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Abstract—We present a new method for compact representa-
tion of large image datasets. Our method is based on treating
small patches from a 2D image as matrices as opposed to the
conventional vectorial representation, and encoding these patches
as sparse projections onto a set of exemplar orthonormal bases,
which are learned a priori from a training set. The end result
is a low-error, highly compact image/patch representationthat
has significant theoretical merits and compares favorably with
existing techniques (including JPEG) on experiments involving
the compression of ORL and Yale face databases, as well as
a database of miscellaneous natural images. In the context of
learning multiple orthonormal bases, we show the easy tunability
of our method to efficiently represent patches of different com-
plexities. Furthermore, we show that our method is extensible in a
theoretically sound manner to higher-order matrices (‘tensors’).
We demonstrate applications of this theory to compression of
well-known color image datasets such as the GaTech and CMU-
PIE face databases and show performance competitive with
JPEG. Lastly, we also analyze the effect of image noise on the
performance of our compression schemes.

Index Terms—compression, compact representation, sparse
projections, singular value decomposition (SVD), higher-order
singular value decomposition (HOSVD), greedy algorithm, tensor
decompositions.

I. I NTRODUCTION

Most conventional techniques of image analysis treat images
as elements of a vector space. Lately, there has been a steady
growth of literature which regards images as matrices, e.g.[1],
[2], [3], [4]. As compared to a vectorial method, the matrix-
based representation helps to better exploit the spatial relation-
ships between image pixels, as an image is essentially a two-
dimensional function. In the image processing community, this
notion of an image has been considered in [5], in the context of
image coding by using singular value decomposition (SVD).
Given any matrix, sayJ ∈ RM1×M2 , the SVD of the matrix
expresses it as a product of a diagonal matrixS ∈ RM1×M2 of
singular values, with two orthonormal matricesU ∈ RM1×M1

andV ∈ RM2×M2 . This decomposition is unique upto a sign
factor on the vectors ofU andV if the singular values are all
distinct. For the specific case of natural images, it has been
observed that the values along the diagonal ofS are rapidly
decreasing, which allows for the low-error reconstructionof
the image by low-rank approximations. This property of SVD,
coupled with the fact that it provides the best possible lower-
rank approximation to a matrix, has motivated its application

The authors are with the Department of Computer and Information Science
and Engineering, University of Florida, Gainesville, FL 32611, USA. e-mail:
{ksg,avr,arunava,anand}@cise.ufl.edu.

to image compression in [5] and [6]. In [6], the SVD technique
is further combined with vector quantization for compression
applications.

To the best of our knowledge, the earliest technique on
obtaining acommonmatrix-based representation for a set of
images was developed by Rangarajan in [1]. In [1], asingle
pair of orthonormal bases(U, V ) is learned from a set of some
N images, and each imageIj , 1 ≤ j ≤ N is represented
by means of a projectionSj onto these bases, i.e. in the
form Ij = USjV

T . Similar ideas are developed by Ye in
[2] in terms of optimal lower-rank image approximations.
In [3], Yang et al. develop a technique named 2D-PCA,
which computes principal components of a column-column
covariance matrix of a set of images. In [7], Dinget al.present
a generalization of 2D-PCA, named as 2D-SVD, and some
optimality properties of 2D-SVD are investigated. The work
in [7] also unifies the approaches in [3] and [2], and provides
a non-iterative approximate solution with bounded error tothe
problem of finding the single pair of common bases. In [4], He
et al. develop a clustering application, in which a single set of
orthonormal bases is learned in such a way that projections of
a set of images on these bases are neighborhood-preserving.

It is quite intuitive to observe that, as compared to an entire
image, a small image patch is a simpler, more local entity,
and hence can be more accurately represented by means of a
smaller number of bases. Following this intuition, we choose
to regard an image as a set of matrices (one per image patch)
instead of using a single matrix for the entire image as in
[1], [2]. Furthermore, there usually exists a great deal of
similarity between a large number of patches in one image
or across several images of a similar kind. We exploit this
fact to learn a small number of full-sized orthonormal bases
(as opposed to a single set of low-rank bases learned in [1],
[2] and [7], or a single set of low-rank projection vectors
learned in [3]) to reconstruct a set of patches from a training
set by means ofsparseprojections with least possible error.
As we shall demonstrate later, this change of focus from
learning lower-rank bases to learning full-rank bases but with
sparse projection matrices, brings with itself several significant
theoretical and practical advantages. This is because it ismuch
easier to adjust the sparsity of a projection matrix in orderto
meet a certain reconstruction error threshold than to adjust for
its rank [see Section II-A and Section III].

There exists a large body of work in the field of sparse
image representation. Coding methods which express images
as sparse combinations of bases using techniques such as the
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discrete cosine transform (DCT) or Gabor-filter bases have
been quite popular for a long period. The DCT is also an es-
sential ingredient of the widely used JPEG image compression
standard. These developments have also spurred interest in
methods thatlearn a set of bases from a set of natural images
as well as asparseset of coefficients to represent images in
terms of those bases. Pioneering work in this area has been
done in [8], with a special emphasis on learning an over-
complete set of bases and their sparse combinations. Some re-
cent contributions in the field of over-complete representations
include the work in [9] by Aharonet al., which encodes image
patches as a sparse linear combination of a set of dictionary
vectors (learned from a training set). An important featureof
all such learning-based approaches (as opposed to those that
use a fixed set of bases such as DCT) is their tunability to
datasets containing aspecifictype of images. In this paper, we
develop such a learning technique, but with the key difference
that our technique is matrix-based, unlike the aforementioned
vector-based learning algorithms. The main advantage of our
technique is as follows: we learn a small number of pairs of
orthonormal bases to represent ensembles of image patches.
Given any such pair, the computation of a sparse projection
for any image patch (matrix) with least possible reconstruction
error, can be accomplished by means of a very simple and
optimal greedy algorithm. On the other hand, the computation
of the optimal sparse linear combination of an over-complete
set of basis vectors to represent another vector is a well-known
NP-hard problem [10]. We demonstrate the applicability of
our algorithm to the compression of databases of face images,
with favorable results in comparison to existing approaches.
Our main algorithm on ensembles of 2D images or image
patches, was presented earlier by us in [11]. In this paper, we
present more detailed comparisons, including with JPEG, and
also study the effect of various parameters on our method,
besides showing more detailed derivations of the theory.

In the current work, we bring out another significant
extension of our previous algorithm - namely its elegant
applicability to higher-order matrices (commonly and usually
mistakenly termed tensors1), with sound theoretical founda-
tions. In this paper, we represent patches from color images
as tensors (third-order matrices). Next, we learn a small
number of orthonormal matrices and represent these patches
as sparse tensor projections onto these orthonormal matrices.
The tensor-representation for image datasets, as such, is not
new. Shashua and Levin [12] regard an ensemble of gray-
scale (face) images, or a video sequence, as a single third-
order tensor, and achieve compact representation by means of
lower-rank approximations of the tensor. However, quite unlike
the computation of the rank of a matrix, the computation
of the rank of a tensor2 is known to be an NP-complete
problem [14]. Moreover, while the SVD is known to yield
the best lower-rank approximation of a matrix in the 2D case,

1A N1×N2 matrix is a tensor only when it is expressly characterized asa
multilinear function fromV1⊗V2 to R whereV1 andV2 areN1-dimensional
andN2-dimensional vector spaces respectively.

