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A Method for Compact Image Representation usin
Sparse Matrix and Tensor Projections onto
Exemplar Orthonormal Bases

Karthik S. Gurumoorthy, Ajit Rajwade, Arunava Banerjee amhnd Rangarajan

Abstract—We present a new method for compact representa- to image compression in [5] and [6]. In [6], the SVD technique
tion of large image datasets. Our method is based on treating is further combined with vector quantization for compressi
small patches from a 2D image as matrices as opposed to theapplications.

conventional vectorial representation, and encoding thespatches . .

as sparse projections onto a set of exemplar orthonormal bas, To_ t,he best of our kr_]OWIedge, the earhe;t technique on
which are learned a priori from a training set. The end result Obtaining acommonmatrix-based representation for a set of
is a low-error, highly compact image/patch representationthat images was developed by Rangarajan in [1]. In [1kirgle
has significant theoretical merits and compares favorably Vth  pair of orthonormal base$/, V) is learned from a set of some
existing techniques (including JPEG) on experiments inveing N images, and each imagg,1 < j < N is represented

the compression of ORL and Yale face databases, as well asb f ‘ectior. to th b . in the
a database of miscellaneous natural images. In the context o y means of a projectiorb; onto these bases, I1.e. |

learning multiple orthonormal bases, we show the easy tundlity ~ form I; = US;VT. Similar ideas are developed by Ye in
of our method to efficiently represent patches of different om- [2] in terms of optimal lower-rank image approximations.
plexitie_s. Furthermore, we showt_hat our method i_s extensieina |n [3], Yang et al. develop a technique named 2D-PCA,
theoretically sound manner to higher-order matrices (tersors’). - \yhich computes principal components of a column-column
We demonstrate applications of this theory to compression fo . - . .
well-known color image datasets such as the GaTech and CMU- covariance m_atrlx of a set of images. In [7], Diegal. present
PIE face databases and show performance competitive with & generalization of 2D-PCA, named as 2D-SVD, and some
JPEG. Lastly, we also analyze the effect of image noise on theoptimality properties of 2D-SVD are investigated. The work
performance of our compression schemes. in [7] also unifies the approaches in [3] and [2], and provides
Index Terms—compression, compact representation, sparse a non-iterative approximate solution with bounded erraht®
projections, singular value decomposition (SVD), higheorder problem of finding the single pair of common bases. In [4], He
singular value decomposition (HOSVD), greedy algorithm,énsor et g, develop a clustering application, in which a single set of
decompositions. orthonormal bases is learned in such a way that projectibns o
a set of images on these bases are neighborhood-preserving.
. INTRODUCTION It is quite intuitive to observe that, as compared to an entir
Most conventional techniques of image analysis treat irmagenage, a small image patch is a simpler, more local entity,
as elements of a vector space. Lately, there has been a stetty hence can be more accurately represented by means of a
growth of literature which regards images as matrices,[2]g. smaller number of bases. Following this intuition, we ct®os
[2], [3], [4].- As compared to a vectorial method, the matrixto regard an image as a set of matrices (one per image patch)
based representation helps to better exploit the spatéloe- instead of using a single matrix for the entire image as in
ships between image pixels, as an image is essentially a tft)}; [2]. Furthermore, there usually exists a great deal of
dimensional function. In the image processing commurtifg, t similarity between a large number of patches in one image
notion of an image has been considered in [5], in the contextar across several images of a similar kind. We exploit this
image coding by using singular value decomposition (SVDfact to learn a small number of full-sized orthonormal bases
Given any matrix, say/ € RM1 <Mz the SVD of the matrix (as opposed to a single set of low-rank bases learned in [1],
expresses it as a product of a diagonal magrigk R >*Mz of [2] and [7], or a single set of low-rank projection vectors
singular values, with two orthonormal matricEsc RM:*M1  |earned in [3]) to reconstruct a set of patches from a trginin
andV € RM:2xMz This decomposition is unique upto a sigrset by means oparseprojections with least possible error.
factor on the vectors off andV if the singular values are all As we shall demonstrate later, this change of focus from
distinct. For the specific case of natural images, it has belearning lower-rank bases to learning full-rank bases hth w
observed that the values along the diagonabddire rapidly sparse projection matrices, brings with itself severatigigant
decreasing, which allows for the low-error reconstructadn theoretical and practical advantages. This is becausentich
the image by low-rank approximations. This property of SVDgasier to adjust the sparsity of a projection matrix in otder
coupled with the fact that it provides the best possible lewemeet a certain reconstruction error threshold than to aétus
rank approximation to a matrix, has motivated its applarati its rank [see Section II-A and Section Il1].
_ _ _ There exists a large body of work in the field of sparse
The authors are with the Department of Computer and Infaam&cience . . . . .
and Engineering, University of Florida, Gainesville, FL632, USA. e-mail: Image representation. COdmg methods which express images
{ksg,avr,arunava,anap@cise.ufl.edu. as sparse combinations of bases using techniques such as the
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discrete cosine transform (DCT) or Gabor-filter bases haits higher-dimensional analog (known as higher-order S¥D o
been quite popular for a long period. The DCT is also an ellOSVD) does not necessarily produce the best lower-rank
sential ingredient of the widely used JPEG image comprassiapproximation of a tensor (see the work of Lathauwer in
standard. These developments have also spurred interesflBj for an extensive development of the theory of HOSVD).
methods thatearn a set of bases from a set of natural imagedevertheless, for the sake of simplicity, HOSVD has been
as well as asparseset of coefficients to represent images imsed to produce lower-rank approximations of dataset®ialb
terms of those bases. Pioneering work in this area has beettheoretically sub-optimal one [13]) which work well in
done in [8], with a special emphasis on learning an ovethe context of applications ranging from face recognition
complete set of bases and their sparse combinations. Semeauraler change in pose, illumination and facial expressioim as
cent contributions in the field of over-complete represigmta [15] by Vasilescu and Terzopoulos (though in that particula
include the work in [9] by Aharoet al., which encodes image paper, each image is still represented as a vector) to dgnami
patches as a sparse linear combination of a set of dictionéexture synthesis from gray-scale and color videos in [36] b
vectors (learned from a training set). An important featfre Costantiniet al. In these applications, the authors demonstrate
all such learning-based approaches (as opposed to thdse tie efficacy of the multilinear representation in accoumtin
use a fixed set of bases such as DCT) is their tunability tor variability over several different modes (such as pose,
datasets containingspecifictype of images. In this paper, weillumination and expression in [15], or spatial, chromatitd
develop such a learning technique, but with the key diffeeentemporal in [16]), as opposed to simple vector-based image
that our technique is matrix-based, unlike the aforemewetio representations.
vector-based learning algorithms. The main advantage of ou An iterative scheme for a lower-rank tensor approximation
technique is as follows: we learn a small number of pairs &f developed in [13], but the corresponding energy function
orthonormal bases to represent ensembles of image patciesusceptible to the problem of local minima. In [12], two
Given any such pair, the computation of a sparse projectioew lower-rank approximation schemes are designed: adslose
for any image patch (matrix) with least possible reconsitonc form solution under the assumption that the actual tensit ra
error, can be accomplished by means of a very simple aeduals the number of images (which usually may not be true
optimal greedy algorithm. On the other hand, the computatiin practice), or else an iterative approximation in othesesa
of the optimal sparse linear combination of an over-congplef\lthough the latter iterative algorithm is proved to be cenv
set of basis vectors to represent another vector is a wellvkn gent, it is not guaranteed to yield a global minimum. Wang and
NP-hard problem [10]. We demonstrate the applicability o&huja [17] also develop a new iterative rank-R approxinratio
our algorithm to the compression of databases of face imagesheme using an alternating least-squares formulatiod, an
with favorable results in comparison to existing approachelso present another iterative method that is speciallgdun
Our main algorithm on ensembles of 2D images or imader the case of third-order tensors. Very recently, Dieg
patches, was presented earlier by us in [11]. In this paper, al. [18] have derived upper and lower bounds for the error
present more detailed comparisons, including with JPE@, adue to low-rank truncation of the core tensor obtained in
also study the effect of various parameters on our methddQSVD (which is a closed-form decompoaosition), and use this
besides showing more detailed derivations of the theory. theory to find asingle common triple of orthonormal bases
In the current work, we bring out another significanto represent a database of color images (represented as 3D
extension of our previous algorithm - namely its elegadrrays) with minimal error in thé; sense. Nevertheless, there
applicability to higher-order matrices (commonly and ulsua is still no method of directly obtaining theptimal lower-
mistakenly termed tensofg, with sound theoretical founda-rank tensor approximation which is non-iterative in nature
tions. In this paper, we represent patches from color imagegrthermore, the error bounds in [18] are applicable onlgmvh
as tensors (third-order matrices). Next, we learn a sméfie entire set of images is coded using a single common triple
number of orthonormal matrices and represent these patchéorthonormal bases. Likewise, the algorithms presented i
as sparse tensor projections onto these orthonormal mstri¢17] and [12] also seek to find singlecommon basis.
The tensor-representation for image datasets, as suclot is n The algorithm we present here differs from the aforemen-
new. Shashua and Levin [12] regard an ensemble of grdipned ones in the following ways: (1) All the aforementidne
scale (face) images, or a video sequence, as a single thirtethods learn a common basis, which may not be sufficient
order tensor, and achieve compact representation by méantocaccount for the variability in the images. We do not learn a
lower-rank approximations of the tensor. However, quitiken single common basis-tuple, butsatof someK orthonormal
the computation of the rank of a matrix, the computatiopases to represent some patches in the database of images,
of the rank of a tenséris known to be an NP-completewith each image and each patch being represented as a higher-
problem [14]. Moreover, while the SVD is known to yieldorder matrix. Note thak is much less thaiv. (2) We do not
the best lower-rank approximation of a matrix in the 2D casegek to obtain lower-rank approximations to a tensor. Rathe
we represent the tensor as a sparse projection onto a chosen
1A N; x N matrix is a tensor only when it is expressly characterized astuple of orthonormal bases. This sparse projection, as @k sh
multilinear function fromV; ® V; to R whereV; andV; are N;-dimensional later on show, turns out to be optimal and can be obtained

