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Here, we sketch a partial proof of the convergence of the solution iterates of Algorithm A1.

1. Convergence of Algorithm A1

While the empirical results show the algorithm working well across a large number of simulated scenarios,

we also characterize the formulation by providing partial theoretical analysis for convergence of the algorithm.

We analyze the convergence of Algorithm A1 (or its modified version) from the main paper under a specific5

condition mentioned further. Let F (δ) denote the Fourier transform computed at the frequencies values

u+ δ where δ = h(β,u). Assign z = {x,β}. Recall that our objective is to determine the solution z∗ that

minimizes the objective function J(z) , ‖x‖1 + λ‖y − F (δ)x‖2, namely z∗ = argminzJ(z).

Let zt = {xt,βt} be the present solution of our alternating search algorithm at iteration t. Our alternat-

ing search algorithm ensures that the sequence of function values {J(zt)}t∈N is monotonically decreasing.10

As J is bounded below by 0, the sequence {J(zt)}t∈N converges to a limit value E ∈ R+ by the monotone

convergence theorem.

However, this does not yet establish the convergence of the solution sequence {zt}. To this end, let x(β)

denote the minimizer for the convex objective function on x with β held fixed, namely x(β) = argminxJβ(x),

where Jβ(x) = J(z) with β held constant. In the context of our alternating search algorithm, we have

xt+1 = x(βt). Letting zt+ 1
2

= {xt+1,βt} we find

‖xt+1‖2 ≤ ‖xt+1‖1 ≤ J
(
zt+ 1

2

)
= Jβt

(xt+1) ≤ Jβt
(0) = λ‖y‖2
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giving an upper bound on the norm of xt. The last but one inequality follows from that fact that xt+1

minimizes Jβt
(x). Further, as −r ≤ βi ≤ r for each i, we see that the sequence {zt}t∈N lie within a

compact space. Hence as per Theorem 4.9 in [1], this sequence has atleast one accumulation point. Another15

statement in the same theorem states that if a certain condition is satisfied, then limt→∞‖zt+1 − zt‖ = 0,

which establishes convergence of the solution. The condition is that for each such accumulation point, the

minimization of J(z) gives (i) a unique solution for x if β is fixed, and (ii) a unique solution for β if x is

fixed.

If the number of measurements M ≥ N (i.e. number of measurements M is greater than or equal to signal20

dimension N), then Condition (i) is easy to satisfy as the problem will be strongly convex in x if β is fixed,

and if the columns of the matrix in F (δ) are linearly independent. The latter condition on F (δ) will hold

with probability 1 if the frequencies are chosen uniformly at random. In the case that M < N , we refer to

Lemma 4 of [2] which establishes uniqueness of the LASSO with probability 1 if the columns of the sensing

matrix are drawn from a continuous distribution. In our case, this requires the frequencies of the columns of25

F (δ) to be drawn uniformly at random. This condition is easy to satisfy because the values in δ (which are

arbitrary real numbers) will leave the columns of F (δ) linearly independent with probability 1. Furthermore,

Lemma 5 of [2] extends the result of uniqueness with probability 1, to cost functions with a differentiable

data fidelity term that is strictly convex in its argument. This is satisfied by J(z) which is based on the

square-root LASSO, since ‖y − F (δ)x‖2 is strictly convex in the argument F (δ)x, even if it is not strictly30

convex in x.

We do not have a proof for Condition (ii), but we have always observed uniqueness in practice, especially

since the values in β are bounded between −r to +r. As an example, in Fig. 1, we show a plot of the

function ‖y − F (δ)x‖2 keeping x and all but one value in δ fixed. Note that here x denotes the estimated

signal value upon (empirically observed) convergence of Algorithm A1. We would like to emphasize that35

Theorem 4.9 in [1] only requires continuity of the function J and no other conditions like biconvexity. Given

the non-convexity of J , global guarantees are very difficult to establish.

References

[1] J. Gorski, F. Pfeuffer, K. Klamroth, Biconvex sets and optimization with biconvex functions: a survey

and extensions, Mathematical Methods of Operations Research 66 (3) (2007) 373–407.40

[2] R. Tibshirani, The LASSO problem and uniqueness, Electronic Journal of Statistics 7 (2013) 1456–1490.

2



Figure 1: Uniqueness of the solution for δ keeping x fixed, where x is the estimated signal at empirically observed convergence

of Algorithm A1.
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