Reconstruction Error Bounds for Compressed Sensing under Poisson Noise using the Square Root of the Jensen-Shannon Divergence

Sukanya Patila, Karthik S. Gurumoorthyb, Ajit Rajwadeb,∗

aDepartment of Electrical Engineering, IIT Bombay
bInternational Center for Theoretical Sciences, TIFR Bangalore
cDepartment of Computer Science and Engineering, IIT Bombay

Abstract

Reconstruction error bounds in compressed sensing under Gaussian or uniform bounded noise do not translate easily to the case of Poisson noise. Reasons for this include the signal dependent nature of Poisson noise, and also the fact that the negative log likelihood in case of a Poisson distribution (which is directly related to the generalized Kullback-Leibler divergence) is not a metric and does not obey the triangle inequality. There exist prior theoretical results in the form of provable error bounds for computationally tractable estimators for compressed sensing problems under Poisson noise. However, these results do not apply to realistic compressive systems, which must obey some crucial constraints such as non-negativity and flux preservation. On the other hand, there exist provable error bounds for such realistic systems in the published literature, but they are for estimators that are computationally intractable. In this paper, we develop error bounds for a computationally tractable estimator which also applies to realistic compressive systems obeying the required constraints. The focus of our technique is on the replacement of the generalized Kullback-Leibler divergence, with an information theoretic metric - namely the square root of the Jensen-Shannon divergence, which is related to an approximate, symmetrized version of the Poisson log likelihood function.

We show that our method allows for very simple proofs of the error bounds. We also propose and prove several interesting statistical properties of the square root of Jensen-Shannon divergence, and exploit other known ones. Numerical experiments are performed showing the practical use of the technique in signal and image reconstruction from compressed measurements under Poisson noise. Our technique has the following features: (i) It is applicable to signals that are sparse or compressible in any orthonormal basis. (ii) It works with high probability for any randomly generated sensing matrix that obeys the non-negativity and flux preservation constraints, and is derived from a ‘base matrix’ that obeys the restricted isometry property.

∗Corresponding author
Email addresses: sukanyapatil1993@gmail.com (Sukanya Patil), karthik.gurumoorthy@icst.res.in (Karthik S. Gurumoorthy), ajitvr@cse.iitb.ac.in (Ajit Rajwade)

1Karthik S. Gurumoorthy thanks the AIRBUS Group Corporate Foundation Chair in Mathematics of Complex Systems established in ICTS-TIFR.
2Ajit Rajwade gratefully acknowledges support from IIT Bombay Seed Grant number 14IRCCSG012.
Most importantly, our proposed estimator uses parameters that are purely statistically motivated and signal independent, as opposed to techniques (such as those based on the Poisson negative log-likelihood or \(\ell_2\) data-fidelity) that require the choice of a regularization or signal sparsity parameter which are unknown in practice.

Keywords: Compressed sensing, Poisson noise, reconstruction error bounds, information theoretic metric, Jensen-Shannon divergence, triangle inequality

1. Introduction

Compressed sensing is today a very mature field of research in signal processing, with several advances on the theoretical, algorithmic as well as application fronts. The theory essentially considers measurements of the form \(y = \Phi x = \Phi \Psi \theta = A \theta\) where \(y \in \mathbb{R}^N\) is a measurement vector, \(A \in \mathbb{R}^{N \times m} \triangleq \Phi \Psi\), \(\Psi \in \mathbb{R}^{m \times m}\) is a signal representation orthonormal basis, and \(\theta \in \mathbb{R}^m\) is a vector that is sparse or compressible such that \(x = \Psi \theta\). Usually \(N \ll m\). Under suitable conditions on the sensing matrix such as the restricted isometry property (RIP) and sparsity-dependent lower bounds on \(N\), it is proved that \(x\) can be recovered near-accurately given \(y\) and \(\Phi\), even if the measurement \(y\) is corrupted by signal-independent, additive noise \(\eta\) of the form \(y = \Phi x + \eta\) where \(\eta \sim \mathcal{N}(0, \sigma^2)\) or \(\|\eta\|_2 \leq \varepsilon\) (bounded noise). The specific error bound \([1]\) on \(\theta\) in the case of \(\|\eta\|_2 \leq \varepsilon\) is given as:

\[
\|\theta - \theta^*\|_2 \leq C_1 \varepsilon + \frac{C_2}{\sqrt{s}} \|\theta - \theta_s\|_1
\]

where \(\theta_s\) is a vector created by setting all entries of \(\theta\) to 0 except for those containing the \(s\) largest absolute values, \(\theta^*\) is the minimum of the following optimization problem denoted as \((P1)\),

\[
(P1): \text{minimize} \|z\|_1 \text{ such that } \|y - Az\|_2 \leq \varepsilon,
\]

and \(C_1\) and \(C_2\) are constants independent of \(m \) or \(N\) but dependent only on \(\delta_{2s}\), the so-called restricted isometry constant (RIC) of \(A\). These bounds implicitly require that \(N \sim \Omega(s \log m)\), and \(\Phi\) (and hence \(\Phi \Psi\)) is said to obey the RIP if \(\delta_{2s} < 1\).