and Nz-dimensional vector spaces respectively. by a very simple greedy algorithm. We use our extension for
2The rank of a tensor is defined as the smallest number of raeksors thy y pf 9 y .g i .d tab f | .
whose linear combination gives back the tensor, with a tebsing of rank-1 1€ PUrpose Or compression of a database Or color Images,

if it is equal to the outer product of several vectors [13]. with promising results. Note that this sparsity based aggino
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has advantages in terms of coding efficiency as comparedlifo= {(i,j)|W;; = 0} and I, = {(i,5)|W;; # 0}. Then
methods that look for lower-rank approximations, just as in= 3", ..y, S5+ > syer, (Sij — Wij)?. This error will be

the 2D case mentioned before. minimized whenS;; = W;; in all locations wherd¥V;; # 0
Our paper is organized as follows. We describe the theampd W;; = 0 at those indices where the corresponding values
and the main algorithm for 2D datasets in Section Il. Section S are as small as possible. Thus if we Wit ||o = T', then

[l presents experimental results and comparisons witktiexj 17 is the matrix obtained by nullifying:; ms—T entries from
technigques. Section IV presents our extension to highéeror S that have the least absolute value and leaving the remaining
matrices, with experimental results and comparisons iti@ec elements intadil

V. We conclude in Section VI. Hence, the problem of finding an optimal sparse projection
of a matrix (image patch) onto a pair of orthonormal bases,
. THEORY: 2D IMAGES is solvable inO(mims(m1 + m2)) time as it requires just

. NS i
Consider a set of images, each of siz& x M. We two matrix mulﬂplpaﬂonsﬁ .U PV). On.the other hanq,

- : . . . the problem of finding the optimal sparse linear combination
divide each image into non-overlapping patches of sizex . :

f an over-complete set of basis vectors in order to reptesen
mo,my < M1, ms < Ms, and treat each patch as a separate ; . . )
matrix. Exploiting the similarity inherent in these patshee another vector (i.e. the vectorized form of an image pateh) i

- =XP 9 y P well-known NP-hard problem [10]. In actual application$, [9

effectively represent them by means of sparse projectiatts o . .
; : approximate solutions to these problems are sought, by snean
(appropriately created) orthonormal bases, which we call a

‘exemplar bases’. We learn these exemprsriori from a of pursuit algorithms such as OMP [20]. Unfortunately, the
P : P .quality of the approximation in OMP is dependentBnwith

set of training image patches. Before describing the legrni n upper bound on the error that is directly proportional to

procedure, we first explain the mathematical structure ef tﬁlé1 T 6T [see [21], Theorem (C)] under certain conditions

exemplars. Similar problems exist with other pursuit approximation al

gorithms such as Basis Pursuit (BP) as well [21]. For large

A. Exemplar Bases and Sparse Projections values ofT, there can be difficulties related to convergence,
Let P € R™*™2 be an image patch. Using singular valudvhen pursuit algorithms are put inside an iterative optatian

decomposition (SVD), we can represdftas a combination |00p. Our technique avoids any such dependencies.

of orthonormal base$/ € R™>*™ andV € R™2*™2 in

the form P = USVT, whereS € R™*™ is a diagonal _

matrix of singular values. Howeve? can also be represented®: L€arning the Bases

as a combination oény set of orthonormal bases andV, The essence of this paper lies in a learning method to pro-

different from those obtained from the SVD dt. In this ducek exemplar orthonormal basé¢U,,V,)}, 1 < a < K,

case, we have® = USVT where S turns out to be aon- g encode a training set d¥ image patches; € R™ixm:

diagonal matrix 3. Contemporary SVD-based compressiofy < ; < N) with least possible error (in the sense of the

methods leverage the fact that the SVD provides thelb@st norm of the difference between the original and reconsdict

rank approximation to a matrix [6], [19]. We choose to depagiatches). Note thak < N. In addition, we impose a sparsity

from this notion, and instead answer the following questio@onstraint that eveng;, (the matrix used to reconstrudt,

What sparsematrix W € R™**™2 will reconstructP from  from (U,,V,)) has at mostl’ non-zero elements. The main
a pair of orthonormal base§ and V' with the least error gpjective function to be minimized is:

|P—UWVT|?? Sparsity is quantified by an upper boufid
on theLy norm of W, i.e. on the number of non-zero elements
in W (denoted a{ W ||o)*. We prove that theptimal W with
this sparsity constraint is obtained by nullifying the leén
absolute valuey,mo,—T elements of the estimated projectio

