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1. Proof of Lemmas

Here, we prove the lemmas 3 and 4 from the main paper, which deal with the issue of

selection of regularization parameter ρ. The lemmas and their proofs are obtained from

Lemma 3.4 of [7].

Lemma 3: J(θρ) is a strictly increasing function of ρ. �
Proof: Consider ρ1 < ρ2. Let θρ1 ,θρ2 be the corresponding minimizers. Then we have

J(θρ1) = zf (y,Aθρ1) + ρ1zr‖θρ1‖1 ≤ zf (y,Aθρ2) + ρ1zr‖θρ2‖1 (1)

< zf (y,Aθρ2) + ρ2zr‖θρ2‖1 = J(θρ2).

The first inequality follows because J(θρ1 is minimized by θρ1 and the second one is

because ρ1 < ρ2. Thus J(θρ1) < J(θρ2) when ρ1 < ρ2. �
Lemma 4: zf (y,Aθρ) is a non-decreasing function of ρ. �

Proof: From Lemma 3, we already have

zf (y,Aθρ1) + ρ1zr‖θρ1‖1 ≤ zf (y,Aθρ2) + ρ1zr‖θρ2‖1 (2)

zf (y,Aθρ2) + ρ2zr‖θρ2‖1 ≤ zf (y,Aθρ1) + ρ2zr‖θρ1‖1.

Dividing the two inequalities by ρ1 and ρ2 respectively, we have:

zf (y,Aθρ1)/ρ1 + zr‖θρ1‖1 ≤ zf (y,Aθρ2)/ρ1 + zr‖θρ2‖1 (3)

zf (y,Aθρ2)/ρ2 + zr‖θρ2‖1 ≤ zf (y,Aθρ1)/ρ2 + zr‖θρ1‖1.
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Adding the inequalities, we get:

zf (y,Aθρ1)/ρ1 + zf (y,Aθρ2)/ρ2 ≤ zf (y,Aθρ2)/ρ1 + zf (y,Aθρ1)/ρ2. (4)

Rearranging, we get:

(zf (y,Aθρ1)− zf (y,Aθρ2))/ρ1 ≤ zf (y,Aθρ1 − zf (yAθρ2))/ρ2. (5)

As ρ1 < ρ2, it necessarily follows that zf (y,Aθρ1)−zf (y,Aθρ2) ≤ 0, i.e. zf (y,Aθρ1) ≤
zf (y,Aθρ2), which means that zf is a non-decreasing function of ρ. �.

2. Experiments for Poisson CS

We present box-plots for each of the set of results in the main paper for Poisson CS. All

the equations are mentioned in the main paper but for completeness we present them

here again.

(i) Problem (P3): See Fig. 2.

min‖θ‖1 such that ‖
√
y + c−

√
Aθ + c‖2 ≤ ε,Ψθ � 0.

Here the bound ε was set to 2
√
N based on the tail bound from Theorem 1. Note

that the same value of ε was used in all experiments. Problem (P3) was implemented

using the well-known CVX package [8] with the SDPT3 solver.

(ii) Problem (P4): See Fig. 1.

min ρ‖θ‖1 +
N∑
i=1

((Aθ)i − yi log(Aθ)i),Ψθ � 0.

For (P4), the regularization parameter ρ was chosen omnisciently from the set

S , {10−10, 10−9, ..., 10}, i.e. choosing the particular value of ρ ∈ S that yielded

the least squared difference between the true θ (assuming it were known) and

its estimate. (P4) was implemented using the well-known SPIRAL-TAP algorithm

with a penalty for the `1 norm of DCT coefficients, for a maximum of 500 iterations

and with default parameter choices apart from ρ. In all cases, we ensured that the

algorithm converged.

(iii) Problem (P5): See Fig. 3.

min ρ‖θ‖1 + ‖
√
y + c−

√
Aθ + c‖22,Ψθ � 0,

where ρ was chosen omnisciently from S. (P5) was again implemented using CVX.



Variance Stabilization Based Compressive Inversion 3

Figure 1. Plots of RMSE(x,x∗) for (P4) using SPIRAL-TAP with ρ set omnisciently

from S. Top to bottom: RRMSE v/s Intensity I at s = 10, N = 50; RRMSE v/s

Sparsity at I = 108, N = 50; RRMSE v/s Measurements at s = 10, I = 108. In each

case, reconstruction was for a signal of 100 dimensions.
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Figure 2. Plots of RMSE(x,x∗) for (P3) using CVX-SDPT3 with ε = 2
√
N . Top

to bottom: RRMSE v/s Intensity I at s = 10, N = 50; RRMSE v/s Sparsity at

I = 108, N = 50; RRMSE v/s Measurements at s = 10, I = 108. In each case,

reconstruction was for a signal of 100 dimensions.
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Figure 3. Plots of RMSE(x,x∗) for (P5) using CVX-SDPT3 with ρ set omnisciently

from S. Top to bottom: RRMSE v/s Intensity I at s = 10, N = 50; RRMSE v/s

Sparsity at I = 108, N = 50; RRMSE v/s Measurements at s = 10, I = 108. In each

case, reconstruction was for a signal of 100 dimensions.

3. Results for Poisson-Gaussian CS

We present box-plots for each of the set of results in the main paper for Poisson CS. All

the equations are mentioned in the main paper but for completeness we present them

here again.

(i) Problem (PG3): See Fig. 5.