The noise affecting several different types of imaging systems is, however, known to follow the Poisson distribution. Examples include photon-limited imaging systems deployed in night-time photography \([2]\), astronomy \([3]\), low-dosage CT or X-ray imaging \([4]\) or fluorescence microscopy \([5, 6]\). The Poisson noise model is given as follows:

\[
y \sim \text{Poisson}(\Phi x)
\]

where \(x \in \mathbb{R}^m_{\geq 0}\) is the *non-negative* signal or image of interest. The likelihood of observing a given measurement vector \(y\) is given as

\[
p(y|\Phi x) = \prod_{i=1}^n \frac{[(\Phi x)_i]^{y_i} e^{-(\Phi x)_i}}{y_i!}
\]
where y_i and $(\Phi x)_i$ are the i^{th} component of the vectors y and Φx respectively.

Unfortunately, the mathematical guarantees for compressive reconstruction from bounded or Gaussian noise [7, 1, 8] are no longer directly applicable to the case where the measurement noise follows a Poisson distribution, which is the case considered in this paper. One important reason for this is a feature of the Poisson distribution - that the mean and the variance are equal to the underlying intensity, thus deviating from the signal independent or bounded nature of other noise models.

Furthermore, the aforementioned practical imaging systems essentially act as photon-counting systems. Not only does this require non-negative signals of interest, but it also imposes crucial constraints on the nature of the sensing matrix Φ:

1. Non-negativity: $\forall i, \forall j, \Phi_{ij} \geq 0$
2. Flux-preservation: The total photon-count of the observed signal Φx can never exceed the photon count of the original signal x, i.e., $\sum_{i=1}^{N}(\Phi x)_i \leq \sum_{i=1}^{m} x_i$. This in turn imposes the constraint that every column of Φ must sum up to a value no more than 1, i.e. $\forall j, \sum_{i=1}^{N} \Phi_{ij} \leq 1$.

A randomly generated non-negative and flux-preserving Φ matrix does not (in general) obey the RIP. This situation is in contrast to randomly generated Gaussian or Bernoulli (± 1) random matrices which obey the RIP with high probability [9], and poses several challenges. However following prior work, we construct a related matrix $\tilde{\Phi}$ from Φ which obeys the RIP (see Section 2.1).

1.1. Main Contributions

The derivation of the theoretical performance bounds in Eqn. 1 based on the optimization problem in Eqn. 2 cannot be used in the Poisson noise model case, as it is well known that the use of the ℓ_2 norm between y and Φx leads to oversmoothing in the lower intensity regions and undersmoothing in the higher intensity regions. To estimate an unknown parameter set x given a set of Poisson-corrupted measurements y, one proceeds by the maximum likelihood method. Dropping terms involving only y, this reduces to maximization of the quantity $\sum_{i=1}^{N} y_i \log \frac{y_i}{(\Phi x)_i} - \sum_{i=1}^{n} y_i + \sum_{i=1}^{n} (\Phi x)_i$, which is called the generalized Kullback-Leibler divergence [10] between y and Φx - denoted as $G(y, \Phi x)$. This divergence measure, however, does not obey the triangle inequality, quite unlike the ℓ_2 norm term in Eqn. 2 which is a metric. This ‘metric-ness’ of the ℓ_2 norm constraint is an important requirement for the error bounds in Eqn. 1 proved in [1]. For instance, the triangle inequality of the ℓ_2 norm is used to prove that $\|A(\theta - \theta^*)\|_2 \leq 2\varepsilon$ where θ^* is the minimizer of Problem (P1) in Eqn. 2. This is done in the following manner:

$$\|A(\theta - \theta^*)\|_2 \leq \|y - A\theta\|_2 + \|y - A\theta^*\|_2 \leq 2\varepsilon.$$

(5)

This upper bound on $\|A(\theta - \theta^*)\|_2$ is a crucial step in [1], for deriving the error bounds of the form in Eqn. 1.
The ℓ_2 norm is however not appropriate for the Poisson noise model for the aforementioned reasons. The first major contribution of this paper is to replace the ℓ_2 norm error term by a term which is more appropriate for the Poisson noise model and which, at the same time, is a metric. The specific error term that we choose here is the square root of the Jensen-Shannon divergence, which is a well-known information theoretic metric \cite{11}. Hereafter we abbreviate the Jensen-Shannon divergence as JSD, its square-root as SQJSD, and denote them as J and \sqrt{J} respectively within equations. Let θ^* be the minimizer of the following optimization problem which we denote as (P2):

$$(P2): \text{minimize } \|z\|_1 \text{ such that } \sqrt{J(y, Az)} \leq \varepsilon, \Psi z \succeq 0, \|\Psi z\|_1 = I,$$

(6)

where $I \triangleq \sum_{i=1}^{m} x_i$ is the total intensity of the signal of interest and ε is an upper bound on $\sqrt{J(y, Az)}$ that we set to $\sqrt{N \left(\frac{1}{2} + \sqrt{\frac{11}{8}} \right)}$ (for reasons that will be clear in Section 2 and 7). We then prove that with high probability

$$\frac{\|\theta - \theta^*\|_2}{I} \leq C_1 O \left(\frac{N}{\sqrt{I}} \right) + \frac{C_2}{I^{1/2}} \|\theta - \theta^*\|_1$$

(7)

where C_1 and C_2 are constants that depend only on the RIC of the sensing matrix $\tilde{\Phi}$ derived from Φ. This result is proved in Section 2 followed by an extensive discussion. Note that for orthonormal Ψ, we also have $\|x - x^*\|_2 = \|\theta - \theta^*\|_2$ where $x^* = \Psi \theta^*$. In particular, we explain the reason behind the apparently counter-intuitive first term which is increasing in N: namely, that a Poisson imaging system distributes the total incident photon flux across the N measurements, reducing the SNR per measurement and hence affecting the performance. This phenomenon has been earlier observed in \cite{12}. Our performance bounds derived independently and via a completely different method confirm the same phenomenon.