N K
E({Ua; VavsiavMia}> = ZZMZGHPZ - l:]aSiaV;LT”2 (1)

i=1a=1

psubject to the following constraints:

matrix S = UT PV. Due to the ortho-normality of/ andV/, W) UTU, = VIV, = I,Ya. (2) |Siallo < T,¥(i,a).
this simple greedy algorithm turns out to be optinze we ) ]
orove below:. (3) Y Miq = 1,Vi and M;, € {0,1},Vi,a. (2)

Theorem 1: Given a pair of orthonormal bas€¢#/, V), the . _ _ _ o
optimal sparse projection matri¥’ with |W|l, = 7T is HereM;, is a binary matrix of sizeV x K which indicates

obtained by setting to zerm;m, — T’ elements of the matrix Whether the*" patch belongs to the space defined by, V).
S = UT PV having least absolute value. Notice that we are not trying to use a mixture of orthonormal
Proof: We have P = USVZ. The error in reconstructing bases for the projection, but just project onto a singleasist
a patch P using some other matri¥V is ¢ = ||U(S — basig pa?r in.st_ead. The op.timi;ation of 'Fhe above energy
WHYVT|2 = ||S — W|? asU and V are orthonormal. Let function is difficult, asM;, is binary. A simple K-means
will lead to local minima issues, and so we relax the binary
3The decomposition® = USVT exists for anyP even if U and V. membership constraint so that nod;, € (0,1),V(:,a),
are not orthonormal. We still follow ortho-normality coraitits to facilitate subject IOZK, M;, = 1, Vi. The naive mean field theory line
optimization and coding. See section II-C and IlI-B. a=1 L .
4See section Ill for the merits of our sparsity-based approager the of deveIOpmem culmlnatlng in [22]’ (W'th much of the theory
low-rank approach. developed already in [23]) leads to the following deteristici
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annealing energy function: V, follows along the same lines. The membership values are
N K obtained by:
E({Ua, Va, Sias Mia}) = Y Y Mia||P; = UaSia V|| + e~ BIP~UaSiu VT2
=1 a=1 Mi (8)

K e BIPUSa VT

1
B ;Mm log Mia + Z;Mza: Mia = 1)+ The matrices{S;., U, V,} and M are then updated sequen-
tially following one another for a fixed value, until conver-
ZtrvaAla(UaTUa =]+ ZtrvaAQG(VaTV“ — ). gence. The value off is then increased and the sequential
¢ ¢ ©) updates are repeated. The entire process is repeated mintil a
integrality condition is met.
Note that in the above equatiody;} are the Lagrange Qur algorithm could be modified to learn a set of orthonormal
parameters{Ai,, A2, } are symmetric Lagrange matrices, anflases (single matrices and not a pair) for sparse represen-
§ a temperature parameter. tation of vectorized images, as well. Note that even then,

We first initialize {U,} and {V,} to random orthonormal our technique should not be confused with the ‘mixtures of
matricesVa, and M;, = % Y(i,a). As {U,} and {V,} are PCA approach [24]. The emphasis of the latter is again on

orthonormal, the projection matri;, is computed by the low-rank approximations and not on sparsity. Furthermore,
following rule: in our algorithm we do not compute an actual probabilistic

T mixture (also see Sections II-C and llI-E). However, we have
Sia = Uq PiVa. (4)  not considered this vector-based variant in our experiment

Note that this is the solution to the least squares energ§cause it does not exploit the fact that image patches are
function || P, — U, S;o VT ||2. Thenmymy — T elements inS,;, Wo-dimensional entities.

with least absolute value are nullified to get the best sparse
projection matrix. The updates 1@, andV, are obtained as ]
follows. Denoting the sum of the terms of the cost function OUr framework is geared towards compact bmw-error

in Egn. (1) that are independent bf, asC, we rewrite the patch reconstruction. We are not concerned withdiserim-
cost function as follows: inating assignment of a&pecific kindof patches to apecific

N K exemplar, quite unlike in a clustering or classification lapp
, 1) — I _ T2 cation. In our method, after the optimization, each tragnin
E({Ua, Va: Sia; Mia}) _;;M’“HB UaSiaVa 17+ patch P, (1 < i < N) gets represented as a projection
7 onto one out of theK exemplar orthonormal bases, which
Ztrace{Ala(Ua Ua = D]+ C produces the least reconstruction error, i.e. ke exemplar
“ is chosen if||P; — UpSi . ViT||? < ||P; — UaSia V.||, Va €
{1,2,..,K},1 < k < K. For patchP;,, we denote the
corresponding ‘optimal’ projection matrix a$ = S;;, and
the corresponding exemplar &8, V*) = (U, V). Thus
> _tracdAia(UgUs = DI+ C e entire training set is approaximated) by (1) temmonset
“ of basis-pairs{(U,, Va)},1 < a < K (K < N), and (2) the
optimal sparse projection matricéS*} for each patch, with at
mostT non-zero elements each. The overall storage per image
T T is thus greatly reduced (see also section 11I-B). Furtheano
+trace S, Sia)] + Ztrace(Ala(Ua Us=1)+C. these base$(U,,V,)} can now be used to encode patches
“ (5) from a new set of images that are somewhat similar to the ones
existing in the training set. However, a practical applaat
Now setting derivatives w.r.tlU, to zero, re-arranging the demands that the reconstruction meet a specific error thigsh
terms and eliminating the Lagrange matrices, we obtain tbﬁ unseen patchesl and hence thenorm of the projection
following update rule for/,: matrix of the patch is adjusted dynamically in order to mbet t
Z1a = Z M, PV,ST U, Z1a(ZlTaZ1a)7%- 6) error. Experimental results using such a scheme are dedcrib

Application to Compact Image Representation

N K
=3 Mi,tracdP; — UaSia V') (P, = UaSiaV,)))+

i=1 a=1

K
Z M, [tracd P! P;) — 2tracd P U,S;,V.l)

a=1

I
M=

K2

Il
_

tar =@ in the next section.

An SVD of Zy, will give us Z;, = ', %7, whereT, Il. EXPERIMENTS 2D IMAGES
andY, are orthonormal matrices anldis a diagonal matrix.  In this section, we first describe the overall methodology
Using this, we can re-writ&, as follows: for the training and testing phases of our algorithm based on

1 our earlier work in [11]. As we are working on a compression
Us = (10 WT7,) (M1 ¥ 1) " (P1a®Y,)) "2 = T1a T, application, we then describe the details of our image apdin

) and quantization scheme. This is followed by a discussion of
Notice that the steps above followed only owing to the fathe comparisons between our technique and other competi-
thatU, and hencd';, and Y, were full-rank matrices. This tive techniques (including JPEG), and an enumeration of the
gives us an update rule féf,. A very similar update rule for experimental results.
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A. Training and Testing Phases in its .S* matrix, usingas bits per location and); + @2 bits

We tested our algorithm for compression of the entire ORIOT the value, and (3) the number of non-zero elements per
database [25] and the entire Yale database [26]. We divited Patch encoded usings bits. Hence the total number of bits
images in each database into patches of fixed gizex(12), Per pixel for the whole image is given by:
and these sets of patches were segregated into ftraining and _ N(ai +a3) + T"""%(a2 + Q1 + Q2)
test sets. The test set consisted of many more images than the ZPP = M, . (10
training set, in the case of either database. For the purpose
of training, we learned a total ok — 50 orthonormal bases Where Tl¢ = S~ |S¥||,. The values ofa1, a> and as
using a fixed value of" to control the sparsity. For testing, wewere obtained by Huffman encoding.
projected each patck; onto that exemplatU}, V;*) which After performing quantization on the values of the coeffitse

