ = 0.1.

Comparison plots: Observing the comparison plots in
Fig. 1, we see that the reconstruction results with P2 and
P3 are comparable in most cases. Both showed better results
than P1-1 due to the omniscient selection of λ, as against
the fixed, statistically motivated, conservative ε = 2

√
N in

P1-1. However the results with P1-2 are comparable to and
sometimes better than P2, P3. Moreover, omniscient choices
are difficult and compute-intensive in practice. We saw that
improper choice of λ, which is signal-dependent, led to ar-
bitrary increase in reconstruction error in P3. To show this,

we collected results on P2 and P3 via cross-validation for
the Experiment 1. For this, we omnisciently chose λ which
yielded the best RRMSE for I = 105 and used the same λ
in P2 and P3 for all other intensity levels in the Experiment
1. For the Experiment 2, we have also shown the median
RRMSE values for P2 with λ = 0.1 and P3 with λ = 1. This
is just to show that the performance of P2 and P3 worsens
with improper choice of λ.

Image Reconstruction: Lastly, we ran some experiments
to reconstruct images from Poisson-corrupted measurements
using the LRMR framework. For a m1 ×m2 image M with
intensity I , we first constructed a d1 × d2 patch matrix M̃
by taking all the 8 × 8 non-overlapping patches in M , vec-
torizing them and using them as columns of M̃ (therefore,
d1 = 64 and d2 = m1m2/64). This patch matrix is a nearly
low-rank matrix. We then generated measurements of the
form y = Poisson(A(M̃)) where y ∈ RN+ and A was con-
structed as per the discussion in section 2. The matrix M̃
was reconstructed from y by solving P1 with ε = 0.25

√
N .

We then reshaped this reconstructed M̃ to obtain an estimate
of the original image. We ran this experiment on two im-
ages - solar flare (48 × 48) [7] and the flag of Texas (32 ×
40). For each image, we ran our experiment for four cases
- (I = 107, N = 0.5d1d2), (I = 107, N = 0.75d1d2),
(I = 108, N = 0.5d1d2) and (I = 108, N = 0.75d1d2).
The results for these experiments are shown in Fig. 2 and 3.

Fig. 2: Image reconstruction results for ’solar flare’ using P1 with ε =
0.5
√
N . In the left to right order: original image, (I = 107, N =

0.5d1d2, RRMSE = 0.3899), (I = 107, N = 0.75d1d2, RRMSE =
0.3917), (I = 108, N = 0.5d1d2, RRMSE = 0.2257), (I = 108, N =
0.75d1d2, RRMSE = 0.1996).

Fig. 3: Image reconstruction results for ’Texas flag’ using P1 with ε =
0.5
√
N . In the left to right order: original image, (I = 107, N =

0.5d1d2, RRMSE = 0.2704), (I = 107, N = 0.75d1d2, RRMSE =
0.2461), (I = 108, N = 0.5d1d2, RRMSE = 0.1521), (I = 108, N =
0.75d1d2, RRMSE = 0.1328).

5. CONCLUSION

We have presented a convex estimator for Poisson LRMR
with realistic sensing models and principled parameter tun-
ing which makes it easier to use in practice. Our framework
also allows for the unification of the analysis of LRMR under
Poisson and Poisson-Gaussian noise. Adapting this frame-
work for Poisson Matrix Completion and derivation of lower
bounds are some directions for future work.
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