2The rank of a tensor is defined as the smallest number of rank-1tensors
whose linear combination gives back the tensor, with a tensor being of rank-1
if it is equal to the outer product of several vectors [13].

its higher-dimensional analog (known as higher-order SVD or
HOSVD) does not necessarily produce the best lower-rank
approximation of a tensor (see the work of Lathauwer in
[13] for an extensive development of the theory of HOSVD).
Nevertheless, for the sake of simplicity, HOSVD has been
used to produce lower-rank approximations of datasets (albeit
a theoretically sub-optimal one [13]) which work well in
the context of applications ranging from face recognition
under change in pose, illumination and facial expression asin
[15] by Vasilescu and Terzopoulos (though in that particular
paper, each image is still represented as a vector) to dynamic
texture synthesis from gray-scale and color videos in [16] by
Costantiniet al. In these applications, the authors demonstrate
the efficacy of the multilinear representation in accounting
for variability over several different modes (such as pose,
illumination and expression in [15], or spatial, chromaticand
temporal in [16]), as opposed to simple vector-based image
representations.

An iterative scheme for a lower-rank tensor approximation
is developed in [13], but the corresponding energy function
is susceptible to the problem of local minima. In [12], two
new lower-rank approximation schemes are designed: a closed-
form solution under the assumption that the actual tensor rank
equals the number of images (which usually may not be true
in practice), or else an iterative approximation in other cases.
Although the latter iterative algorithm is proved to be conver-
gent, it is not guaranteed to yield a global minimum. Wang and
Ahuja [17] also develop a new iterative rank-R approximation
scheme using an alternating least-squares formulation, and
also present another iterative method that is specially tuned
for the case of third-order tensors. Very recently, Dinget
al. [18] have derived upper and lower bounds for the error
due to low-rank truncation of the core tensor obtained in
HOSVD (which is a closed-form decomposition), and use this
theory to find asingle common triple of orthonormal bases
to represent a database of color images (represented as 3D
arrays) with minimal error in theL2 sense. Nevertheless, there
is still no method of directly obtaining theoptimal lower-
rank tensor approximation which is non-iterative in nature.
Furthermore, the error bounds in [18] are applicable only when
the entire set of images is coded using a single common triple
of orthonormal bases. Likewise, the algorithms presented in
[17] and [12] also seek to find asinglecommon basis.

The algorithm we present here differs from the aforemen-
tioned ones in the following ways: (1) All the aforementioned
methods learn a common basis, which may not be sufficient
to account for the variability in the images. We do not learn a
single common basis-tuple, but asetof someK orthonormal
bases to represent someN patches in the database of images,
with each image and each patch being represented as a higher-
order matrix. Note thatK is much less thanN . (2) We do not
seek to obtain lower-rank approximations to a tensor. Rather,
we represent the tensor as a sparse projection onto a chosen
tuple of orthonormal bases. This sparse projection, as we shall
later on show, turns out to be optimal and can be obtained
by a very simple greedy algorithm. We use our extension for
the purpose of compression of a database of color images,
with promising results. Note that this sparsity based approach
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has advantages in terms of coding efficiency as compared to
methods that look for lower-rank approximations, just as in
the 2D case mentioned before.

Our paper is organized as follows. We describe the theory
and the main algorithm for 2D datasets in Section II. Section
III presents experimental results and comparisons with existing
techniques. Section IV presents our extension to higher-order
matrices, with experimental results and comparisons in Section
V. We conclude in Section VI.

II. T HEORY: 2D IMAGES

Consider a set of images, each of sizeM1 × M2. We
divide each image into non-overlapping patches of sizem1 ×
m2, m1 ≪ M1, m2 ≪ M2, and treat each patch as a separate
matrix. Exploiting the similarity inherent in these patches, we
effectively represent them by means of sparse projections onto
(appropriately created) orthonormal bases, which we call as
‘exemplar bases’. We learn these exemplarsa priori from a
set of training image patches. Before describing the learning
procedure, we first explain the mathematical structure of the
exemplars.

A. Exemplar Bases and Sparse Projections

Let P ∈ Rm1×m2 be an image patch. Using singular value
decomposition (SVD), we can representP as a combination
of orthonormal basesU ∈ Rm1×m1 and V ∈ Rm2×m2 in
the form P = USV T , whereS ∈ Rm1×m2 is a diagonal
matrix of singular values. HoweverP can also be represented
as a combination ofany set of orthonormal bases̄U and V̄ ,
different from those obtained from the SVD ofP . In this
case, we haveP = ŪSV̄ T whereS turns out to be anon-
diagonal matrix 3. Contemporary SVD-based compression
methods leverage the fact that the SVD provides the bestlow-
rank approximation to a matrix [6], [19]. We choose to depart
from this notion, and instead answer the following question:
What sparsematrix W ∈ Rm1×m2 will reconstructP from
a pair of orthonormal bases̄U and V̄ with the least error
‖P − ŪWV̄ T ‖2? Sparsity is quantified by an upper boundT

on theL0 norm ofW , i.e. on the number of non-zero elements
in W (denoted as‖W‖0)4. We prove that theoptimalW with
this sparsity constraint is obtained by nullifying the least (in
absolute value)m1m2−T elements of the estimated projection
matrix S = ŪT P V̄ . Due to the ortho-normality of̄U and V̄ ,
this simple greedy algorithm turns out to be optimalas we
prove below:.
Theorem 1: Given a pair of orthonormal bases(Ū , V̄ ), the
optimal sparse projection matrixW with ‖W‖0 = T is
obtained by setting to zerom1m2 −T elements of the matrix
S = ŪT P V̄ having least absolute value.
Proof: We haveP = ŪSV̄ T . The error in reconstructing
a patch P using some other matrixW is e = ‖Ū(S −
W )V̄ T ‖2 = ‖S − W‖2 as Ū and V̄ are orthonormal. Let

3The decompositionP = ŪSV̄ T exists for anyP even if Ū and V̄

are not orthonormal. We still follow ortho-normality constraints to facilitate
optimization and coding. See section II-C and III-B.

4See section III for the merits of our sparsity-based approach over the
low-rank approach.

I1 = {(i, j)|Wij = 0} and I2 = {(i, j)|Wij 6= 0}. Then
e =

∑
(i,j)∈I1

S2
ij +

∑
(i,j)∈I2

(Sij −Wij)
2. This error will be

minimized whenSij = Wij in all locations whereWij 6= 0
andWij = 0 at those indices where the corresponding values
in S are as small as possible. Thus if we want‖W‖0 = T , then
W is the matrix obtained by nullifyingm1m2−T entries from
S that have the least absolute value and leaving the remaining
elements intact.
Hence, the problem of finding an optimal sparse projection
of a matrix (image patch) onto a pair of orthonormal bases,
is solvable inO(m1m2(m1 + m2)) time as it requires just
two matrix multiplications (S = UT PV ). On the other hand,
the problem of finding the optimal sparse linear combinations
of an over-complete set of basis vectors in order to represent
another vector (i.e. the vectorized form of an image patch) is a
well-known NP-hard problem [10]. In actual applications [9],
approximate solutions to these problems are sought, by means
of pursuit algorithms such as OMP [20]. Unfortunately, the
quality of the approximation in OMP is dependent onT , with
an upper bound on the error that is directly proportional to√

1 + 6T [see [21], Theorem (C)] under certain conditions.
Similar problems exist with other pursuit approximation al-
gorithms such as Basis Pursuit (BP) as well [21]. For large
values ofT , there can be difficulties related to convergence,
when pursuit algorithms are put inside an iterative optimization
loop. Our technique avoids any such dependencies.

