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ABSTRACT
Most existing work in designing sensing matrices for com-
pressive recovery is based on optimizing some quality factor,
such as mutual coherence, average coherence or the restricted
isometry constant (RIC), of the sensing matrix. In this paper,
we report anomalous results that show that such a design is
not always guaranteed to improve reconstruction results. We
also present a design method based on the minimum mean
squared error (MMSE) criterion, imposing priors on signal
and noise for natural images, and show that it yields results
superior to results from coherence-based methods while tak-
ing into account physical constraints on the sensing matrix.

Index Terms— projection design, average coherence,
Bayesian estimation, structured sparsity, compressed sensing

1. INTRODUCTION

Compressed sensing theory states that signals having a fully
or approximately sparse representation in a dictionary Ψ can
be recovered with zero or minimal information loss from cer-
tain linear projections lower in dimension than those sug-
gested by the Nyquist-Shannon sampling theorem [1, 2]. For
optimal recovery, the theory imposes constraints on the pro-
jection Φ. It can be shown that matrices drawn from Gaussian
or Bernoulli distributions satisfy one such constraint, the re-
stricted isometry (RIP) [3], with overwhelming probability,
making them well-suited to compressive recovery.

It has, however, also been shown [4–10] that optimizing
Φ leads to better-than-random recovery. Due to the expo-
nential computational complexity of the RIP, early efforts to-
wards matrix design turned to bounds like [11], arguing that
minimizing the mutual coherence of the dictionary A = ΦΨ
improves a worst-case bound on recovery error. The mutual
coherence A is defined as µmax = ‖ÂT Â−I‖∞, where Â is
the column-normalized A. To relax the l∞ norm, these meth-
ods try to minimize some function of off-diagonal entries of
the Gram matrix G = ÂT Â, for example, the average coher-
ence µavg = ‖G − I‖F [5–7]. This approach leads us to the
anomalous behaviour of the mutual coherence and the RIC,
an interesting negative result that we report in the paper.
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In contrast, some schemes use concepts like the Rényi en-
tropy of the projections [12, 13] or estimation mean-squared
error (MSE) [14–17]. [12] proposes a novel communications-
inspired design, drawing parallels to precoder design for mul-
tiple input, multiple output systems. Bayesian experimental
design principles are used in [14] to optimize the estimation
MSE with priors on signal, noise and clutter subject to an
energy constraint, to which [16] adds information about sig-
nal support. [18] designs energy-constrained matrices based
on the minimum mean square error (MMSE) in the low-noise
regime. In this paper, we replace energy constraints in MMSE
design by optical constraints imposed by sensing hardware.

To deal with statistical priors better, [19, 20] formulate
a Bayesian framework for signal estimation and projection
optimization. Unlike in sparse modeling, where reconstruc-
tion involves nonlinear optimization, a piecewise-linear esti-
mator (PLE) with a Gaussian Mixture Model (GMM) prior
was introduced in [21], which was extended to the Statistical
Compressive Sensing (SCS) framework [22]. GMMs are sim-
ple yet effective priors on natural image patches degraded by
noise, subsampling or linear effects [21, 23]. Projections for
SCS were designed in [7] by minimizing coherence similar to
[5], [24] by using information-theoretic metrics to design for
reconstruction and classification jointly, and [25], by deriv-
ing a closed-form solution minimizing oracle MSE with en-
ergy constraints. Our approach brings together the benefits of
adapted sensing in the Bayesian framework and the versatility
of the PLE and the GMM prior. In this work, we present:
1. An average coherence-based design for the chosen archi-

tecture and anomalous behavior in mutual coherences and
RICs of designed matrices, an interesting negative result;

2. A novel approach to sensing matrix design, using Bayesian
A-optimality within the SCS framework [22] subject to a
learned GMM prior on natural image patches and optical
constraints levied by the acquisition model;

3. A comparison between matrices designed based on av-
erage coherence and the proposed MMSE-based design,
showing the superiority of the latter approach.