(2

produced thesparsestprojection matrix S} that yielded an in S;°, we obtained new quantized projection matrices, denoted

average per-pixel reconstruction errgw of no @asS;. Following tt:zif;[ Ege PSNR for each image was measured
more than some choseh Note that different test patchesdS 1010810 s 2 5y @nd then averaged over the
required differentT” values, depending upon their inherengntire test set. The average number of bits per pixel (RPP)
‘complexity’. Hence, we varied the sparsity of the projenti Was calculated as in Eqn. (10) for each image, and then
matrix (but keeping its size fixed t02 x 12), by greedily averaged over the whole test set. We repeatgd this procedure
nullifying the smallest elements in the matrix, withoutileg for differentd values from8 x 107 to 8 x 10~* (range of

the reconstruction error go abo¥eThis gave us the flexibility image intensity values wa$, 1]) and plotted an ROC curve

to adjust to patches of different complexities, withouediig Of average PSNR vs. average RPP.

the rank of the exemplar bas€®/*,V*). As any patch

P; is projected onto exemplar orthonormal bases that are

different from those produced by its own SVD, the projection

matrices turn out to be non-diagonal. Hence, there is

such thing as a hierarchy of ‘singular values’ as in ordina

ShVD' A.S a result, we car:jno; rest;) t :}0 restLictin*g th*e rank of \ye pitted our method against four recent and competitive
the projection matrix (and thereby the rank (@f;, Vi) to approaches: (1) KSVD, (2) overcomplete DCT, (3) SSVD and
adjust for patches of different compIeX|t_y (unless we learn (4) the JPEG standard. (1) For the KSVD algorithm from
separate sgt ok bases, eha}crr]l set flc&r a dllﬁerrt]ent ra@kvhere d[9], we used 441 unit norm dictionary vectors of size 144.
1< rh< .m'n(ml’”é?)’ whic SWOl_J maBe the tra|n|bng and|y this method, each patch is vectorized and represented as
even t_e Image coding [see Section |Il-B] very cumbersom 'sparse linear combination of the dictionary vectors. mgri
This highlights an advantage of our approach over that Faining, the value ofl is kept fixed, and during testing it

algorithms that adjust the rank of the projection matrices. is dynamically adjusted depending upon the patch so as to
meet the appropriate set of error thresholds representéd=by
B. Details of Image Coding and Quantization [8 x 1075, 8 x 10~3]. For the purpose of comparison between
We obtainS} by sparsifyingU;T P,V*. AsU; andV;* are our method and KSVD, we used the exact same values of
orthonormal, we can show that the valuesdh will always andé as in our algorithm, to facilitate a fair comparison. The
lie in the range—m, m] for m x m patches, if the values of method used to find the sparse projection onto the dictionary
P; lie in [0,1]. This can be proved as follows: We know thawas the orthogonal matching pursuit (OMP) algorithm [21].
Sr = U;TPL-V,L-*. Hence we write the element 6f in thegt” (2) We created the over-complete DCT dictionary with 441
row anddt” column as follows: unit norm vectors of size 144 by sampling cosine waves of
. T . 1 1 various frequencies, again with the saiealue as for KSVD,
Stap =Y UfarnPiaVig <> ﬁpiklﬁ =m.  (9) and using the OMP technique for sparse projection. (3) The
k.l kl SSVD method from [19] is not a learning based technique. It is
The first step follows because the maximum valueSgf, based on the creation of sub-sampled versions of the image by
is obtained when all values df?”, are equal to,/m. The fraversing the image in a manner different from usual raster
second step follows becausg , will meet its upper bound scanning. (4) For the JPEG standard (for which we used the
when all them? values in the patch are equal to 1. We calinplementation provided in MATLAB’), we measured the
similarly prove that the lower bound ofif,, is —m. As in RPP from the number of bytes for storage of the file.
our casen = 12, the upper and lower bounds a#el2 and For KSVD and over-complete DCT, there exist bounds on
—12 respectively. the values of the coefficients that are very similar to those
In our experiment, we Huffman-encoded the integer parts fufr our technique, as presented in Eqgn. (9). For both these
the values in thg 57} matrices over the whole image (givingmethods, the RPP value was computed using the formula in
us an average of som@; bits per entry) and quantized the[9], Eqn. (27), with the modification that the integer parts
fractional parts with@2 bits per entry. Thus, we needed tmf the coefficients of the linear combination were Huffman-
store the following information per test-patch to create thencoded and the fractional parts separately quantizedt (as i
compressed image: (1) the index of the best exemplar, usijgyve a better ROC curves for these methods). For the SSVD
ay bits, (2) the location and value of each non-zero elememiethod, the RPP was calculated as in [19], section (5).

?;. Comparison with other techniques:
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45 ORLPSNRVSRPPIT = 10 Yale: PSNRvs RPP; T=3 Method Dictionary Size (number of scalar$)
w0 o Our Method 50 x 2 x 12 x 12 = 14400
. KSVD 441 x 12 x 12 = 63504
g £ Overcomplete DCT] 441 x 12 x 12 = 63504
a 3o — urMetho Q. 30 —
DU PV D v TABLE |
25 S e 2 o et oe COMPARISON OF DICTIONARY SIZE FOR VARIOUS METHODS FOR
2 —~(5) JPEG —(5) JPEG EXPERIMENTS ON THEORL AND YALE DATABASES.
2 4 6 0 05 1 15
RPP RPP
@ (b)
Variance in RPP vs. error: ORL Database ORL: PSNR vs. RPP, Diff. Patch Size ORL: PSNR vs RPP; Diff. Values of T
40
35]
24
530
R T T T B R o ——8X8withT=5 —T=5
EEEE 2 ——12X12 with T = 14 T =1
- 15X15 with T = 1§ - T=
(C) 20X20 wl:hT:ZC L:a
Fig. 1. ROC curves on (a) ORL and (b) Yale Databases. Legerd- (R): % T gép B 4 408
Our Method, Blue (2): KSVD, Green (3): Over-complete DCTa&d (4):
SSVD and (5): JPEG (Magenta). (c) Variance in RPP versugjpagtization @

error for ORL.These plots are viewed best in color . . )
Fig. 3. ROC curves for the ORL database using our techniquk (@)

different patch size and (b) different value @f for a fixed patch size of
Original Error 0.003 Error 0.001 12 x 12. These plots are viewed best in color

illumination conditions. The ROC curves for our method were
superior to those of other methods over a significant range
of ¢, for the ORL as well as the Yale database, as seen in
Figures 1(a) and 1(b). Figure 2 shows reconstructed vession
of an image from the ORL database using our method with
different values of§. For experiments on the ORL database,
the number of bits used to code the fractional parts of the
coefficients of the projection matrices [i.€2 in Egn. (10)]
was set to 5. For the Yale database, we often obtained pre-
Fig. 2. Reconstructed versions of an image from the ORL datalusing quantizaﬁ_on errors significantly less t_han the C_hOQE'anq