B. Learning the Bases

The essence of this paper lies in a learning method to pro-
duceK exemplar orthonormal bases{(Ua, Va)}, 1 ≤ a ≤ K,
to encode a training set ofN image patchesPi ∈ Rm1×m2

(1 ≤ i ≤ N ) with least possible error (in the sense of theL2

norm of the difference between the original and reconstructed
patches). Note thatK ≪ N . In addition, we impose a sparsity
constraint that everySia (the matrix used to reconstructPi

from (Ua, Va)) has at mostT non-zero elements. The main
objective function to be minimized is:

E({Ua, Va, Sia, Mia}) =

N∑

i=1

K∑

a=1

Mia‖Pi −UaSiaV T
a ‖2 (1)

subject to the following constraints:

(1)UT
a Ua = V T

a Va = I, ∀a. (2) ‖Sia‖0 ≤ T, ∀(i, a).

(3)
∑

a

Mia = 1, ∀i andMia ∈ {0, 1}, ∀i, a. (2)

HereMia is a binary matrix of sizeN × K which indicates
whether theith patch belongs to the space defined by(Ua, Va).
Notice that we are not trying to use a mixture of orthonormal
bases for the projection, but just project onto a single suitable
basis pair instead. The optimization of the above energy
function is difficult, asMia is binary. A simple K-means
will lead to local minima issues, and so we relax the binary
membership constraint so that nowMia ∈ (0, 1), ∀(i, a),
subject to

∑K

a=1 Mia = 1, ∀i. The naive mean field theory line
of development culminating in [22], (with much of the theory
developed already in [23]) leads to the following deterministic
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annealing energy function:

E({Ua, Va, Sia, Mia}) =

N∑

i=1

K∑

a=1

Mia‖Pi − UaSiaV T
a ‖2+

1

β

∑

ia

Mia log Mia +
∑

i

µi(
∑

a

Mia − 1)+

∑

a

trace[Λ1a(UT
a Ua − I)] +

∑

a

trace[Λ2a(V T
a Va − I)].

(3)

Note that in the above equation,{µi} are the Lagrange
parameters,{Λ1a, Λ2a} are symmetric Lagrange matrices, and
β a temperature parameter.

We first initialize {Ua} and {Va} to random orthonormal
matrices∀a, andMia = 1

K
, ∀(i, a). As {Ua} and {Va} are

orthonormal, the projection matrixSia is computed by the
following rule:

Sia = UT
a PiVa. (4)

Note that this is the solution to the least squares energy
function‖Pi −UaSiaV T

a ‖2. Thenm1m2 −T elements inSia

with least absolute value are nullified to get the best sparse
projection matrix. The updates toUa andVa are obtained as
follows. Denoting the sum of the terms of the cost function
in Eqn. (1) that are independent ofUa as C, we rewrite the
cost function as follows:

E({Ua, Va, Sia, Mia}) =
N∑

i=1

K∑

a=1

Mia‖Pi − UaSiaV T
a ‖2+

∑

a

trace[Λ1a(UT
a Ua − I)] + C

=

N∑

i=1

K∑

a=1

Mia[trace(Pi − UaSiaV T
a )T (Pi − UaSiaV T

a ))]+

∑

a

trace[Λ1a(UT
a Ua − I)] + C

=

N∑

i=1

K∑

a=1

Mia[trace(PT
i Pi) − 2trace(PT

i UaSiaV T
a )

+trace(ST
iaSia)] +

∑

a

trace(Λ1a(UT
a Ua − I)) + C.

(5)

Now setting derivatives w.r.t.Ua to zero, re-arranging the
terms and eliminating the Lagrange matrices, we obtain the
following update rule forUa:

Z1a =
∑

i

MiaPiVaST
ia; Ua = Z1a(ZT

1aZ1a)−
1

2 . (6)

An SVD of Z1a will give us Z1a = Γ1aΨΥT
1a where Γ1a

andΥ1a are orthonormal matrices andΨ is a diagonal matrix.
Using this, we can re-writeUa as follows:

Ua = (Γ1aΨΥT
1a)((Γ1aΨΥT

1a)
T (Γ1aΨΥT

1a))
− 1

2 = Γ1aΥT
1a.

(7)

Notice that the steps above followed only owing to the fact
that Ua and henceΓ1a andΥ1a were full-rank matrices. This
gives us an update rule forUa. A very similar update rule for

Va follows along the same lines. The membership values are
obtained by:

Mia =
e−β‖Pi−UaSiaV T

a
‖2

∑K

b=1 e−β‖Pi−UbSibV T

b
‖2

. (8)

The matrices{Sia, Ua, Va} andM are then updated sequen-
tially following one another for a fixedβ value, until conver-
gence. The value ofβ is then increased and the sequential
updates are repeated. The entire process is repeated until an
integrality condition is met.
Our algorithm could be modified to learn a set of orthonormal
bases (single matrices and not a pair) for sparse represen-
tation of vectorized images, as well. Note that even then,
our technique should not be confused with the ‘mixtures of
PCA’ approach [24]. The emphasis of the latter is again on
low-rank approximations and not on sparsity. Furthermore,
in our algorithm we do not compute an actual probabilistic
mixture (also see Sections II-C and III-E). However, we have
not considered this vector-based variant in our experiments,
because it does not exploit the fact that image patches are
two-dimensional entities.

C. Application to Compact Image Representation

Our framework is geared towards compact butlow-error
patch reconstruction. We are not concerned with thediscrim-
inating assignment of aspecific kindof patches to aspecific
exemplar, quite unlike in a clustering or classification appli-
cation. In our method, after the optimization, each training
patch Pi (1 ≤ i ≤ N ) gets represented as a projection
onto one out of theK exemplar orthonormal bases, which
produces the least reconstruction error, i.e. thekth exemplar
is chosen if‖Pi − UkSikV T

k ‖2 ≤ ‖Pi − UaSiaV T
a ‖2, ∀a ∈

{1, 2, ..., K}, 1 ≤ k ≤ K. For patchPi, we denote the
corresponding ‘optimal’ projection matrix asS⋆

i = Sik, and
the corresponding exemplar as(U⋆

i , V ⋆
i ) = (Uk, Vk). Thus

the entire training set is approximated by (1) thecommonset
of basis-pairs{(Ua, Va)}, 1 ≤ a ≤ K (K ≪ N ), and (2) the
optimal sparse projection matrices{S⋆

i } for each patch, with at
mostT non-zero elements each. The overall storage per image
is thus greatly reduced (see also section III-B). Furthermore,
these bases{(Ua, Va)} can now be used to encode patches
from a new set of images that are somewhat similar to the ones
existing in the training set. However, a practical application
demands that the reconstruction meet a specific error threshold
on unseen patches, and hence theL0 norm of the projection
matrix of the patch is adjusted dynamically in order to meet the
error. Experimental results using such a scheme are described
in the next section.