Following a description of acquisition and optical constraints
in Section 2, we evaluate a coherence-based design algorithm
and report anomalous results in Section 3. Our main contribu-
tion, a novel algorithm for optimizing projections of natural
images using GMMs, is presented in Section 4. We validate
and compare with other methods in Section 5, highlighting
the benefits of the new approach, and conclude in Section 6.
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2. ACQUISITION MODEL

We consider the acquisition model in [17] (hereby referred
to as Block-SPC) which uses a digital micromirror device
(DMD) as a spatial light modulator. The scene is divided into
non-overlapping blocks of a fixed size (say 16 × 16 when
n = 16) and sensed independently across blocks. The mea-
surement can be written as yi = Φxi+ηi, where xi is the ith

vectorized patch with n resolution elements, Φ is the m × n
sensing matrix, and yi is the m−dimensional measurement
vector, corrupted by noise ηi. The elements of the sensing
matrix Φ are implemented as reflectivity levels of the DMD,
and hence a practical sensing matrix faces optical constraints.
For example, the DMD of Block-SPC is capable of 256 lev-
els of reflectivity, imposing Φij ∈ P , where P is the set of
8−bit uniformly quantized values ∈ [0, 1]. These constraints
are more relevant in making Block-SPC sensing matrices re-
alizable than previously considered energy constraints, which
are applicable to communications design [12–14].

3. COHERENCE-BASED DESIGN

Following [11], consider solving the compressed sensing
problem y = Ax+ η with the basis pursuit (BP) solver

x̂ = arg min
x̃
‖x̃‖1 such that ‖y −Ax̃‖2 ≤ ε. (1)

Defining xs to be the best s-sparse approximation to x and if
‖η‖2 ≤ τ and s ≤ 1

2 (1 + 1/µmax):

‖h‖2 = ‖x̂− x‖2 ≤ C1(ε+ τ) + C2‖x− xs‖1. (2)

C1 and C2 are increasing functions of µmax. Hence, optimiz-
ing on µmax improves a worst-case bound on the recovery
error ‖h‖2. Similar worst-case RIC-based bounds exist [3].

3.1. Optimizing on Average Coherence

Following prior work [5–7], we use µavg = ‖ÂT Â− I‖F in-
stead of µmax. This simplifies the minimization problem and
accounts for the maximum as well as all other off-diagonal el-
ements of G, encouraging incoherence between all A column
pairs, not just the most incoherent one. We impose the opti-
cal constraint by solving the constrained minimization using
multi-start projected gradient descent with adaptive step size:

Φ̂ = arg min
Φij∈P

∥∥∥ÂT Â− I
∥∥∥2

F
. (3)

3.2. Anomalous Observations

For evaluating the algorithm, we fix Ψ as the 2D-DCT dic-
tionary and draw a [0, 1]-uniform random Φ ∈ Rm×n. We
run the optimization routine seeded with this random Φ for
different values of m with n = 16 × 16. The corresponding
values of coherence µmax and restricted isometry constants δ3

m 96 128 150 175 200 250

µavg
0.082 0.070 0.065 0.060 0.056 0.051
0.078 0.067 0.063 0.057 0.053 0.050

µmax
0.409 0.339 0.338 0.310 0.270 0.256
0.394 0.371 0.326 0.315 0.268 0.253

δ3
0.614 0.577 0.567 0.495 0.447 0.386
0.701 0.546 0.509 0.466 0.423 0.405

δ4 ∅ 0.718 0.719 0.615 0.575 0.519
0.688 0.644 0.576 0.552 0.525

Table 1: Simulation results of various matrix descriptors for
A = ΦΨ ∈ Rm×256 for a uniform random seed. For each
descriptor, the first row contains values for the initial A0 =
Φ0Ψ and the second row contains values for A optimized
according to (3). ∅ means that the corresponding quantity
could not be computed. Anomalous behavior boldfaced.

m→ 96 128 250

ID ↓ Φ0 Φ̃ Φ0 Φ̃ Φ0 Φ̃
1 19.85 20.36 19.99 20.41 20.50 20.56
2 25.95 26.45 26.02 26.49 26.42 26.46
3 19.33 20.03 19.47 20.10 20.06 20.19
4 21.42 22.34 21.55 22.47 22.28 22.33
5 18.44 18.77 18.53 18.86 18.92 18.97
6 20.33 20.57 20.40 20.63 20.48 20.60
7 26.33 27.91 26.42 28.06 26.60 28.71
8 23.20 23.86 23.48 23.94 23.98 23.98

Table 2: PSNR values from reconstruction of eight images
from BSDS500 at three different measurement levels, using
random (Φ0) and coherence-optimized sensing (Φ̃) matrices.

and δ4 for the original and optimized dictionaries, for a small
set of designed matrices, can be found in Table 1.

We observe that contrary to the expected behaviour [4–
7], the minimization (3) may lead to an increase in mutual
coherence or RIC values (see Table 1 for instances). These
observations are frequent – for a set of 200 random seeds,
49% of the optimized matrices show anomalies in µmax and
40% in δs. However, since descending on µavg even in the
above anomalous cases offers better reconstruction (see Table
2), we demonstrate examples where a decrease in µmax or
δs does not guarantee better reconstruction errors, and hence
these cannot be a reliable metric for our setup.