While there exists a body of earlier work on reconstruction error bounds for Poisson regression, the approach taken in this paper is different, and has the following features:

1. **Statistically motivated parameters**: Our proposed estimator does not require tweaking of a regularization or signal sparsity parameter, but uses a constrained optimization procedure with a signal-independent parameter dictated by the statistical properties of the SQJSD as shown in Section 2.2. This is in contrast with estimators based on the Poisson NLL or the ℓ_2 error between y and $A\theta$, which require regularization or constraint parameters which are dependent on the unknown signal. Hence, our estimator has significant advantages in terms of practical implementation.

2. **Confluence of computational tractability and realizability**: Existing techniques such as \cite{12} work with intractable estimators for Poisson compressed sensing although they are designed to deal with physically realizable compressive systems. On the other hand, there are several techniques such as \cite{13, 14, 15, 16} which are applicable to computationally efficient estimators (convex programs) for sparse Poisson regression and produce provable guarantees, but they do not impose important constraints required for physical implementability. Our approach, however, works with a computationally tractable estimator.
involving regularization with the ℓ_1 norm of the sparse coefficients representing the signal, while at the same time being applicable to physically realizable compressive systems. See Section 4 for a detailed comparison.

3. **Novel estimator:** Our technique demonstrates successfully (for the first time, to the best of our knowledge) the use of the JSD and the SQJSD for Poisson compressed sensing problems, at a theoretical as well as experimental level. Our work exploits several interesting properties of the JSD, some of which we derive in this paper.

4. **Simplicity:** Our technique affords (arguably) much simpler proofs than existing methods.

1.2. **Organization of the Paper**

The main theoretical result is derived in detail in Section 2, especially Section 2.2. Numerical simulations are presented in Section 3. Relation to prior work on Poisson compressed sensing is examined in detail in Section 4, followed by a discussion in Section 6. The proofs of some key theorems are presented in Section 7. The relation between the JSD and a symmetrized version of the Poisson likelihood is examined in Section 5.

2. **Main Result**

2.1. **Construction of Sensing Matrices**

We construct a sensing matrix Φ ensuring that it corresponds to the forward model of a real optical system, based on the approach in [12]. Therefore it has to satisfy certain properties imposed by constraints of a physically realizable optical system - namely non-negativity and flux preservation. One major difference between Poisson compressed sensing and conventional compressed sensing emerges from the fact that conventional randomly generated sensing matrices which obey RIP do not follow the aforementioned physical constraints (although sensing matrices can be designed to obey the RIP, non-negativity and flux preservation simultaneously as in [17], and we comment upon this aspect in the remarks following the proof of our key theorem, later on in this section). In the following, we construct a sensing matrix Φ which has only zeroes or (scaled) ones as entries. Let Z be a $N \times m$ matrix whose entries $Z_{i,j}$ are i.i.d random variables defined as follows,

$$Z_{i,j} = \begin{cases} -\sqrt{\frac{1-p}{p}} & \text{with probability } p, \\ \sqrt{\frac{p}{1-p}} & \text{with probability } 1-p. \end{cases}$$

Let us define $\tilde{\Phi} \triangleq \frac{Z}{\sqrt{N}}$. For $p = 1/2$, the matrix $\tilde{\Phi}$ now follows RIP of order $2s$ with a very high probability given by $1 - 2e^{-Nc(1+\delta_{2s})}$ where δ_{2s} is its RIC of order $2s$ and function $c(h) \triangleq \frac{h^2}{4} - \frac{h^3}{6}$ [17]. In other words,
for any 2s-sparse signal ρ, the following holds with high probability

$$(1 - \delta_{2s})\|\rho\|_2^2 \leq \|\tilde{\Phi}\|_2^2 \leq (1 + \delta_{2s})\|\rho\|_2^2.$$

Given any orthonormal matrix Ψ, arguments in [9] show that $\tilde{\Phi}\Psi$ also obeys the RIP of the same order as $\tilde{\Phi}$.

However $\tilde{\Phi}$ will clearly contain negative entries with very high probability, which violates the constraints of a physically realizable system. To deal with this, we construct the flux-preserving and positivity preserving sensing matrix Φ from $\tilde{\Phi}$ as follows:

$$\Phi \triangleq \sqrt{p(1-p)} \tilde{\Phi} + (1-p) \mathbf{1}_{N \times m},$$

which ensures that each entry of Φ is either 0 or $\frac{1}{N}$. In addition, one can easily check that Φ satisfies both the non-negativity as well as flux-preservation properties. We refer to $\tilde{\Phi}$ as the ‘base matrix’ for Φ.

2.2. The Jensen-Shannon Divergence and its Square Root

The well-known Kullback-Leibler Divergence between vectors $p \in \mathbb{R}_{\geq 0}^{n \times 1}$ and $q \in \mathbb{R}_{\geq 0}^{n \times 1}$ denoted by $D(p, q)$ is defined as

$$D(p, q) \triangleq \sum_{i=1}^{n} p_i \log \frac{p_i}{q_i}.$$

The Jensen-Shannon Divergence between p and q denoted by $J(p, q)$ is defined as

$$J(p, q) \triangleq \frac{D(p, m) + D(q, m)}{2}$$

where $m \triangleq \frac{1}{2}(p + q)$.