5 different error values. The original image is on the exeeleft and top hence using a value @), less than 5 bits often did not raise
corner. Viewed better by ZOOMING into the pdf file. the post-quantization error abo¥eKeeping this in mind, we

varied the value o), dynamically, for each pre-quantization
error value. The same variation was applied to the KSVD and
D. Results over-complete DCT techniques as well. For the experiments

For the ORL database, we created a training set of patct?é‘sthese two databases, we al_so summarize _the dictionary siz
of size 12 x 12 from images of 10 different people, with Of all the relevant methods being compared in Table I.
10 images per person. Patches from images of the remaining
30 people (10 images per person) were treated as the festEffect of Different Parameters on the Performance of our
set. From the training set, a total of 50 pairs of orthonormblethod:
bases were learned using the algorithm described in SectiorThe different parameters in our method include: (1) the
[I-B. The T value for sparsity of the projection matricessize of the patches for training and testing, (2) the number
was set to 10 during training. As shown in Figure IlI-D(c)of pairs of orthonormal bases, i.é&, and (3) the sparsity
we also computed the variance in the RPP values for evesfyeach patch during training, i.€. In the following, we
different pre-quantization error value, for each imagehe t describe the effect of varying these parametersPéth Size:
ORL database. Note that the variance in RPP decreases wWfitthe size of the patch is too large, it becomes more and more
increase in specified error. This is because at very low grroanlikely that a fixed number of orthonormal matrices willvser
different images require different number of coefficients ias adequate bases for these patches in terms of a low-error
order to meet the error. sparse representation, owing to the curse of dimensignalit

The same experiment was run on the Yale database wittrarthermore, if the patch size is too large, any algorithrh wi
value of " = 3 on patches of siz&2 x 12. The training set lose out on the advantages of locality and simplicity. Hosvev
consisted of a total of 64 images of one and the same persbthe patch size is too small (sa&yx 2), there is very little a
under different illumination conditions, whereas the itest compression algorithm can do in terms of lowering the number
set consisted of 65 images each of the remaining 38 peopfebits required to store these patches. We stress that thk pa
from the database (i.e. 2470 images in all), under differesize as a free parameter is something commati talgorithms

Error 0.0005 Error 0.0003
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to which we are comparing our technique (including JPEG) CVG: RPP vS PSNR, T, = 10

Also, the choice of this parameter is mainly empirical. W 35
tested the performance of our algorithm with = 50 pairs % —

of orthonormal bases on the ORL database, using patches . '

size8 x 8, 12 x 12, 15 x 15 and 20 x 20, with appropriately T

different values off’. As shown in Figure 3(a), the patch size

of 12x 12 usingT = 10 yielded the best performance, thougt =5+ =5+ = e

other patch sizes also performed quite well. {2 number @ b)

of orthonormal based<: The choice of this number is not

critical, and can be set to as high a value as desired without
. . Fig. 4. PSNR vs. RPP curve for our method and JPEG on (a) the CVG

affecting the accuracy of the results. This parameter $howanada database and (b) the UCID database.

not be confused with the number of mixture components in

standard mixture-model based density estimation, because R -

s

our method each patch gets projected only ontingle set
of orthonormal bases, i.e. we do not compute a combination
of projections onto all theK different orthonormal basis T
pairs. The only down-side of a higher value &f is the @ ()
added computational cost during training. Again note th&t t rig 5. (a) and (b): Training images from the CVG Granadaliista. (c) to
parameter will be part of any learning-based algorithm fge): Reconstructed versions of a test image for error vai€s0002, 0.0006
compression that uses a set of bases to express image patéfe$-002 respectively. Viewed better by ZOOMING in the pt. fi

(3) The value ofl" during training: The value ofT is fixed
only during training, and is varied for each patch during the

testing phase so as to meet the required error thresholdryA Ve Figure IlI-F. To test the effect of minute noise on the

. . - erformance of our algorithm, a similar experiment was run
high value ofT' during training can cause the orthonorm . - .
. : , - . on the UCID database [28] with a training set of 10 images
basis pairs to overfit to the training data (variance), wagre - .
i .. and the remaining 234 test images from the database. The
a very low value could cause a large bias error. This is

) . . ?gst images were significantly different from the ones used f
instance of the well-known bias-variance tradeoff common [ . . .

. . . . L raining. The images were scaled down by a factor of two
machine learning algorithms. Our choice’Bfwas empirical,

thouah the value of — 10 performed very well on nearlv all (i.e. 10320 x 240 instead of640 x 480) for faster training and
9 =up y y subjected to zero mean Gaussian noise of variance 0.001 (on

the datasets we ran our experiments on. The effect of differe . ) s
. scale from 0 to 1). Our algorithm was yet again competitive
values of 7" on the compression performance for the ORL . -

tth JPEG as shown in Figure 4(b).

database is shown in Figure 3(b). We again emphasize tha
the issue with the choice of an ‘optimal’ is not an artifact ] . )
of our algorithmper se For instance, this issue of a choicé>- Comparison with Wavelet Coding
of T will also be encountered in pursuit algorithms to find In this section, we present experiments comparing the
the approximately optimal linear combination of unit vesto performance of our method with JPEG2000 and also with a
from a dictionary. In the latter case, however, there widloal wavelet-based compression method involving a very simple
be the problem of poorer and poorer approximation errogsiantization scheme that employs Huffman encoding, simila
asT increases, under certain conditions on the dictionary tf the quantization scheme we employed for our technique. We
overcomplete basis vectors. would like to emphasize that JPEG2000 is an industry stahdar
that was developed by several researchers for over a decade.
Its strongest point is its superlative quantization andoding
scheme, rather than the mere fact that it uses wavelet bases
We performed additional experiments to study the behavif@9]. On the other hand, a wavelet-coding method employing
of our algorithm when the training and test sets were vesy much simpler quantization scheme (similar to the one we
different from one another. To this end, we used the databased in our technique) performs quite poorly in practice¢mu
of 155 natural images (in uncompressed format) from thveorse than JPEG), with one of its major problems being that
Computer Vision Group at the University of Granada [27there are no bounds that can be imposed on the values of the
The database consists of images of faces, houses, natwaalelet coefficients in terms of the image intensity range or
scenery, inanimate objects and wildlife. We converted gllatch size. In our experiments, the typical range of coefiici
the given images to grayscale. Our training set consistedwaflues turned out to be arouri®*. As opposed to this, the
patches (of sizel2 x 12) from 11 images. Patches fromvalues of the coefficients of the projected matrices in our
the remaining images were part of the test set. Though tteehnique are (provably) bounded betweem and +m for
images in the training and test sets were very different, opatch sizes ofn x m (as shown in Section (3B)).
algorithm produced excellent results superior to JPEG apto In our wavelet coding strategy, we performed a decompasitio
RPP value of 3.1 bits, as shown in Figure 4(a). Two trainingf upto four levels (level 1 giving us higher RPP and higher
images and reconstructed versions of a test image for erRBNR, and level 4 giving us low RPP and low PSNR).
values of 0.0002, 0.0006 and 0.002 respectively, are showor any decomposition, the LL sub-band coefficients (also

F. Performance on Random Collections of Images
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called the approximation coefficients) of the final level gver
never thresholded. The integer parts of these coefficients
were Huffman encoded (just as in our technique) and 4 bits
were allocated for the fractional part. Having more bits for
the fractional part did not improve the ROC curves in our
experiments. The coefficients of the other sub-bands (HH,
HL, LH) at every level were thresholded using the commonly
employed Birge-Massart strategy (part of the compression
implementation in the MATLAB wavelet toolbox). Different
thresholds were used for each subband at each level. Again,
the thresholded values were coded using Huffman encoding on
the integer part followed by 4 bits for the floating point. The
specific type of wavelet that we used was ‘sym4’ as it gave
better performance than other wavelets that we tried (sach a
‘db7’, biorthogonal wavelets etc).