III. E XPERIMENTS: 2D IMAGES

In this section, we first describe the overall methodology
for the training and testing phases of our algorithm based on
our earlier work in [11]. As we are working on a compression
application, we then describe the details of our image coding
and quantization scheme. This is followed by a discussion of
the comparisons between our technique and other competi-
tive techniques (including JPEG), and an enumeration of the
experimental results.
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A. Training and Testing Phases

We tested our algorithm for compression of the entire ORL
database [25] and the entire Yale database [26]. We divided the
images in each database into patches of fixed size (12 × 12),
and these sets of patches were segregated into training and
test sets. The test set consisted of many more images than the
training set, in the case of either database. For the purpose
of training, we learned a total ofK = 50 orthonormal bases
using a fixed value ofT to control the sparsity. For testing, we
projected each patchPi onto that exemplar(U⋆

i , V ⋆
i ) which

produced thesparsestprojection matrixS⋆
i that yielded an

average per-pixel reconstruction error‖Pi−U⋆

i
S⋆

i
V ⋆

i

T ‖2

m1m2

of no
more than some chosenδ. Note that different test patches
required differentT values, depending upon their inherent
‘complexity’. Hence, we varied the sparsity of the projection
matrix (but keeping its size fixed to12 × 12), by greedily
nullifying the smallest elements in the matrix, without letting
the reconstruction error go aboveδ. This gave us the flexibility
to adjust to patches of different complexities, without altering
the rank of the exemplar bases(U⋆

i , V ⋆
i ). As any patch

Pi is projected onto exemplar orthonormal bases that are
different from those produced by its own SVD, the projection
matrices turn out to be non-diagonal. Hence, there is no
such thing as a hierarchy of ‘singular values’ as in ordinary
SVD. As a result, we cannot resort to restricting the rank of
the projection matrix (and thereby the rank of(U⋆

i , V ⋆
i )) to

adjust for patches of different complexity (unless we learna
separate set ofK bases, each set for a different rankr where
1 < r < min(m1, m2), which would make the training and
even the image coding [see Section III-B] very cumbersome).
This highlights an advantage of our approach over that of
algorithms that adjust the rank of the projection matrices.

B. Details of Image Coding and Quantization

We obtainS⋆
i by sparsifyingU⋆

i
T PiV

⋆
i . As U⋆

i andV ⋆
i are

orthonormal, we can show that the values inS⋆
i will always

lie in the range[−m, m] for m × m patches, if the values of
Pi lie in [0, 1]. This can be proved as follows: We know that
S⋆

i = U⋆
i

T PiV
⋆
i . Hence we write the element ofS⋆

i in theath

row andbth column as follows:

S⋆
i ab =

∑

k,l

U⋆
i

T

akPiklV
⋆
lb ≤

∑

kl

1√
m

Pikl

1√
m

= m. (9)

The first step follows because the maximum value ofS⋆
i ab

is obtained when all values ofU⋆
i

T
ak are equal to

√
m. The

second step follows becauseS⋆
i ab will meet its upper bound

when all them2 values in the patch are equal to 1. We can
similarly prove that the lower bound onS⋆

i ab is −m. As in
our case,m = 12, the upper and lower bounds are+12 and
−12 respectively.
In our experiment, we Huffman-encoded the integer parts of
the values in the{S⋆

i } matrices over the whole image (giving
us an average of someQ1 bits per entry) and quantized the
fractional parts withQ2 bits per entry. Thus, we needed to
store the following information per test-patch to create the
compressed image: (1) the index of the best exemplar, using
a1 bits, (2) the location and value of each non-zero element

in its S⋆
i matrix, usinga2 bits per location andQ1 + Q2 bits

for the value, and (3) the number of non-zero elements per
patch encoded usinga3 bits. Hence the total number of bits
per pixel for the whole image is given by:

RPP =
N(a1 + a3) + T whole(a2 + Q1 + Q2)

M1M2
. (10)

whereT whole =
∑N

i=1 ‖S⋆
i ‖0. The values ofa1, a2 and a3

were obtained by Huffman encoding.
After performing quantization on the values of the coefficients
in S⋆

i , we obtained new quantized projection matrices, denoted
asŜ⋆

i . Following this, the PSNR for each image was measured
as 10 log10

Nm1m2
P

N

i=1
‖Pi−U⋆

i
Ŝ⋆

i
V ⋆

i

T ‖2
, and then averaged over the

entire test set. The average number of bits per pixel (RPP)
was calculated as in Eqn. (10) for each image, and then
averaged over the whole test set. We repeated this procedure
for different δ values from8 × 10−5 to 8 × 10−3 (range of
image intensity values was[0, 1]) and plotted an ROC curve
of average PSNR vs. average RPP.

C. Comparison with other techniques:

We pitted our method against four recent and competitive
approaches: (1) KSVD, (2) overcomplete DCT, (3) SSVD and
(4) the JPEG standard. (1) For the KSVD algorithm from
[9], we used 441 unit norm dictionary vectors of size 144.
In this method, each patch is vectorized and represented as
a sparse linear combination of the dictionary vectors. During
training, the value ofT is kept fixed, and during testing it
is dynamically adjusted depending upon the patch so as to
meet the appropriate set of error thresholds represented byδ ∈
[8× 10−5, 8× 10−3]. For the purpose of comparison between
our method and KSVD, we used the exact same values ofT

andδ as in our algorithm, to facilitate a fair comparison. The
method used to find the sparse projection onto the dictionary
was the orthogonal matching pursuit (OMP) algorithm [21].
(2) We created the over-complete DCT dictionary with 441
unit norm vectors of size 144 by sampling cosine waves of
various frequencies, again with the sameT value as for KSVD,
and using the OMP technique for sparse projection. (3) The
SSVD method from [19] is not a learning based technique. It is
based on the creation of sub-sampled versions of the image by
traversing the image in a manner different from usual raster-
scanning. (4) For the JPEG standard (for which we used the
implementation provided in MATLABR©), we measured the
RPP from the number of bytes for storage of the file.

For KSVD and over-complete DCT, there exist bounds on
the values of the coefficients that are very similar to those
for our technique, as presented in Eqn. (9). For both these
methods, the RPP value was computed using the formula in
[9], Eqn. (27), with the modification that the integer parts
of the coefficients of the linear combination were Huffman-
encoded and the fractional parts separately quantized (as it
gave a better ROC curves for these methods). For the SSVD
method, the RPP was calculated as in [19], section (5).
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Fig. 1. ROC curves on (a) ORL and (b) Yale Databases. Legend- Red (1):
Our Method, Blue (2): KSVD, Green (3): Over-complete DCT, Black (4):
SSVD and (5): JPEG (Magenta). (c) Variance in RPP versus pre-quantization
error for ORL.These plots are viewed best in color.

Original Error 0.003 Error 0.001

Error 0.0005 Error 0.0003 Error 0.0001

Fig. 2. Reconstructed versions of an image from the ORL database using
5 different error values. The original image is on the extreme left and top
corner. Viewed better by ZOOMING into the pdf file.

D. Results

For the ORL database, we created a training set of patches
of size 12 × 12 from images of 10 different people, with
10 images per person. Patches from images of the remaining
30 people (10 images per person) were treated as the test
set. From the training set, a total of 50 pairs of orthonormal
bases were learned using the algorithm described in Section
II-B. The T value for sparsity of the projection matrices
was set to 10 during training. As shown in Figure III-D(c),
we also computed the variance in the RPP values for every
different pre-quantization error value, for each image in the
ORL database. Note that the variance in RPP decreases with
increase in specified error. This is because at very low errors,
different images require different number of coefficients in
order to meet the error.

The same experiment was run on the Yale database with a
value ofT = 3 on patches of size12 × 12. The training set
consisted of a total of 64 images of one and the same person
under different illumination conditions, whereas the testing
set consisted of 65 images each of the remaining 38 people
from the database (i.e. 2470 images in all), under different

Method Dictionary Size (number of scalars)
Our Method 50 × 2 × 12 × 12 = 14400

KSVD 441 × 12 × 12 = 63504
Overcomplete DCT 441 × 12 × 12 = 63504

TABLE I
COMPARISON OF DICTIONARY SIZE FOR VARIOUS METHODS FOR

EXPERIMENTS ON THEORL AND YALE DATABASES.
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Fig. 3. ROC curves for the ORL database using our technique with (a)
different patch size and (b) different value ofT for a fixed patch size of
12 × 12. These plots are viewed best in color.

illumination conditions. The ROC curves for our method were
superior to those of other methods over a significant range
of δ, for the ORL as well as the Yale database, as seen in
Figures 1(a) and 1(b). Figure 2 shows reconstructed versions
of an image from the ORL database using our method with
different values ofδ. For experiments on the ORL database,
the number of bits used to code the fractional parts of the
coefficients of the projection matrices [i.e.Q2 in Eqn. (10)]
was set to 5. For the Yale database, we often obtained pre-
quantization errors significantly less than the chosenδ, and
hence using a value ofQ2 less than 5 bits often did not raise
the post-quantization error aboveδ. Keeping this in mind, we
varied the value ofQ2 dynamically, for each pre-quantization
error value. The same variation was applied to the KSVD and
over-complete DCT techniques as well. For the experiments
on these two databases, we also summarize the dictionary size
of all the relevant methods being compared in Table I.