The performance bounds derived in this paper for reconstruction from Poisson-corrupted measurements deal with the estimate obtained by solving the constrained optimization problem (P2) in Eqn. 6 where we consider a statistically motivated upper bound of ε on the SQJSD. The motivation for this formulation will be evident from the following features of the JSD considered in this section: (1) the metric nature of (including the triangle inequality observed by) its square-root, (2) its relation with the total variation distance $V(p, q) \triangleq \sum_i |p_i - q_i|$, and (3) interesting statistical properties of $\sqrt{J(y, \Phi x)}$. These features, the last of which are proved in this paper, are very useful in deriving the performance bounds in the following sub-section.

Lemma 1: The square root of the Jensen-Shannon Divergence is a metric [11].

3Note that the Kullback-Leibler and other divergences are usually defined for probability mass functions, but they have also been used in the context of general non-negative vectors in the same manner as we do in this paper.
Lemma 2: Let us define
\[V(p, q) \triangleq \sum_{i=1}^{n} |p_i - q_i| \]
\[\Delta(p, q) \triangleq \sum_{i=1}^{n} |p_i - q_i|^2. \]

If \(p, q \succeq 0 \) and \(\|p\|_1 \leq 1, \|q\|_1 \leq 1 \) then as per [11],
\[\frac{1}{2} V(p, q)^2 \leq \Delta(p, q) \leq 4 J(p, q). \] (12)

Additionally, we have experimentally observed some interesting properties of the distribution of the SQJSD values, across different Poisson realizations of compressive measurements of a signal \(x \), acquired with a fixed and realistic sensing matrix \(\Phi \) as described in Section 2.1. In other words, if \(y \sim \text{Poisson}(\Phi x) \), then we consider the distribution of \(\sqrt{J(y, \Phi x)} \) across different realizations of \(y \). Our observations, shown in Figure 1 are as follows:

1. Beyond a threshold \(\tau \) on the intensity \(I \), the expected value of \(\sqrt{J(y, \Phi x)} \) is nearly constant (say some \(\kappa \)), and independent of \(I \), given a fixed number of measurements \(N \). For \(I \leq \tau \), we have \(\sqrt{J(y, \Phi x)} \leq \kappa \).
2. The variance of \(\sqrt{J(y, \Phi x)} \) is small, irrespective of the value of \(I \) and \(N \).
3. For any \(I \), the mean (and any chosen percentile, such as the 99 percentile) of \(\sqrt{J(y, \Phi x)} \) scales as \(O(N^{0.5}) \) w.r.t. \(N \) with a constant factor very close to 1.
4. Irrespective of \(I, N \) or \(m \), the distribution of \(\sqrt{J(y, \Phi x)} \) is Gaussian with mean and standard deviation equal to the empirical mean and empirical standard deviation of the values of \(\sqrt{J(y, \Phi x)} \). This is confirmed by a Kolmogorov-Smirnov (KS) test even at 1% significance (see [18]).

We emphasize that as per our extensive simulations, these properties are independent of specific realizations of \(\Phi, x \) or the dimensionality or sparsity of \(x \). Our scripts to reproduce these results are included at [18].

Our attempt to formalize these observations lead to the following theorem which we prove in Section 7.

Theorem 1: Let \(y \in \mathbb{Z}^N_+ \) be a vector of compressive measurements such that \(y_i \sim \text{Poisson}[(\Phi x)_i] \) where \(\Phi \in \mathbb{R}^{N \times m} \) is a non-negative flux-preserving matrix as per Eqn. 9 and \(x \in \mathbb{R}^m \) is a non-negative signal. Define \(s_i \triangleq N \times (\Phi x)_i \). Then we have:

1. \(E[\sqrt{J(y, \Phi x)}] \leq \sqrt{N/4} \)
2. If \(N \geq 32, v \triangleq \text{Var}[\sqrt{J(y, \Phi x)}] \leq \frac{11 + 5 \sum_{i=1}^{N} 1/s_i}{\sum_{i=1}^{N} \max(0, 4(2 - 1/s_i))} \)
3. \(P\left(\sqrt{J(y, \Phi x)} \leq \sqrt{N \left(\frac{1}{2} + \frac{\sqrt{N}}{\sqrt{8}} \right)} \right) \geq 1 - 1/N. \) This probability can be refined to approximately \(1 - 2e^{-N/2} \) using the Central limit theorem.

We make a few comments below:
Figure 1: First row: Box plot and plot of variance of the values of $\sqrt{J(y, \Phi x)}$ versus I for a fixed $N = 500$ for a signal of dimension $m = 1000$. Second row: Box plot and plot of the variance of the values of $\sqrt{J(y, \Phi x)}$ versus N for a fixed $I = 10^6$ for a signal of dimension $m = 1000$. The line above the box-plots in the top figure represents the curve for $N^{0.43}$. Third row: Empirical CDF of $\sqrt{J(y, \Phi x)}$ for $N = 100, I = 10^4, m = 500$ compared to a Gaussian CDF with mean and variance equal to that of the values of $\sqrt{J(y, \Phi x)}$. Scripts for reproducing these results are available at [18].

1. $E[\sqrt{J(y, \Phi x)}]$ does not increase with I. This property is not shared by the negative log-likelihood of the Poisson distribution. This forms one major reason for using SQJSD as opposed to the latter, for deriving the bounds in this paper.

2. If each s_i is sufficiently large in value (i.e. $\gg 0.5$), this yields $\text{Var}[\sqrt{J(y, \Phi x)}] \lesssim \frac{11}{8}$ which is independent of N as well as the measurement or signal values. See also the simulation in Figure[1] In practice,
we have observed this constant upper bound on $\text{Var}[\sqrt{J(y, \Phi x)}]$ even when the condition $s_i \gg 0.5$ is violated for a small number of measurements.