We performed experiments comparing the compression perfor © )
mance of the following four techniques: our method, JPEG,
JPEG2000 (the specific implementation being the commonly
available Jasper package [30]), wavelet methods using4sym
followed by a simple quantizer (as decribed earlier). InuFéy

6, we show results on ORL and Yale databases. For the ORL
database, we also present results with db7 and biorthogonal
wavelets. As these performed much worse than sym4, we do
not show more results with them. As seen in Figure 6 (a) and
(b), our method as well as JPEG (using DCT) outperformed (e) ®

the simple wavelet based techniques though not JPEGZOQIQ_. 6. PSNR vs. RPP curve for our method, JPEG, JPEG2000PERS
Note that there are other reports in the literature [31] thahd wavelet coding with ‘sym4’ wavelets on (a) ORL Database ¢) Yale
indicate a superior performance of JPEG over wavelet-baé%;;iéa\?;?aen(cve\gtg Tgﬁqoi?;)-ag g;dw(i?giii\évigejlijds g;uiﬂggegﬁgﬁg ezrirgnd
methods that did not use sophisticated quantizers, eweCiSariancem*B. Image’ are best vi.ewed by ZOOMING into the pdf file.

for higher bit rates.

Thus we believe that our results will improve further if

a more sophisticated quantizer/coder is used in conjumctigxtension to higher dimensions is non-trivial, especiglisen
with bases learned by our method. The improvement of tiigat a key property of the SVD in 2D (namely that SVD
quantization scheme for our technique is well beyond thfovides the optimal lower-rank reconstruction by simple
scope of the current paper. Nevertheless, we observedw#atrullification of the lowest singular values) does not extend
performance of our technique was competitive with JPEG20fflo higher-dimensional analogs such as HOSVD [13]. In
for low bit rates, when negligible amounts of noise (i.i.ér@ the following, we now describe the mathematical structure
mean Gaussian noise of variartce10~* or 10~%) were added of the exemplars. Note that though the derivations pregente
to the images. It should be noted that the visual effect ohsu this paper are for 3D matrices, a very similar treatment
small amounts of noise is not obvious to the human eye. At applicable to learning:-tuples of orthonormal bases for
lower bit rates, we observed that our method sometimes bgatches fromn-D matrices (Where: > 4).
JPEG2000. This is despite the fact that nsened our method
on noiseless images, and tested on noisy imaayes.the size o
of the test size waseveral times larger than the size of thd": EXemplar Bases and Sparse Projections
training set The results of our method, JPEG, JPEG2000 andLet P € R™*™2%™s pe an image patch. Using HOSVD,
wavelet coding with sym4 wavelets are shown in Figure 6(gJe can represenf as a combination of orthonormal bases
to (f), for two levels of noise on the ORL and Yale database§. € R™'*™, V € R"™>™2 and W € R™3*™s in the
form P = S x1 U x2 V x3 W, whereS € RM1*™m2xms jg
termed the core-tensor. The operatargefer to tensor-matrix
multiplication over different axes. The core-tensor hascél

We now consider a set of images represented as third-orgdeoperties such as all-orthogonality and ordering. Segffr3
matrices, each of siz&l; x My x M3. We divide each image more details. NowP can also be represented as a combination
into non-overlapping patches of size; x my x ms,m; < of anyset of orthonormal basds, V and W, different from
My, me < Ms, m3 < M3, and treat each patch as a separathose obtained from the HOSVD df. In this case, we have
tensor. Just as before, we start by exploiting the simylaritP = S x; U x V x3 W whereS is not guaranteed to be an
inherent in these patches, and represent them by meanslbbrthogonal tensor, nor is it guaranteed to obey the rimde
sparse projections onto a triple of exemplar orthonormsaéba property.
learned from a set of training image patches. Note that ourAs the HOSVD does not necessarily provide the best

(b)

IV. THEORY: 3D (OR HIGHER-D) IMAGES
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rank approximation to a tensor [13], we choose to depamost7 non-zero elements. The main objective function to be
from this notion (instead of settling for a sub-optimal appr minimized is:
imation), and instead answer the following question: What
sparsetensor@ € R™ *™2x™3 will reconstructP from a N K
triple of orthonormal base$U,V, W) with the least error
[P —Q x1 U xo V x3 W|?? Sparsity is again quantified DD Mial|Pi = Sia X1 Ua X2 Va X3 Wal? (11)
by an upper bound’ on the L, norm of Q (denoted as i=la=1
[Qllo). We now prove that theptimal Q with this sparsity Subject to the following constraints:
constraint is obtained by nullifying th_e least (in a_bsqlmlue) @ UTU, = VIV, = WIW, = I,¥a. (2) ||Siallo < T,V(i, a).
mimemg — T elements of the estimated projection tenso
S = P x, U7 x3 VT x5 WT. Due to the ortho-normality (3>2Mm =1,Vi, and M;, € {0,1}, Vi, a.
of U, V andW, this simple greedy algorithm turns out to be a

. (12)
optimal (see Theorem 2).
Theorem 2: Given a triple of orthonormal basés’, V', 1), Here M,, is a binary matrix of sizeN x K which indi-
the optimal sparse projection tens@r with ||Q|lo = T is cates whether thé" patch belongs to the space defined by
obtained by setting to zerevymams — T elements of the (U,,V,, W,). Just as for the 2D case, we relax the binary
tensorS = P x; UT x5 VT x3 WT having least absolute membership constraint so that noi;, € (0,1),V(i,a),
value. subject ttolem = 1,Vi. Using Lagrange parameters
Proof: We have P = S x; U x2 V x3 W. The error {u;}, symmetric Lagrange matricds\;,}, {A2.} and{As,},
in reconstructing a patcl’ using some other matrix) is and a temperature parametgr we obtain the following
e = ||(S—Q) x1 U x2 V x3 W|% For any tensotX, we deterministic annealing objective function:
have||X||? = || X ||? (i.e. the Frobenius norm of the tensor
and iﬂsnyh un!oléil")ng are the same [13]). Also, by the matrix E({Ua, Va; Wa, Sia; Mia}) =

E({Uaa Va; Wcm Si(u Mza}) -

representation of HOSVD, we havg,,y = U-S(,,y-(V@W)>. N K

Hence, it follows that = || - (S _9321) % ®(14)/)T|\2. This Z Y Mial| Pi = Sia x1Ua X2 Vo X3 Wal*+
gives use = ||S — Q||%. The last step follows becaudg, 12111:1

V and W, and hencd’ @ W are orthonormal matrices. Let el Z M;q log M, + ZM(Z M, — 1)+
I = {(i,4,k)|Qijr = 0} and I = {(i,5,k)|Qir # 0}. Ch oA

Thene = 52 i er, Six + 2 jmen (Sik — Qijr)?. This > tracd A1, (US Uy — 1))+
error will be minimized whenS;;;, = Q;;; in all locations -

where Q;;r # 0 and Q;;r, = 0 at those indices where the T T

correspoading values iﬁjare as small as possible. Thus if we Ztrace{Aga(Va Vo= D))+ Ztrace{Aga(Wa Wa = 1)).