E. Effect of Different Parameters on the Performance of our
Method:

The different parameters in our method include: (1) the
size of the patches for training and testing, (2) the number
of pairs of orthonormal bases, i.e.K, and (3) the sparsity
of each patch during training, i.e.T . In the following, we
describe the effect of varying these parameters: (1)Patch Size:
If the size of the patch is too large, it becomes more and more
unlikely that a fixed number of orthonormal matrices will serve
as adequate bases for these patches in terms of a low-error
sparse representation, owing to the curse of dimensionality.
Furthermore, if the patch size is too large, any algorithm will
lose out on the advantages of locality and simplicity. However,
if the patch size is too small (say2 × 2), there is very little a
compression algorithm can do in terms of lowering the number
of bits required to store these patches. We stress that the patch
size as a free parameter is something common toall algorithms
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to which we are comparing our technique (including JPEG).
Also, the choice of this parameter is mainly empirical. We
tested the performance of our algorithm withK = 50 pairs
of orthonormal bases on the ORL database, using patches of
size8 × 8, 12 × 12, 15 × 15 and20 × 20, with appropriately
different values ofT . As shown in Figure 3(a), the patch size
of 12×12 usingT = 10 yielded the best performance, though
other patch sizes also performed quite well. (2)The number
of orthonormal basesK: The choice of this number is not
critical, and can be set to as high a value as desired without
affecting the accuracy of the results. This parameter should
not be confused with the number of mixture components in
standard mixture-model based density estimation, becausein
our method each patch gets projected only onto asingle set
of orthonormal bases, i.e. we do not compute a combination
of projections onto all theK different orthonormal basis
pairs. The only down-side of a higher value ofK is the
added computational cost during training. Again note that this
parameter will be part of any learning-based algorithm for
compression that uses a set of bases to express image patches.
(3) The value ofT during training: The value ofT is fixed
only during training, and is varied for each patch during the
testing phase so as to meet the required error threshold. A very
high value ofT during training can cause the orthonormal
basis pairs to overfit to the training data (variance), whereas
a very low value could cause a large bias error. This is an
instance of the well-known bias-variance tradeoff common in
machine learning algorithms. Our choice ofT was empirical,
though the value ofT = 10 performed very well on nearly all
the datasets we ran our experiments on. The effect of different
values ofT on the compression performance for the ORL
database is shown in Figure 3(b). We again emphasize that
the issue with the choice of an ‘optimal’T is not an artifact
of our algorithmper se. For instance, this issue of a choice
of T will also be encountered in pursuit algorithms to find
the approximately optimal linear combination of unit vectors
from a dictionary. In the latter case, however, there will also
be the problem of poorer and poorer approximation errors
as T increases, under certain conditions on the dictionary of
overcomplete basis vectors.

F. Performance on Random Collections of Images

We performed additional experiments to study the behavior
of our algorithm when the training and test sets were very
different from one another. To this end, we used the database
of 155 natural images (in uncompressed format) from the
Computer Vision Group at the University of Granada [27].
The database consists of images of faces, houses, natural
scenery, inanimate objects and wildlife. We converted all
the given images to grayscale. Our training set consisted of
patches (of size12 × 12) from 11 images. Patches from
the remaining images were part of the test set. Though the
images in the training and test sets were very different, our
algorithm produced excellent results superior to JPEG uptoan
RPP value of 3.1 bits, as shown in Figure 4(a). Two training
images and reconstructed versions of a test image for error
values of 0.0002, 0.0006 and 0.002 respectively, are shown
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Fig. 4. PSNR vs. RPP curve for our method and JPEG on (a) the CVG
Granada database and (b) the UCID database.

(a) (b) (c) (d) (e)

Fig. 5. (a) and (b): Training images from the CVG Granada database. (c) to
(e): Reconstructed versions of a test image for error valuesof 0.0002, 0.0006
and 0.002 respectively. Viewed better by ZOOMING in the pdf file.

in Figure III-F. To test the effect of minute noise on the
performance of our algorithm, a similar experiment was run
on the UCID database [28] with a training set of 10 images
and the remaining 234 test images from the database. The
test images were significantly different from the ones used for
training. The images were scaled down by a factor of two
(i.e. to320×240 instead of640×480) for faster training and
subjected to zero mean Gaussian noise of variance 0.001 (on
a scale from 0 to 1). Our algorithm was yet again competitive
with JPEG as shown in Figure 4(b).

G. Comparison with Wavelet Coding

In this section, we present experiments comparing the
performance of our method with JPEG2000 and also with a
wavelet-based compression method involving a very simple
quantization scheme that employs Huffman encoding, similar
to the quantization scheme we employed for our technique. We
would like to emphasize that JPEG2000 is an industry standard
that was developed by several researchers for over a decade.
Its strongest point is its superlative quantization and encoding
scheme, rather than the mere fact that it uses wavelet bases
[29]. On the other hand, a wavelet-coding method employing
a much simpler quantization scheme (similar to the one we
used in our technique) performs quite poorly in practice (much
worse than JPEG), with one of its major problems being that
there are no bounds that can be imposed on the values of the
wavelet coefficients in terms of the image intensity range or
patch size. In our experiments, the typical range of coefficient
values turned out to be around104. As opposed to this, the
values of the coefficients of the projected matrices in our
technique are (provably) bounded between−m and +m for
patch sizes ofm × m (as shown in Section (3B)).
In our wavelet coding strategy, we performed a decomposition
of upto four levels (level 1 giving us higher RPP and higher
PSNR, and level 4 giving us low RPP and low PSNR).
For any decomposition, the LL sub-band coefficients (also
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called the approximation coefficients) of the final level were
never thresholded. The integer parts of these coefficients
were Huffman encoded (just as in our technique) and 4 bits
were allocated for the fractional part. Having more bits for
the fractional part did not improve the ROC curves in our
experiments. The coefficients of the other sub-bands (HH,
HL, LH) at every level were thresholded using the commonly
employed Birge-Massart strategy (part of the compression
implementation in the MATLAB wavelet toolbox). Different
thresholds were used for each subband at each level. Again,
the thresholded values were coded using Huffman encoding on
the integer part followed by 4 bits for the floating point. The
specific type of wavelet that we used was ‘sym4’ as it gave
better performance than other wavelets that we tried (such as
‘db7’, biorthogonal wavelets etc).
We performed experiments comparing the compression perfor-
mance of the following four techniques: our method, JPEG,
JPEG2000 (the specific implementation being the commonly
available Jasper package [30]), wavelet methods using ‘sym4’
followed by a simple quantizer (as decribed earlier). In Figure
6, we show results on ORL and Yale databases. For the ORL
database, we also present results with db7 and biorthogonal
wavelets. As these performed much worse than sym4, we do
not show more results with them. As seen in Figure 6 (a) and
(b), our method as well as JPEG (using DCT) outperformed
the simple wavelet based techniques though not JPEG2000.
Note that there are other reports in the literature [31] that
indicate a superior performance of JPEG over wavelet-based
methods that did not use sophisticated quantizers, especially
for higher bit rates.