3. The assumption that $s_i \gg 0.5$ is not restrictive in most signal or image processing applications, except those that work with extremely low intensity levels. In the latter case, it should be noted that the performance of Poisson compressed sensing is itself very poor due to the very low SNR \[19\].

4. The refinement to the probability in the last statement of this theorem is based on the central limit theorem, and hence for a finite value of N, it is an approximation. However, the approximation is empirically observed to be tight even for small $N \sim 10$ as confirmed by a Kolmogorov-Smirnov test even at 1% significance (see \[18\]).

2.3. Theorem on Reconstruction Error Bounds

Theorem 2: Consider a non-negative signal of interest $x = \Psi \theta$ for orthonormal basis Ψ with sparse vector θ. Define $A \triangleq \Phi \Psi$ for sensing matrix Φ defined in Eqn. [6]. Suppose $y \sim \text{Poisson}(\Phi \Psi \theta)$, i.e. $y \sim \text{Poisson}(A \theta)$, represents a vector of $N \ll m$ independent Poisson-corrupted compressive measurements of x, i.e., $\forall i, 1 \leq i \leq N, y_i \sim \text{Poisson}((A \theta)_i)$. Let θ^* be the solution to the problem (P2) defined earlier, with the upper bound ε in (P2) set to $\sqrt{N}\left(\frac{1}{2} + \frac{11}{\sqrt{8}}\right)$. If $\tilde{\Phi}$ constructed from Φ obeys the RIP of order $2s$ with $\text{RIC} \delta_{2s} < \sqrt{2} - 1$, then we have

$$\text{Pr}\left(\frac{\|\theta - \theta^*\|_2}{I} \leq C N \sqrt{\frac{J}{I}} + C''s^{-1/2}\frac{\|\theta - \theta_s\|_1}{I}\right) \geq 1 - 1/N,$$

where $C \triangleq C'(1/2 + \sigma), C' \triangleq \frac{4\sqrt{8(1 + \delta_{2s})}}{\sqrt{p(1 - p)(1 - (1 + \sqrt{2})\delta_{2s})}}, C'' \triangleq \frac{2 - 2\delta_{2s} + 2\sqrt{2\delta_{2s}}}{1 - (1 + \sqrt{2})\delta_{2s}}, \theta_s$ is a vector containing the s largest absolute value elements from θ, and σ is the standard deviation of $\sqrt{J(y_i,(\Phi x)_i)}$, which is upper bounded by (approximately) $\frac{\sqrt{11}}{\sqrt{8}}$.

Theorem 2 is proved in Section [7]. We make several comments on these bounds below.

1. Practical implementation of the estimator (P2) would require supplying a value for ε, which is the upper bound on $\sqrt{J(y, Ax)}$. This can be provided based on the theoretical analysis of $\sqrt{J(y, Ax)}$ from Theorem 1, which motivates the choice $\varepsilon = \sqrt{N}\left(\frac{1}{2} + \frac{11}{\sqrt{8}}\right)$. In our experiments, we provided a 99 percentile value (see Section [3]) which also turns out to be $\mathcal{O}(\sqrt{N})$ and is independent of x.

2. We have derived upper bounds on the relative reconstruction error, i.e. on $\frac{\|\theta - \theta^*\|_2}{I}$ and not on $\frac{\|\theta - \theta^*\|_2}{I}$. This is because as the mean of the Poisson distribution increases, so does its variance, which would cause an increase in the root mean squared error. But this error would be small in comparison to the average signal intensity. Hence the relative reconstruction error is the correct metric to choose in this context. Indeed, $\frac{\|\theta - \theta^*\|_2}{I}$ is upper bounded by two terms, both inversely proportional to I, reflecting the common knowledge that reconstruction under Poisson noise is more challenging if the original signal intensity is lower.
3. The usage of SQJSD plays a critical role in this proof. First, the term J is related to the Poisson likelihood as will be discussed in Section 5. Second, \sqrt{J} is a metric and hence obeys the triangle inequality. Furthermore, J also upper-bounds the total variation norm, as shown in Lemma 2. Both these properties are essential for the derivation of the critical Step 1 of the proof of Theorem 2 in Section 7.

4. It may seem counter-intuitive that the first error term increases with N. However if the original signal intensity remains fixed at I, an increase in N simply distributes the photon flux across multiple measurements thereby decreasing the SNR at each measurement and degrading the performance. Similar arguments have been made previously in [12]. This behaviour is a feature of Poisson imaging systems, and is quite different from the Gaussian noise scenario [20] where the error decreases with increase in N owing to no flux-preservation constraints.

5. The above bound holds for a signal sparse/compressible in some orthonormal basis Ψ. However, for reconstruction bounds for a non-negative signal sparse/compressible in the canonical basis, i.e. $\Psi = I$ and hence $x = \theta$, one can solve the following optimization problem which penalizes the ℓ_q ($0 < q < 1$) norm instead of the ℓ_1 norm:

$$\min_\theta \| \theta \|_q \text{ subject to } \sqrt{J(y, A\theta)} \leq \varepsilon, \| \theta \|_1 = I, \theta \succeq 0$$

Performance guarantees for this case can be developed along the lines of the work in [21]. Other sparsity-promoting terms such as those based on a logarithmic penalty function (which approximates the original ℓ_0 norm penalty more closely than the ℓ_1 norm) may also be employed [22, 23].