want ||Q|lo = T, then(@ is the tensor obtained by nullifying ¢ ¢ (13)
mimams—T entries fromS that have the least absolute value =~

and leaving the remaining elements intact. We first initialize {U. }, {Va} ?nd{Wa} to random orthonor-
We wish to re-emphasize that a key feature of our approa@ tensorsva, and Mi, = %, V(i,a). Using the fact that

is the fact that the same technique used for 2D imagéSe): {Va} @nd{W,} are orthonormal, the projection matrix
scales to higher dimensions. Tensor decompositions such’as S computed by the rule:

HOSVD do not share this feature, because the optimal low- Sia =P x1 Ul xo VI xs W (i, a). (14)
rank reconstruction property for SVD does not extend to

HOSVD. Furthermore, though the upper and lower errdis is the minimum of the energy functiof’; — Sia x1
bounds for core-tensor truncation in HOSVD derived in [18]a X2 Va X3 Wal?. Thenmimaoms — T elements inS;, with

are interesting, they are applicable only when the entite dgast absolute value are nullified. Thereaftéy, V, and W,

of images has a common basis (i.e. a comrigri/ and v/~ are updated as follows. Denote the sum of the terms in the

matrix), which may not be sufficient to compactly account fdpPrevious energy function that are independentgf as C,
the variability in real datasets. denoting the the " unfolding of the tensoP; as P;,,) (details

in [13]). Using the fact thaf| X ||* = || X,,||* for any tensor
X, we write the energy function as:

E({Uav Vaawa; Sia;Mia}) =
ZMiaHPi — (Sia X1 Uy x2 Vi x3 Wo)|I*+

B. Learning the Bases

We now describe a method to leakhexemplar orthonormal
bases{(U,, V., W)}, 1 < a < K, to encode a training set of
N image patched; € R™1>*m2xms (1 <4 < N) with least .
possible error (in thel, norm sense). Note thak < N. Ztrace{Ala(Ua Us—1))+C
In addition, we impose a sparsity constraint that ev8ry e
(the tensor used to reconstruef from (U,, V,, W,)) has at (15)

SHere A® B refers to the Kronecker product of matricdse RE1 % E2 and
B € RF1XF2 which is given asd ® B = (Ae;es B)1<e; <Fy,1<es<Fs-
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This produces: image of sizeM; x Ms x 3 was treated as a third-order matrix.
Our compression algorithm was tested on the GaTech Face
E({Uq,Va, Wa, Sia, Mia}) Database [32], which consists of RGB color images with 15

= Mol Py1) = Ua - Siaqry - (Va @ Wa) T[>+ images each of 50 different people. The images in the databas
ia are already cropped to include just the face, but some of them
ZtraCE(Am(UaTUa —-1)+C contain small portions of a distinctly cluttered backgrdun
a The average image size 150 x 150 pixels, and all the images
in the JPEG f . F riments, we divided this
_ ZMm[traCE(H{UHu))— areint e_J G ormat. For our expe :
- database into a training set of one image each of 40 different
eople, and a test set of the remaining 14 images each of these
2trace(Pfl)Ua Siay - (Va @ Wo)T)+ heop g 9

40 people, and all 15 images each of the remaining 10 people.
trace Sy, 1) Sia(1))] + Ztrace(Am(UaTUa — 1))+ C. (16) Thus, the size of the test set was 710 images. The patch-size
a we chose for the training and test sets vidsx 12 x 3 and
Setting the derivative off w.r.t. U, to zero, and eliminating we experimented with = 100 different orthonormal bases

Lagrange matrices, we have an update rulelfgr learned during training. The value @fduring training was set
- to 10. At the time of testing, for our method, each patch was
Zya = ZM'L'@PZ'(D(VG ® Wa)Siaqy; projected onto that triple of orthonormal bagég", V;*, W)

’ . . . which gave the sparsest projection tensfr such that the
Us = Zva(ZyaZua)” % =T1a Y1, (17) " per-pixel reconstruction errgf =2l e VDG WL was no
Herel';, andY;, are orthonormal matrices obtained from th@reater than a chosefi Note that, in calculating the per-

SVD of Zy,. V, andW, are updated similarly by second andPixel reconstruction error, we did not divide by the numbkr o
third unfolding of the tensors respectively. The membgrshfhannels, i.e. 3, because at each pixel, there are threesvalu

values are obtained by: defined. We gxperimented with different reconstrqctiomlerr
b U T T2 valuesé ranging from8 x 10~° to 8 x 10~3. Following the
o e PIPi=Siax1Uax2VaxsWall (18) reconstruction, the PSNR for the entire image was measured,
' Zle e BIP;i =S x1Uy X2 Vi x5 Wy |2 | and averaged over the entire test test. The total number of

. bits per pixel, i.e. RPP, was also calculated for each image
The core tensor§S;, } and the matrice$U,, V., Wa }, M are and averaged over the test set. The details of the training

then updateq sequentially following one_another for a fIXeand testing methodology, and also the actual quantizatidn a
0 value, until convergence. The value @fis then increased

coding step are the same as presented previously in Section

and the sequential updates are repeated. The entire priece?ﬁ
. ) ) N -A and III-B.
repeated until an integrality condition is met.
C. Application to Compact Image Representation A. Comparisons with Other Methods

Quite similar to the 2D case, after the optimization during The results obtained by our method were compared to those
the training phase, each training pateh (1 < ¢ < N) gets obtained by four techniques: (1) KSVD, (2) Our algorithm
represented as a projection onto one out of fieexemplar on 2D with separate channels and (3) the JPEG standard. (1)
orthonormal bases, which produces the least reconstructieor KSVD, we used patches of siz€ x 12 x 3 reshaped to
error, i.e. thek'™ exemplar is chosen if P — S;, x1 Ux X2 give vectors of size 432, and used these to train a dictionary
Vi X3 Wil2 < [P = Sia X1 Uy X2 V, x3 W,||?,Va € of 1340 vectors using a value &f = 30. (2) For our
{1,2,...,K},1 < k < K. For patch trainingP;, we denote algorithm for 2D images from Section Il with an independent
the corresponding ‘optimal’ projection tensorgs= S;i, and (separate) encoding of each of the three channels. As an
the corresponding exemplar €87, V;*, W) = (Ux, Vi, Wi). independent coding of the R, G and B slices would fail
Thus the entire set of patches can be closely approximatedtbyaccount for the inherent correlation between the channel
(1) thecommonset of basis-pairg(Us, Vo, W)}, 1 <a < K (and hence give inferior compression performance), we used
(K < N), and (2) the optimal sparse projection tensp$$}  principal components analysis (PCA) to find the three ppiaki
for each patch, with at mo&t non-zero elements each. Thecomponents of the R, G, B values of each pixel from the
overall storage per image is thus greatly reduced. Furtbesm training set. The R, G, B pixel values from the test images
these base§(U,, V., W,)} can now be used to encode patchesere then projected onto these principal components toajive
from a new set of images that are similar to the ones existit@nsformed image in which the values in each of the differen
in the training set, though just as in the 2D case, the sgaubit channels are decorrelated. A similar approach has been take
the patch will be adjusted dynamically in order to meet awivesarlier in [33] for compression of color images of faces gsin
error threshold. Experimental results for this are prodidfe vector quantization, where the PCA method is empirically

the next section. shown to produce channels that are even more decorrelated
than those from the Y-Cb-Cr color model. The orthonormal
V. EXPERIMENTS COLORIMAGES bases were learned on each of the three (decorrelated)alsann