Thus we believe that our results will improve further if
a more sophisticated quantizer/coder is used in conjunction
with bases learned by our method. The improvement of the
quantization scheme for our technique is well beyond the
scope of the current paper. Nevertheless, we observed that the
performance of our technique was competitive with JPEG2000
for low bit rates, when negligible amounts of noise (i.i.d. zero-
mean Gaussian noise of variance8×10−4 or 10−3) were added
to the images. It should be noted that the visual effect of such
small amounts of noise is not obvious to the human eye. At
lower bit rates, we observed that our method sometimes beat
JPEG2000. This is despite the fact that wetrained our method
on noiseless images, and tested on noisy images.and the size
of the test size wasseveral times larger than the size of the
training set. The results of our method, JPEG, JPEG2000 and
wavelet coding with sym4 wavelets are shown in Figure 6(c)
to (f), for two levels of noise on the ORL and Yale databases.

IV. T HEORY: 3D (OR HIGHER-D) IMAGES

We now consider a set of images represented as third-order
matrices, each of sizeM1 ×M2 ×M3. We divide each image
into non-overlapping patches of sizem1 × m2 × m3, m1 ≪
M1, m2 ≪ M2, m3 ≪ M3, and treat each patch as a separate
tensor. Just as before, we start by exploiting the similarity
inherent in these patches, and represent them by means of
sparse projections onto a triple of exemplar orthonormal bases
learned from a set of training image patches. Note that our
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Fig. 6. PSNR vs. RPP curve for our method, JPEG, JPEG2000 (JASPER)
and wavelet coding with ‘sym4’ wavelets on (a) ORL Database and (b) Yale
Database (with no noise). (c) and (d): with iid Gaussian noise of mean zero
and variance8×10−4, (e) and (f): with iid Gaussian noise of mean zero and
variance10−3. Image are best viewed by ZOOMING into the pdf file.

extension to higher dimensions is non-trivial, especiallygiven
that a key property of the SVD in 2D (namely that SVD
provides the optimal lower-rank reconstruction by simple
nullification of the lowest singular values) does not extend
into higher-dimensional analogs such as HOSVD [13]. In
the following, we now describe the mathematical structure
of the exemplars. Note that though the derivations presented
in this paper are for 3D matrices, a very similar treatment
is applicable to learningn-tuples of orthonormal bases for
patches fromn-D matrices (wheren ≥ 4).

A. Exemplar Bases and Sparse Projections

Let P ∈ Rm1×m2×m3 be an image patch. Using HOSVD,
we can representP as a combination of orthonormal bases
U ∈ Rm1×m1 , V ∈ Rm2×m2 and W ∈ Rm3×m3 in the
form P = S ×1 U ×2 V ×3 W , whereS ∈ Rm1×m2×m3 is
termed the core-tensor. The operators×i refer to tensor-matrix
multiplication over different axes. The core-tensor has special
properties such as all-orthogonality and ordering. See [13] for
more details. Now,P can also be represented as a combination
of any set of orthonormal bases̄U , V̄ andW̄ , different from
those obtained from the HOSVD ofP . In this case, we have
P = S ×1 Ū ×2 V̄ ×3 W̄ whereS is not guaranteed to be an
all-orthogonal tensor, nor is it guaranteed to obey the ordering
property.

As the HOSVD does not necessarily provide the bestlow-
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rank approximation to a tensor [13], we choose to depart
from this notion (instead of settling for a sub-optimal approx-
imation), and instead answer the following question: What
sparsetensorQ ∈ Rm1×m2×m3 will reconstructP from a
triple of orthonormal bases(Ū , V̄ , W̄ ) with the least error
‖P − Q ×1 Ū ×2 V̄ ×3 W̄‖2? Sparsity is again quantified
by an upper boundT on the L0 norm of Q (denoted as
‖Q‖0). We now prove that theoptimal Q with this sparsity
constraint is obtained by nullifying the least (in absolutevalue)
m1m2m3 − T elements of the estimated projection tensor
S = P ×1 ŪT ×2 V̄ T ×3 W̄T . Due to the ortho-normality
of Ū , V̄ andW̄ , this simple greedy algorithm turns out to be
optimal (see Theorem 2).
Theorem 2: Given a triple of orthonormal bases(Ū , V̄ , W̄ ),
the optimal sparse projection tensorQ with ‖Q‖0 = T is
obtained by setting to zerom1m2m3 − T elements of the
tensorS = P ×1 ŪT ×2 V̄ T ×3 W̄T having least absolute
value.
Proof: We have P = S ×1 Ū ×2 V̄ ×3 W̄ . The error
in reconstructing a patchP using some other matrixQ is
e = ‖(S − Q) ×1 Ū ×2 V̄ ×3 W̄‖2. For any tensorX , we
have‖X‖2 = ‖X(n)‖2 (i.e. the Frobenius norm of the tensor
and itsnth unfolding are the same [13]). Also, by the matrix
representation of HOSVD, we haveX(n) = Ū ·S(n)·(V̄ ⊗W̄ )5.
Hence, it follows thate = ‖Ū · (S−Q)(1) · (V̄ ⊗W̄ )T ‖2. This
gives use = ‖S − Q‖2. The last step follows becausēU ,
V̄ and W̄ , and hencēV ⊗ W̄ are orthonormal matrices. Let
I1 = {(i, j, k)|Qijk = 0} and I2 = {(i, j, k)|Qijk 6= 0}.
Then e =

∑
(i,j,k)∈I1

S2
ijk +

∑
(i,j,k)∈I2

(Sijk − Qijk)2. This
error will be minimized whenSijk = Qijk in all locations
where Qijk 6= 0 and Qijk = 0 at those indices where the
corresponding values inS are as small as possible. Thus if we
want ‖Q‖0 = T , thenQ is the tensor obtained by nullifying
m1m2m3−T entries fromS that have the least absolute value
and leaving the remaining elements intact.
We wish to re-emphasize that a key feature of our approach
is the fact that the same technique used for 2D images
scales to higher dimensions. Tensor decompositions such as
HOSVD do not share this feature, because the optimal low-
rank reconstruction property for SVD does not extend to
HOSVD. Furthermore, though the upper and lower error
bounds for core-tensor truncation in HOSVD derived in [18]
are interesting, they are applicable only when the entire set
of images has a common basis (i.e. a commonU , V andW

matrix), which may not be sufficient to compactly account for
the variability in real datasets.

B. Learning the Bases

We now describe a method to learnK exemplar orthonormal
bases{(Ua, Va, Wa)}, 1 ≤ a ≤ K, to encode a training set of
N image patchesPi ∈ Rm1×m2×m3 (1 ≤ i ≤ N ) with least
possible error (in theL2 norm sense). Note thatK ≪ N .
In addition, we impose a sparsity constraint that everySia

(the tensor used to reconstructPi from (Ua, Va, Wa)) has at

5HereA⊗B refers to the Kronecker product of matricesA ∈ RE1×E2 and
B ∈ RF1×F2 , which is given asA ⊗ B = (Ae1e2

B)1≤e1≤E1,1≤e2≤E2
.

mostT non-zero elements. The main objective function to be
minimized is:

E({Ua, Va, Wa, Sia, Mia}) =
N∑

i=1

K∑

a=1

Mia‖Pi − Sia ×1 Ua ×2 Va ×3 Wa‖2 (11)

subject to the following constraints:

(1)UT
a Ua = V T

a Va = WT
a Wa = I, ∀a. (2) ‖Sia‖0 ≤ T, ∀(i, a).