6. While imposition of the constraint that $\| z \|_1 = I$ with I being known may appear as a strong assumption, it must be noted that in some compressive camera architectures, it is easy to obtain an estimate of I during acquisition. One example is the Rice Single Pixel Camera [24], where I can be obtained by turning on all the micro-mirrors, thereby allowing the photo-diode to measure the sum total of all values in the signal. The imposition of this constraint has been considered in earlier works on Poisson compressed sensing such as [12] and [19]. Furthermore, we note that in our experiments in Section 3 we have obtained excellent reconstructions even without the imposition of this constraint.

7. Measurement matrices in compressed sensing can be specifically designed to have very low coherence, as opposed to the choice of random matrices. Such approaches have been proposed for a Poisson setting in [17]. Since the coherence value can be used to put an upper bound on the RIC, one can conclude that such matrices will obey RIP even while obeying non-negativity and flux preservation. In case of such matrices which already obey the RIP, the upper bound on the reconstruction error would potentially tighten by a factor of at least \sqrt{N}. However, such matrices are obtained as the output of non-convex optimization problems, and there is no guarantee on how low their coherence, and hence their RIC, will be. Indeed, they may not respect the sufficient condition in our proof that $\delta_{2s} < \sqrt{2} - 1$.

10
2.4. Advantages of SQJSD over Poisson NLL or \(\ell_2 \) difference

Here, we summarize the essential advantage of the SQJSD over the Poisson NLL derived from Eqn. 4 or the \(\ell_2 \) difference, i.e. \(\| y - A\theta \|_2 \). Estimators based on the Poisson NLL require regularization parameters \[25\] or constraint parameters \[15, 26\] that are signal dependent and hence very difficult to tune in practice as the underlying signal is unknown. In contrast, our SQJSD-based estimator (P2) uses a value of \(\varepsilon \) based on the signal-independent tail bounds of \(\sqrt{J(y, A\theta)} \). A more detailed comparison with previous methods based on NLL is presented in Section 4.

It is also natural to question how (P2) would compare to an estimator of the following form, which we name P2-L2: \(\min \| \theta \|_1 \) s. t. \(\| y - A\theta \|_2 \leq \tilde{\varepsilon}, \| \Psi \theta \|_1 = I, \Psi \theta \geq 0 \). In problem (P2-L2), the tail bound \(\tilde{\varepsilon} \) would be clearly signal-dependent as \(\text{Var}(y_i) = E(y_i) = (\Phi x)_i \), unlike in problem (P2). This is a major disadvantage of (P2-L2) as compared to (P2). One could counter-argue in the following manner: (a) For the forward model used in this paper, we have \((\Phi x)_i = (A\theta)_i \leq I/N \), which imposes an upper bound on the measurement variance. This can be used to put a tail bound on \(\tilde{\varepsilon} \) either using a Gaussian approximation for the elements of \(y - A\theta \), or else via Chebyshev’s inequality. (b) Moreover, both (P2) as well as (P2-L2) impose the constraint \(\| \Psi \theta \|_1 = I \) which is necessary for the theoretical proofs. This counter-argument however misses three important points. (1) First, in practice while implementing (P2), this constraint is not required as stated before and in Section 3. (2) Second, the tail bound for \(\tilde{\varepsilon} \) used in this manner in a practical implementation of P2-L2 will be loose since the values of \((\Phi x)_i \) (which are of course, unknown) could be significantly less than \(I/N \). (3) Third, the constraint is not necessary even at a theoretical level in the bounds for (P2) if one allows for a slightly larger number of compressive measurements. This is explained as follows. A random non-negative and bounded sensing matrix \(\Phi \) (as considered in this paper) is not known to obey the RIP for \(\mathcal{O}(s \log m) \) measurements. Hence in our analysis, we considered the base matrix \(\tilde{\Phi} \) which obeys the RIP for these many measurements. This necessitated imposition of the constraint \(\| \Phi \Psi \theta \|_1 = I \) for deriving the performance bounds (see proof of Theorem 2). In the event that \(\Phi \) obeys the RIP (or a similar almost-isometry condition), which is possible by increasing the number of measurements from \(\mathcal{O}(s \log m) \) to \(\mathcal{O}(s \log m \log^3(s \log m)) \) as shown in Theorem 22 of \[27\], the same bounds for (P2) can still be obtained. The constraint \(\| \Phi \Psi \theta \|_1 = I \) would no more be required. The parameter \(\varepsilon \) for the estimator (P2) still remains signal-independent. However for the estimator (P2-L2), we would still require signal-dependent \(\tilde{\varepsilon} \) even with an increase in the number of measurements.

Instead of the term \(\| y - A\theta \|_2 \) in (P2-L2), one could however consider the term \(L(y, A\theta) \triangleq \| (y - A\theta) \|_2 / \sqrt{A\theta} \|_2 \) where ‘/’ indicates element-wise division. We conjecture and have experimentally observed that tail-bounds based on \(L(y, A\theta) \) are signal-independent. However we can easily prove that for any \(i \), \(E[(y_i - (A\theta)_i)^2/(A\theta)_i] = 1 \) and \(\text{Var}((y_i - (A\theta)_i)^2/(A\theta)_i) = E[((y_i - (A\theta)_i)^2/(A\theta)_i)^2] - E^2[((y_i - (A\theta)_i)^2/(A\theta)_i)] = 2 + 1/(A\theta)_i \). These are greater than the corresponding values for the JSD, as can be seen from the proof
of Theorem 1 in the Appendix (see Eqns. 25 and 31). This leads us to conjecture that the bounds with
the SQJSD will be tighter. An estimator using \(L(y, A\theta) \) is essentially a normalized form of the LASSO.
Experimental results with it have been shown in [15] and its sign-consistency has been analyzed in [28]. But
there is no work which presents signal estimation bounds with it, to the best of our knowledge. At this
point, we consider the complete development of an estimator using \(L(y, A\theta) \) to be beyond the scope of this
paper, as it is non-trivially different from estimators based on SQJSD, Poisson NLL or \(\ell_2 \) difference.