In this section, we describe the experiments we performetithe PCA image. This was followed by the quantization and
on color images represented in the RGB color scheme. Eamiding step similar to that described in Section 111-B. Hoere
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in the COIOI’ image Case, the Huﬁman encoding Step for flndlng Pil:lR vs RPP: Training and testing on clean images s PSNR vs RPP: Clean Training, Noisy Testing
the optimal values of, as andas in Eqn. (10) was performed
using projection matrices from all three channels togeiftas

was done to improve the coding efficiency. (3) For the JPEG £
standard (its MATLAB® implementation) we calculated RPP 2 20

40|

——Our Method: 30
——Our Method: 30 22 Our Method: 20

from the number of bytes of file storage on the disk. See <-Our etho: 25 i s
Section V-B for more details. N .
We would like to mention here that we did not compare ° * wee ° ° N
our technique with the face image compression technique (@) (b)
presented in [33]. The latter requires prior demarcation of PSNR vs RPP: Noisy Training Noisy Testing
the salient feature regions, which are encoded with moee bit zo
Our method does not require any such prior segmentation, as 2
we manually tune the number of coefficients to meet the pre- %2
specified reconstruction error. Q2 et G5
22 Our Method (2D;
2 Theee

B. Results
18

As can be seen from Figure 7(a), all three methods perform ’ L ”
well, though the higher-order method produced the bestteesu (c)

after_a bit-rate of around 2 pef plxel._ For the_GaTeCh dambalg—‘i . 7. ROC curves for the GaTech database: (a) when traimmtesting
we did not compare our algorithm directly with JPEG becauggre done on the clean original images, (b) when training e on clean
the images in the database are already in the JPEG forniages, but testing was done with additive zero mean Gaussise of
However. to facilitate comparison with JPEG. we used a Smbg@rlanceéi x 10~% added to the test images, and (c) when training and testing
AN ' Were both done with zero mean Gaussian noise of varigned 0—* added
of 54 images from the CMU-PIE database [34]. The CMU-PIfg the respective images. The methods tested were our higtier method,
database contains images of several people against eliitteur method in 2D, KSVD and JPEG. Parameters for our methads: 100
backgrounds with a large variation in pose, illuminaticaiél andT' = 10 during training.These plots are viewed best in color
expression and occlusions created by spectacles. All the im
ages are available in an uncompressed (.ppm) format, aird the
size is631 x 467 pixels. We chose 54 images belonging to one Training Image Original Test Image Error 0,003
and the same person, and used exactly one image for training Y ; .
and all the remaining for testing. Experiments with our leigh ]
order method, our method involving separate channels anc
also KSVD, revealed performance that is competitive with
JPEG. For a bit rate of greater than 1.5 per pixel, our methods
produced performance that was superior to that of JPEG in
terms of the PSNR for a given RPP, as seen in Figure V-B. The

parameters for this experiment welke= 100 andT" = 10 for ' ' '
training. Sample reconstructions of an image from the CMU- ] ] ]
PIE database using our higher-order method for differenatrer M M M

values are shown in Figure V-B. This is quite interestingcsi

there is considerable variation between the training imeagk

the test images, as is clear from Figure V-B. We would like to

gmpha5|ze that thg exp(_arlments were carried out on uncmpE| . 8. Sample reconstructions of an image from the CMU-Péialbase
images of the full size with the complete cluttered backguhu with different error values using our higher order methobe Briginal image
Also, the dictionary sizes for the experiments onh each afahe!s on the tqp-left.These images are viewed best in color and when zoomed
databases are summarized in Table II. For color-image patch 1€ Pdf file

of sizem x mg x 3 using K sets of bases, our method in 3D

e

Error 0.001 Error 0.0005 Error 0.0003

requires a dictionary of siz&K m1ms, whereas our method in a0 SNR Vs RPP: CMU-PIE
2D requires a dictionary of siz2K'm;ms- per channel, which
is 6 K'myms in total. %

%30

——Our Method (3D

C. Comparisons with JPEG on Noisy Datasets

As mentioned before, we did not directly compare our
results to the JPEG technique for the GaTech Face Database, I Y H R
because the images in the database are already in the JPEG
format. Instead, we added zero-mean Gaussian noise of vali- 9. ROC curves for the CMU-PIE database using our meth@®&Di, our
ance8 x 10~* (on a color scale of0,1]) to the images of method in 2D, KSVD and JPEG. Parameters for our methods: &its 100

andT = 10 during trainingThese plots are viewed best in color
the GaTech database and converted them to a raw formafj. g g P

Our Method (2D;
——KSVD
—JPEG

25114
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Method

Dictionary Size (number of scalars

)

Our Method (3D)| 100 x 3 x 12 x 12 = 43200

Our Method (2D)| 50 x 2 x 3 x 12 x 12 = 43200

KSVD 1340 x 12 x 12 x 3 = 578880

TABLE Il
COMPARISON OF DICTIONARY SIZE FOR VARIOUS METHODS FOR
EXPERIMENTS ON THEGATECH AND CMU-PIE DATABASES.
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of the patch. Furthermore, this paper also presents a clean
and elegant extension to higher order matrices, for which
we have presented applications to color-image compression
Unlike decompositions like HOSVD which do not retain the
optimal low-rank reconstruction property of SVD, our matho
scales cleanly into higher dimensions. The experimensalie
show that our technique compares very favorably to other
existing approaches from recent literature, includingXREG
standard. We have also empirically examined the perforemanc
of our algorithm on noisy color image datasets.

Following this, we converted these raw images back to JPEGpjrections for future work include: (1) investigation of-al

(using MATLAB®) and measured the RPP and PSNR. Theggmative matrix representations tuned for specific apfibs

figures were pitted against those obtained by our higheefordas opposed to using the default rows and columns of the
method, our method on separate channels, as well as KS\fage), (2) application of our technique for compression of
as shown in Figures 7(b) and 7(c). The performance of JPEfzy _scale and color video (represented as 3D and 4D mstrice

did not have a very high variance. The reason for this {fe method in the context of natural image statistics.

that the algorithms used by JPEG cash in on the fact that
while representing most natural images, the lower fregiesnc
strongly dominate. This assumption can fall apart in case f]
sensor noise. As a result, the coefficients produced by the DC
step of JPEG on noisy images will possess prominently high%
values, giving rise to higher bit rates for the same PSNR. For
the purposes of comparison, we ran two experiments using ol#
higher-order method, our separate channel method and KSVD
as well. In the first experiment, noise was added only to the
test set, though the orthonormal bases or the dictionarg well
learned on a clean training set (i.e. without noise beingeddd [5]
to the training images). In the second experiment, noise was
added to every image from the training set, and all methods
) o : 6]
were trained on these noisy images. The testing was pertbrm[e
on (noisy) images from the test set, and the ROC curves were
plotted as usual. As can be seen from Figures 7(b) and 7(dY]
the PSNR values for JPEG begin to plateau off rather quickly.
Note that in all these experiments, the PSNR is calculated fr [8]
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