Relaxing the `∞ norm is a heuristic because (2) refers
only to µmax, not µavg. To the best of our knowledge, there
are no theoretical performance bounds on CS with µavg. Even
though using µmax or RIC directly (as in [9, 10, 27–29]) is
theoretically sound, the anomalous results say that minimiz-
ing these quantities may not yield an improvement in terms of
reconstruction error. The worst-case bound (2) fails to capture
the general behaviour of recovery errors as the sensing ma-
trix changes. A way to capture this behaviour is minimizing
average-case errors, which is the subject of the next section.



4. MMSE-BASED DESIGN

In this section, we describe our design method considering (a)
a statistical model representing natural image patches and (b)
statistical properties of noise in compressive measurements.

4.1. Modeling Natural Images

[23] establishes that natural images are well-represented by
Gaussian mixtures on small patches. We assume that images
are composed of non-overlapping patches xi ∈ Rn drawn
from a Gaussian mixture having c components. Each mixture
component is parameterized by its weight πj , n × 1 mean
vector µj and n × n covariance matrix Σj for j = 1 . . . c:
p(x) =

∑c
j=1 πj N (x|µj ,Σj) where N (.) denotes the mul-

tivariate normal distribution. The mixture components can be
learned offline using Expectation Maximization (EM). Note
that unlike [14, 22], which use the average covariance ma-
trix or force zero-mean components, we learn the prior with
unconstrained means and full covariance matrices.

4.2. Piecewise-Linear Estimation and Matrix Design

We exploit prior information on the signal (structured spar-
sity) using the PLE, leveraging strong performance bounds on
estimation with Gaussian mixtures using SCS [21, 22]. The
GMM-based SCS decoder 1 estimates x̂ maximizing the log
posterior: x̂ = arg maxx,j f(x|y, πj ,µj ,Σj), by first com-
puting component-wise linear MAP estimates (Wiener filter):

x̂j = ΣjΦ
T (ΦΣjΦ

T + Ση)−1(y −Φµj) + µj (4)

and then selecting the best (MAP) model ĵ:

ĵ = arg min
j
‖y −Φx̂j‖2Ση

+
∥∥x̂j − µj∥∥2

Σj
+ log |Σj | (5)

where ‖.‖A is the weighed `2 norm with kernel A−1. We can
express our design as a Bayesian A-optimality problem [31]
to minimize MMSE, which is the average prediction variance,
over the design region. For a Gaussian (µ,Σ), estimation
theory [32] says that the MAP decoder (4) is optimal in the
MMSE sense, and the expected errorMΦ = E[‖x− x̂‖22] is
the trace of the error covariance matrix K:

MΦ = trace
{

Σ−ΣΦT (ΦΣΦT + Ση)−1ΦΣ︸ ︷︷ ︸
K

}
(6)

For a GMM prior withMΦ,j defined for each component,

MΦ =

c∑
j=1

πj ·E
[
‖x− x̂‖22 |µj ,Σj

]
=

c∑
j=1

πjMΦ,j (7)

Our minimization problem thus becomes

Φ̂ = min
Φij∈P

c∑
j=1

πjMΦ,j . (8)

1Alternatively, the approximate MAP decoder may also be used [23, 30]

Notice that our constraints inP are on the individual elements
of Φ, not energy constraints as imposed in [16–18, 25].

4.3. Proposed Design Approach

Similar to Section 3.1, we perform multi-start projected gradi-
ent descent with adaptive step size. Computing the gradients
ofM with respect to elements of Φ gives

∂MΦ,j

∂Φρω
= − 1

σ2
η

trace
{

K2
j (Φ

TJρω + JωρΦ)
}

∂MΦ

∂Φρω
=

c∑
j=1

πj ·
∂MΦ,j

∂Φρω

(9)

where Kj is the error covariance matrix of the jth component,
(ρ, ω) are indices in Φ and Jρω is a matrix with indices (χ,
ζ). (Jρω)χζ = δρ−χδω−ζ and δ(.) is the Kronecker delta2.

5. EVALUATION

We evaluate the performance of our method on natural image
datasets. We learn a GMM prior with 100 mixture compo-
nents using MAP-EM3 on a set of 2×104 16×16 patches from
the Berkeley segmentation training data set4 (BSDS500). For
a range of values for m, we seed our algorithm with a [0,
1]-uniform random Φ0, and run it for 100 iterations.