(PG3) : min‖θ‖1 s.t. ‖
√
y + d−

√
Aθ + d‖2 (6)

≤ ε,Ψθ � 0,

where as defined before d , c + σ2. The bound ε was set to 2
√
N . We removed

all measurements yi for which yi + d < 0. Note that the same value of ε was used

in all experiments. Problem (PG3) was implemented using the well-known CVX

package [8] with the SDPT3 solver.
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(ii) Problem (P4): See Fig. 4.

min ρ‖θ‖1 +
N∑
i=1

((Aθ)i − yi log(Aθ)i),Ψθ � 0.

For (P4), the regularization parameter ρ was chosen omnisciently from the set

S , {10−10, 10−7, ..., 10}, i.e. choosing the particular value of ρ ∈ S that yielded

the least squared difference between the true θ (assuming it were known) and

its estimate. (P4) was implemented using the well-known SPIRAL-TAP algorithm

with a penalty for the `1 norm of DCT coefficients, for a maximum of 500 iterations

and with default parameter choices apart from ρ. In all cases, we ensured that the

algorithm converged.

(iii) Problem (PG5): See Fig. 6.

(PG5) : min ρ‖θ‖1 + ‖
√
y + d−

√
Aθ + d‖22,Ψθ � 0.

(PG5) was implemented using CVX and using an omniscient choice of ρ ∈ S and

with removal of measurements for which yi + d < 0.

4. Outlier measurements in Poisson-Gaussian CS

In Poisson-Gaussian CS, measurements for which yi + d < 0 (where d , c + σ2)

are considered outlier measurements, because
√
yi + d is now complex-valued. We

argue here that outlier measurements are rare. Unfortunately, to the best of our

knowledge, there are no known tail bounds for Poisson-Gaussian random variables.

But by approximating the Poisson-Gaussian distribution for yi as N (γi, γi + σ2) and

applying a Gaussian tail bound, we see that P (yi + d ≤ 0) ≤ e−(γi+d/
√
γi+σ2)2

√
2π[γi + d/

√
γi + σ2]

.

This probability is small, when either γi or σ is large. As required by the RIP, our

reconstruction bounds hold as long as we have at least O(s logm) measurements (out of

N) for which yi + d ≥ 0. The probability that yi + d < 0 for more than N −O(s logm)

measurements is even smaller.

References

[1] M. Raginsky, R. Willett, Z. Harmany, and R. Marcia. Compressed sensing performance bounds

under Poisson noise. IEEE TSP, 58(8):3990–4002, Aug 2010.

[2] X. Jiang, G. Raskutti, and R. Willett. Minimax optimal rates for Poisson inverse problems

with physical constraints. IEEE TIT, 61(8):4458–4474, 2015.

[3] M.-H. Rohban, V. Saligrama, and D.-M. Vaziri. Minimax optimal sparse signal recovery with

Poisson statistics. IEEE TSP, 64(13):3495–3508, 2016.

[4] X. Jiang, P. Reynaud-Bouret, V. Rivoirard, L. Sansonnet, and R. Willett. A data-dependent

weighted LASSO under Poisson noise. online; accessed July 2016.

[5] Y. Li and G. Raskutti. Minimax optimal convex methods for Poisson inverse problems under

lq-ball sparsity. online; accessed July 2016.



Variance Stabilization Based Compressive Inversion 7

Figure 4. (Plots of RMSE(x,x∗) for (P4) for Poisson-Gaussian noise using SPIRAL-

TAP with ρ set omnisciently from S. Top to bottom: RRMSE v/s Intensity I at

s = 10, N = 50, σ = 200; RRMSE v/s σ at I = 108, N = 50, s = 10; RRMSE v/s

Measurements at s = 10, I = 108, σ = 200. In each case, reconstruction was for a

signal of 100 dimensions.

[6] S. Patil, K. Gurumoorthy, and A. Rajwade. Reconstruction error bounds for compressed

sensing under Poisson noise using the square root of the Jensen-Shannon divergence. https:

//arxiv.org/abs/1606.08557. Accessed December 2017.

[7] S. Anzengruber and R. Ramlau. Morozovs discrepancy principle for tikhonov-type functionals

with nonlinear operators. Inverse Problems, 26(2), 2009.

[8] Michael Grant and Stephen Boyd. CVX: Matlab software for disciplined convex programming,

version 2.1. http://cvxr.com/cvx, March 2014.

https://arxiv.org/abs/1606.08557
https://arxiv.org/abs/1606.08557
http://cvxr.com/cvx


Variance Stabilization Based Compressive Inversion 8

Figure 5. Plots of RMSE(x,x∗) for (PG3) using CVX-SDPT3 with ρ set omnisciently

from S. Top to bottom: RRMSE v/s Intensity I at s = 10, N = 50, σ = 200; RRMSE

v/s σ at I = 108, N = 50, s = 10; RRMSE v/s Measurements at s = 10, I = 108, σ =

200. In each case, reconstruction was for a signal of 100 dimensions.
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Figure 6. Plots of RMSE(x,x∗) for (PG5) using CVX-SDPT3 with ρ set omnisciently

from S. Top to bottom: RRMSE v/s Intensity I at s = 10, N = 50, σ = 200; RRMSE

v/s σ at I = 108, N = 50, s = 10; RRMSE v/s Measurements at s = 10, I = 108, σ =

200. In each case, reconstruction was for a signal of 100 dimensions.
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