(3)
∑

a

Mia = 1, ∀i, andMia ∈ {0, 1}, ∀i, a.

(12)

Here Mia is a binary matrix of sizeN × K which indi-
cates whether theith patch belongs to the space defined by
(Ua, Va, Wa). Just as for the 2D case, we relax the binary
membership constraint so that nowMia ∈ (0, 1), ∀(i, a),
subject to

∑K

a=1 Mia = 1, ∀i. Using Lagrange parameters
{µi}, symmetric Lagrange matrices{Λ1a}, {Λ2a} and{Λ3a},
and a temperature parameterβ, we obtain the following
deterministic annealing objective function:

E({Ua, Va, Wa, Sia, Mia}) =
N∑

i=1

K∑

a=1

Mia‖Pi − Sia ×1 Ua ×2 Va ×3 Wa‖2+

1

β

∑

ia

Mia log Mia +
∑

i

µi(
∑

a

Mia − 1)+

∑

a

trace(Λ1a(UT
a Ua − I))+

∑

a

trace(Λ2a(V T
a Va − I)) +

∑

a

trace(Λ3a(WT
a Wa − I)).

(13)

We first initialize{Ua}, {Va} and{Wa} to random orthonor-
mal tensors∀a, and Mia = 1

K
, ∀(i, a). Using the fact that

{Ua}, {Va} and{Wa} are orthonormal, the projection matrix
Sia is computed by the rule:

Sia = Pi ×1 UT
a ×2 V T

a ×3 WT
a , ∀(i, a). (14)

This is the minimum of the energy function‖Pi − Sia ×1

Ua ×2 Va ×3 Wa‖2. Thenm1m2m3 −T elements inSia with
least absolute value are nullified. Thereafter,Ua, Va andWa

are updated as follows. Denote the sum of the terms in the
previous energy function that are independent ofUa, as C,
denoting the thenth unfolding of the tensorPi asPi(n) (details
in [13]). Using the fact that‖X‖2 = ‖X(n)‖2 for any tensor
X , we write the energy function as:

E({Ua, Va, Wa, Sia, Mia}) =
∑

ia

Mia‖Pi − (Sia ×1 Ua ×2 Va ×3 Wa)‖2+

∑

a

trace(Λ1a(UT
a Ua − I)) + C

(15)
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This produces:

E({Ua, Va, Wa, Sia, Mia})
=

∑

ia

Mia‖Pi(1) − Ua · Sia(1) · (Va ⊗ Wa)T ‖2+

∑

a

trace(Λ1a(UT
a Ua − I)) + C

=
∑

ia

Mia[trace(PT
i(1)Pi(1))−

2trace(PT
i(1)Ua · Sia(1) · (Va ⊗ Wa)T )+

trace(ST
ia(1)Sia(1))] +

∑

a

trace(Λ1a(UT
a Ua − I)) + C. (16)

Setting the derivative ofE w.r.t. Ua to zero, and eliminating
Lagrange matrices, we have an update rule forUa:

ZUa =
∑

i

MiaPi(1)(Va ⊗ Wa)ST
ia(1);

Ua = ZUa(ZT
UaZUa)−

1

2 = Γ1aΥT
1a. (17)

HereΓ1a andΥ1a are orthonormal matrices obtained from the
SVD of ZUa. Va andWa are updated similarly by second and
third unfolding of the tensors respectively. The membership
values are obtained by:

Mia =
e−β‖Pi−Sia×1Ua×2Va×3Wa‖

2

∑K

b=1 e−β‖Pi−Sib×1Ub×2Vb×3Wb‖2
. (18)

The core tensors{Sia} and the matrices{Ua, Va, Wa}, M are
then updated sequentially following one another for a fixed
β value, until convergence. The value ofβ is then increased
and the sequential updates are repeated. The entire processis
repeated until an integrality condition is met.

C. Application to Compact Image Representation

Quite similar to the 2D case, after the optimization during
the training phase, each training patchPi (1 ≤ i ≤ N ) gets
represented as a projection onto one out of theK exemplar
orthonormal bases, which produces the least reconstruction
error, i.e. thekth exemplar is chosen if‖P − Sik ×1 Uk ×2

Vk ×3 Wk‖2 ≤ ‖P − Sia ×1 Ua ×2 Va ×3 Wa‖2, ∀a ∈
{1, 2, ..., K}, 1 ≤ k ≤ K. For patch trainingPi, we denote
the corresponding ‘optimal’ projection tensor asS⋆

i = Sik, and
the corresponding exemplar as(U⋆

i , V ⋆
i , W ⋆

i ) = (Uk, Vk, Wk).
Thus the entire set of patches can be closely approximated by
(1) thecommonset of basis-pairs{(Ua, Va, Wa)}, 1 ≤ a ≤ K

(K ≪ N ), and (2) the optimal sparse projection tensors{S⋆
i }

for each patch, with at mostT non-zero elements each. The
overall storage per image is thus greatly reduced. Furthermore,
these bases{(Ua, Va, Wa)} can now be used to encode patches
from a new set of images that are similar to the ones existing
in the training set, though just as in the 2D case, the sparsity of
the patch will be adjusted dynamically in order to meet a given
error threshold. Experimental results for this are provided in
the next section.

V. EXPERIMENTS: COLOR IMAGES

In this section, we describe the experiments we performed
on color images represented in the RGB color scheme. Each

image of sizeM1×M2×3 was treated as a third-order matrix.
Our compression algorithm was tested on the GaTech Face
Database [32], which consists of RGB color images with 15
images each of 50 different people. The images in the database
are already cropped to include just the face, but some of them
contain small portions of a distinctly cluttered background.
The average image size is150×150 pixels, and all the images
are in the JPEG format. For our experiments, we divided this
database into a training set of one image each of 40 different
people, and a test set of the remaining 14 images each of these
40 people, and all 15 images each of the remaining 10 people.
Thus, the size of the test set was 710 images. The patch-size
we chose for the training and test sets was12 × 12 × 3 and
we experimented withK = 100 different orthonormal bases
learned during training. The value ofT during training was set
to 10. At the time of testing, for our method, each patch was
projected onto that triple of orthonormal bases(U⋆

i , V ⋆
i , W ⋆

i )
which gave the sparsest projection tensorS⋆

i such that the

per-pixel reconstruction error‖Pi−Si×1U⋆

i
×2V ⋆

i
×3W ⋆

i
‖2

m1m2

was no
greater than a chosenδ. Note that, in calculating the per-
pixel reconstruction error, we did not divide by the number of
channels, i.e. 3, because at each pixel, there are three values
defined. We experimented with different reconstruction error
valuesδ ranging from8 × 10−5 to 8 × 10−3. Following the
reconstruction, the PSNR for the entire image was measured,
and averaged over the entire test test. The total number of
bits per pixel, i.e. RPP, was also calculated for each image
and averaged over the test set. The details of the training
and testing methodology, and also the actual quantization and
coding step are the same as presented previously in Section
III-A and III-B.