We test on two different datasets – unseen BSDS500 test
data and the INRIA Holidays dataset5 containing natural im-
ages with a similar resolution to BSDS500 and a wide range
of scene complexities. Compressive measurements are then
synthetically made using random as well as designed Φ, with
the noise level set to 1% of the measurements.

We compare our results with results from popular al-
gorithms – coherence-optimized design in [6] (Φ`1

opt) and
uniform random Φ with recovery using the PLE as in [22]
(ΦPLE

rand) – as well as baseline CS recovery with a uniform
random matrix (Φ`1

rand), imposing optical constraints. For
`1 recovery, we solve the BP problem (1) with the 2D-DCT
basis as the sparsifying dictionary using the SPGL1 solver6.

Figure 1 shows the reconstruction results from 12.5%
measurements. The proposed method performs better in
terms of peak signal to noise ratio (PSNR) values, and more
significantly so in terms of visual quality. Reconstruction
using the proposed method also demonstrates significantly
lesser block-seam artifacts (see the zoomed-in rectangle in
red in the mid and bottom images), which is common in most
block-based models. This is consolidated by the PSNR val-
ues from a diverse set of unseen images at 12.5% and 25%
measurements, respectively (see tables 3 and 4)7.
2Please refer to the supplemental material for a proof [34]
3Unoptimized MATLAB code sourced from http://prml.github.io/
4BSDS500: eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
5INRIA Holidays Dataset: lear.inrialpes.fr/ jegou/data.php
6SPGL1 Solver: http://www.cs.ubc.ca/∼mpf/spgl1
7Superior results using 25 mixture components can be found in [34]
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https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
lear.inrialpes.fr/~jegou/data.php
http://www.cs.ubc.ca/~mpf/spgl1


(a) Φ`1
rand (b) Φ`1

opt [6] (c) ΦPLE
rand [22] (d) Proposed Method

Fig. 1: bsds500/test/8068 (top), bsds500/test/10081 (middle) & inria holidays/pippin city66
(bottom) dataset images reconstructed using 12.5% compressive measurements (m = 32). Left to right PSNR:
20.269, 21.089, 22.548, 23.844 (top), 21.57, 22.496, 23.412, 24.844 (middle) and 18.659, 19.289, 20.447, 21.664 (bottom).
Zoom into electronic version for a better view. Refer to the supplemental material for more results.

Table 3: PSNR values from reconstruction of eight images
from BSDS500 at 12.5% measurements (m = 32).

Image # Φ`1
rand Φ`1

opt [6] ΦPLE
rand [22] Proposed

1 18.1798 18.9733 20.1748 21.1772
2 25.1973 25.335 26.5923 27.2622
3 18.3463 18.6617 19.8185 20.9138
4 19.8323 21.0297 21.8075 23.0925
5 17.6444 17.6018 18.7195 19.6204
6 19.9804 19.8052 20.8265 21.5922
7 26.1505 26.6871 27.7679 29.0994
8 21.8317 22.0654 23.4717 24.5041

6. CONCLUSION

We investigated the problem of projection design for com-
pressive sensing with optical constraints. Having seen cases
where average coherence optimization improves recovery
even when mutual coherence or RIC increases, we are con-
vinced that that these may not always be reliable metrics for
sensing matrix design. We then turn to an average-case error-
based design method. We model image patches as drawn
from a Gaussian mixture, a good prior for natural images.
Matrices designed using the proposed method are superior in

Table 4: PSNR values from reconstruction of eight images
from BSDS500 at 25% measurements (m = 64).

Image # Φ`1
rand Φ`1

opt [6] ΦPLE
rand [22] Proposed

1 19.0832 19.9328 20.6108 21.2366
2 25.4462 26.0214 26.8775 27.3121
3 18.7209 19.6227 20.2133 21.0092
4 20.768 21.9571 22.296 23.1672
5 17.9932 18.3577 19.0837 19.7392
6 20.0471 20.2565 21.0641 21.6476
7 26.2 27.382 28.1836 29.223
8 22.5409 23.2168 23.9792 24.6183

terms of recovery error and visual clarity when compared to
random matrices and those designed with average coherence.

We plan to extend this work to other signal priors, for ex-
ample using a Poisson noise model with a Gamma mixture
prior. Using this setup in source separation and estimation
with clutter is being explored. Applications of this method in
other domains like designing optimal trajectories in k−space
for MR acquisition are also being looked into.
Supplemental material: For the authors’ implementation
and additional results, refer to the supplemental material [34].
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