3. Numerical Experiments

Generation of Test Measurements: Experiments were run on Poisson-corrupted compressed mea-
surements obtained from each signal taken from an ensemble of 1D signals with 100 elements. The signals
\(x = \Psi \theta \) in the ensemble were generated using sparse linear combinations of DCT basis vectors, and were
forced to be non-negative by adjusting the DC component. The support sets of the sparse coefficients were
randomly selected, and different signals had different supports. In some experiments (see later in this sec-
tion), all the signals were normalized so that they had a fixed intensity \(I \). The sensing matrix followed the
architecture discussed in Section 2.

Comparisons: We show results on numerical experiments for problem \((P2)\) without the explicit con-
straint that \(\|\Psi \theta\|_1 = I \), as we obtained excellent results even without it (see Figure 6), and refer to it
simply as \((P2)\). We compared our results with those obtained using the following estimators, all without the
\(\|\Psi \theta\|_1 = I \) constraint:

1. A regularized version of \(P2-L2 \) referred to here as \((P2-L4)\):
 \[
 \text{argmin } \rho \|\theta\|_1 + \|y - \Phi \Psi \theta\|_2^2 \text{ s.t. } \Psi \theta \succeq 0.
 \]

2. A regularized estimator using the Poisson NLL, referred to here as \((P-NLL)\):
 \[
 \text{argmin } \rho \|\theta\|_1 + \sum_{i=1}^N [\Phi \Psi \theta]_i - y_i \log[\Phi \Psi \theta]_i \text{ s.t. } \Psi \theta \succeq 0.
 \]

3. A regularized version of \((P2)\), referred to here as \((P4)\):
 \[
 \text{argmin } \rho \|\theta\|_1 + J(y, \Phi \Psi \theta) \text{ s.t. } \Psi \theta \succeq 0.
 \]

In all of these, \(\rho \) is a regularization parameter. Before describing our actual experimental results, we state
a lemma which shows that solving \((P4)\) is equivalent to solving \((P2)\) for some pair of \((\rho, \varepsilon)\) values, but
again without the constraint \(\|\Psi \theta\|_1 = I \). The proof of this lemma follows [29] and can be found in the
supplemental material.

Lemma 4: Given \(\theta \) which is the minimizer of problem \((P4)\) for some \(\lambda > 0 \), there exists some value of
\(\varepsilon = \varepsilon_\lambda \) for which \(\theta \) is the minimizer of problem \((P2)\), but without the constraint \(\|\Psi \theta\|_1 = I \).

Note that despite this equivalence, in practice we preferred \((P2)\) over \((P4)\) as selection of \(\rho \) poses practical
difficulties, as opposed to the statistically motivated choice for \(\varepsilon \).
Implementation Packages: As JSD is a convex function and $\sqrt{J(y, \Phi x)} \leq \varepsilon$ implies $J(y, \Phi x) \leq \varepsilon^2$, we solved both (P2) and (P4) using the well-known CVX package [30] with the SCS solver for native implementation of logarithmic functions.4 Likewise, (P2-L4) was also implemented using CVX. For (P-NLL), we used the well-known SPIRAL-TAP algorithm from [25].

Parameter Choices and Description of Experiments: In all experiments, the value of ε for (P2) was chosen as per the tail bounds on SQJSD, which are independent of x as noted in Section 2.2. To be specific, we set $\varepsilon = \sqrt{N/2}$ for all experiments with no further tweaking whatsoever. We also report results for (P2) with ε set to the 99-percentile of the SQJSD values. For (P-NLL), (P2-L4), (P4), the value of ρ was chosen by cross-validation (CV). For (P-NLL), the optimization was run for a maximum of 500 iterations, which was more than the default parameter of 100 specified in the associated package [25]. We ran a total of three experiments on each of the competing methods. The comparison metric was the relative reconstruction error given as $RRMSE(x, x^*) = \frac{\|x - x^*\|^2}{\|x\|^2}$. In the intensity experiment, we studied the effect of change in signal intensity I on the RRMSE, keeping the signal sparsity s fixed to 10 (out of 100 elements) and $N = 50$. The parameter ρ was chosen to be the parameter from the set $\mathcal{PV} = \{10^{-7}, 10^{-6}, ..., 10^{-2}, 0.1, 1\}$ which yielded the best RRMSE reconstruction of an ensemble of synthetic signals with sparsity $s = 5$ and $I = 1000$, from $N = 50$ compressive measurements. We also separately report results when ρ was chosen omnisciently (i.e. we used the value of ρ from a chosen range, that yielded the best signal reconstruction results in terms of RRMSE, assuming the ground truth was known). In the experiment on number of measurements, we studied the effect of change in N on the RRMSE, keeping $I = 10^6$ and $s = 10$ fixed. The parameter ρ was chosen to be the parameter from the set \mathcal{PV} which yielded the best RRMSE reconstruction of an ensemble of synthetic signals with sparsity $s = 10$, $I = 10^6$ from $N = 10$ compressive measurements. We also separately report results when ρ was chosen omnisciently. In the signal sparsity experiment, we studied the effect of change in s on the RRMSE, keeping $I = 10^6$ and $N = 50$ fixed. The parameter ρ was chosen to be the parameter from the set \mathcal{PV} which yielded the best RRMSE reconstruction of an ensemble of synthetic signals with sparsity $s = 80$, $I = 10^6$ from $N = 50$ compressive measurements. We also separately report results when ρ was chosen omnisciently.