A. Comparisons with Other Methods

The results obtained by our method were compared to those
obtained by four techniques: (1) KSVD, (2) Our algorithm
on 2D with separate channels and (3) the JPEG standard. (1)
For KSVD, we used patches of size12 × 12 × 3 reshaped to
give vectors of size 432, and used these to train a dictionary
of 1340 vectors using a value ofT = 30. (2) For our
algorithm for 2D images from Section II with an independent
(separate) encoding of each of the three channels. As an
independent coding of the R, G and B slices would fail
to account for the inherent correlation between the channels
(and hence give inferior compression performance), we used
principal components analysis (PCA) to find the three principal
components of the R, G, B values of each pixel from the
training set. The R, G, B pixel values from the test images
were then projected onto these principal components to givea
transformed image in which the values in each of the different
channels are decorrelated. A similar approach has been taken
earlier in [33] for compression of color images of faces using
vector quantization, where the PCA method is empirically
shown to produce channels that are even more decorrelated
than those from the Y-Cb-Cr color model. The orthonormal
bases were learned on each of the three (decorrelated) channels
of the PCA image. This was followed by the quantization and
coding step similar to that described in Section III-B. However
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in the color image case, the Huffman encoding step for finding
the optimal values ofa1, a2 anda3 in Eqn. (10) was performed
using projection matrices from all three channels together. This
was done to improve the coding efficiency. (3) For the JPEG
standard (its MATLABR© implementation) we calculated RPP
from the number of bytes of file storage on the disk. See
Section V-B for more details.

We would like to mention here that we did not compare
our technique with the face image compression technique
presented in [33]. The latter requires prior demarcation of
the salient feature regions, which are encoded with more bits.
Our method does not require any such prior segmentation, as
we manually tune the number of coefficients to meet the pre-
specified reconstruction error.

B. Results

As can be seen from Figure 7(a), all three methods perform
well, though the higher-order method produced the best results
after a bit-rate of around 2 per pixel. For the GaTech database,
we did not compare our algorithm directly with JPEG because
the images in the database are already in the JPEG format.
However, to facilitate comparison with JPEG, we used a subset
of 54 images from the CMU-PIE database [34]. The CMU-PIE
database contains images of several people against cluttered
backgrounds with a large variation in pose, illumination, facial
expression and occlusions created by spectacles. All the im-
ages are available in an uncompressed (.ppm) format, and their
size is631×467 pixels. We chose 54 images belonging to one
and the same person, and used exactly one image for training,
and all the remaining for testing. Experiments with our higher-
order method, our method involving separate channels and
also KSVD, revealed performance that is competitive with
JPEG. For a bit rate of greater than 1.5 per pixel, our methods
produced performance that was superior to that of JPEG in
terms of the PSNR for a given RPP, as seen in Figure V-B. The
parameters for this experiment wereK = 100 andT = 10 for
training. Sample reconstructions of an image from the CMU-
PIE database using our higher-order method for different error
values are shown in Figure V-B. This is quite interesting, since
there is considerable variation between the training imageand
the test images, as is clear from Figure V-B. We would like to
emphasize that the experiments were carried out on uncropped
images of the full size with the complete cluttered background.
Also, the dictionary sizes for the experiments on each of these
databases are summarized in Table II. For color-image patches
of sizem1×m2×3 usingK sets of bases, our method in 3D
requires a dictionary of size3Km1m2, whereas our method in
2D requires a dictionary of size2Km1m2 per channel, which
is 6Km1m2 in total.

C. Comparisons with JPEG on Noisy Datasets

As mentioned before, we did not directly compare our
results to the JPEG technique for the GaTech Face Database,
because the images in the database are already in the JPEG
format. Instead, we added zero-mean Gaussian noise of vari-
ance8 × 10−4 (on a color scale of[0, 1]) to the images of
the GaTech database and converted them to a raw format.
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Fig. 7. ROC curves for the GaTech database: (a) when trainingand testing
were done on the clean original images, (b) when training wasdone on clean
images, but testing was done with additive zero mean Gaussian noise of
variance8×10−4 added to the test images, and (c) when training and testing
were both done with zero mean Gaussian noise of variance8 × 10−4 added
to the respective images. The methods tested were our higher-order method,
our method in 2D, KSVD and JPEG. Parameters for our methods:K = 100
andT = 10 during training.These plots are viewed best in color.

Training Image Original Test Image Error 0.003

Error 0.001 Error 0.0005 Error 0.0003

Fig. 8. Sample reconstructions of an image from the CMU-PIE database
with different error values using our higher order method. The original image
is on the top-left.These images are viewed best in color and when zoomed
in the pdf file.
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Fig. 9. ROC curves for the CMU-PIE database using our method in 3D, our
method in 2D, KSVD and JPEG. Parameters for our methods: withK = 100
andT = 10 during training.These plots are viewed best in color.
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Method Dictionary Size (number of scalars)
Our Method (3D) 100 × 3 × 12 × 12 = 43200
Our Method (2D) 50 × 2 × 3 × 12 × 12 = 43200

KSVD 1340 × 12 × 12 × 3 = 578880

TABLE II
COMPARISON OF DICTIONARY SIZE FOR VARIOUS METHODS FOR

EXPERIMENTS ON THEGATECH AND CMU-PIE DATABASES.

Following this, we converted these raw images back to JPEG
(using MATLAB R©) and measured the RPP and PSNR. These
figures were pitted against those obtained by our higher-order
method, our method on separate channels, as well as KSVD,
as shown in Figures 7(b) and 7(c). The performance of JPEG
was distinctly inferior despite the fact that the noise added
did not have a very high variance. The reason for this is
that the algorithms used by JPEG cash in on the fact that
while representing most natural images, the lower frequencies
strongly dominate. This assumption can fall apart in case of
sensor noise. As a result, the coefficients produced by the DCT
step of JPEG on noisy images will possess prominently higher
values, giving rise to higher bit rates for the same PSNR. For
the purposes of comparison, we ran two experiments using our
higher-order method, our separate channel method and KSVD
as well. In the first experiment, noise was added only to the
test set, though the orthonormal bases or the dictionary were
learned on a clean training set (i.e. without noise being added
to the training images). In the second experiment, noise was
added to every image from the training set, and all methods
were trained on these noisy images. The testing was performed
on (noisy) images from the test set, and the ROC curves were
plotted as usual. As can be seen from Figures 7(b) and 7(c),
the PSNR values for JPEG begin to plateau off rather quickly.
Note that in all these experiments, the PSNR is calculated from
the squared difference between the reconstructed image and
the noisy training image. This is because the ‘original clean’
image would be usually unavailable in a practical application
that required compression of noisy data.

VI. CONCLUSION

We have presented a new technique for sparse representation
of image patches, which is based on the notion of treating
an image as a 2D entity. We go beyond the usual singular
value decomposition of individual images or image-patchesto
learn a set of common, full-sized orthonormal bases forsparse
representation, as opposed to low-rank representation. For the
projection of a patch onto these bases, we have provided a
very simple and provably optimal greedy algorithm, unlike
the approximation algorithms that are part and parcel of pro-
jection pursuit techniques, and which may require restrictive
assumptions on the nature or properties of the dictionary
[21]. Based on the developed theory, we have demonstrated a
successful application of our technique for the purpose of com-
pression of two well-known face databases. Our compression
method is able to handle the varying complexity of different
patches by dynamically altering the number of coefficients
(and hence the bit-rate for storage) in the projection matrix

of the patch. Furthermore, this paper also presents a clean
and elegant extension to higher order matrices, for which
we have presented applications to color-image compression.
Unlike decompositions like HOSVD which do not retain the
optimal low-rank reconstruction property of SVD, our method
scales cleanly into higher dimensions. The experimental results
show that our technique compares very favorably to other
existing approaches from recent literature, including theJPEG
standard. We have also empirically examined the performance
of our algorithm on noisy color image datasets.

Directions for future work include: (1) investigation of al-
ternative matrix representations tuned for specific applications
(as opposed to using the default rows and columns of the
image), (2) application of our technique for compression of
gray-scale and color video (represented as 3D and 4D matrices
respectively), or for denoising, and (3) a theoretical study of
the method in the context of natural image statistics.
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