Observations and Comments: The results for the intensity experiment, the experiment on N and the sparsity experiment are respectively presented in Figs. 2, 3, and 4. Note that the best tuning parameters ρ for (P2-L4) and (P-NLL) are signal-dependent. As can be seen from the plots, an omniscient choice of ρ (defined as the value of ρ from a chosen range, that yields the best signal reconstruction results in terms of RRMSE, assuming the ground truth is known) for (P4), (P-NLL), (P2-L4) no doubt improves their performance (as it would also for (P2)). However an omniscient choice is not practical, and improper choice of ρ indeed

4http://web.cvxr.com/cvx/beta/doc/solver.html
adversely affects the performance of (P4), (P-NLL), (P2-L4). CV-based methods can help, but here again they require some prior knowledge of signal properties in order to be effective. Moreover, a very important point to be noted here is that for (P2), we have a statistically consistent and signal independent parameter \(\varepsilon \). The methods (P4), (P-NLL), (P2-L4) do not have this benefit. From the box-plots for (P2) in Fig. 2 we observe that the RRMSE decreases on an average with increase in \(I \). We would have observed such a trend even with (P-NLL) and (P2-L4) with omnisciently picked parameters or CV procedures that require a priori knowledge of signal properties such as intensity or sparsity, but that is not practical. From the box-plots for (P2) in Fig. 3 we observe that the RRMSE is not always guaranteed to decreases on an average with increase in \(N \), owing to the flux-preserving nature of \(\Phi \) which causes poorer SNR with increase in \(N \). The results for the sparsity experiment in Fig. 4 we see that the RRMSE can increase with increase in \(s \). All these trends are in line with our worst case bounds.

Image Reconstruction Experiments: We also tested the performance of all competing methods on an image reconstruction task from compressed measurements under Poisson noise. Each patch of size \(7 \times 7 \) from a gray-scale image was vectorized and 25 Poisson-corrupted measurements were generated for this patch using the sensing matrix discussed in Section 2. This model is based on the architecture of the compressive camera designed in [31, 32] except that we considered overlapping patches here. Each patch was reconstructed from its compressed measurements independently by solving (P2) with sparsity in a 2D-DCT basis, with \(\varepsilon = \sqrt{N/2} \). The final image was reconstructed by averaging the reconstructions of overlapping patches (which is similar to running a deblocking algorithm on reconstructions from non-overlapping patches). This experiment was repeated for different \(I \) values by suitably rescaling the intensities of the original image before simulation of the compressive measurements. In Figure 5 we show reconstruction results with (P2) with \(\varepsilon = \sqrt{N/2} \) under different values of \(I \). There is a sharp decrease in relative reconstruction error with increase in \(I \). For (P4), (P-NLL) and (P2-L4), the \(\rho \) parameter was picked omnisciently on a small set of patches at a fixed intensity level of \(I = 10^5 \) and used for all other intensities. For these experiments, we observed nearly identical numerical results with (P4), (P-NLL) and (P2-L4), as with (P2) with a fixed \(\varepsilon = \sqrt{N/2} \). However, for the lowest intensity level of \(I = 10^5 \), we observed that (P2) produced a lower RRMSE than (P-NLL) (0.13 as against 0.18).

The constraint \(\| x^* \|_1 = I \): Note that in our experiments, we have not made use of the hard constraint \(\| x^* \|_1 = I \) in problems (P2) or in any of the competing methods (P4), (P-NLL), (P2-L4). In practice, we however observed that the estimated \(\| x^* \|_1 \) was close to the true \(I \), especially for higher values of \(I \geq 10^6 \), and moreover even imposition of the constraint did not significantly alter the results as can be seen in Fig. 6 (right side) for a 100-dimensional signal with 50 measurements and sparsity 5.

Computational Complexity: Also, to get an idea of the computational complexity of (P2), we plot a graph (left side of Fig. 6) of the reconstruction time (till convergence) for signals of fixed sparsity 10 and
dimensions m ranging from 100 to 4000, with $N = m/2$ measurements in each case.

Summary: All the numerical experiments in this section confirm the efficacy of using the JSD/SQJSD in Poisson compressed sensing problems. In particular, the statistical properties of the SQJSD allow for compressive reconstruction with statistically motivated parameter selection, unlike methods based on the Poisson negative log-likelihood which require tweaking of the regularization/signal sparsity parameter.

3.1. Handling zero-valued measurements

Strictly speaking, the function $J(y, A\theta)$ is not Hölder continuous due to the presence of the entropy-like terms $y \log y$ that is undefined for $y = 0$, which affects the theoretical convergence guarantees for convex optimization. In practice however, we simply ignored all zero-valued measurements for our experimental results. This ‘weeding out’ had to be performed very rarely for moderate or high I. This is not surprising as if $Z \sim \text{Poisson}(\lambda)$, $P(Z = 0) = e^{-\lambda}$ which is low except if λ is very small. (But, at very low values of λ, Poisson compressed sensing itself does not perform very well - see for example, [19]). Removal of small subsets of measurements is not entirely new to compressed sensing - for example, in compressed sensing under quantization and saturation, the measurements that are suspected to be saturated are removed prior to signal reconstruction. This is termed ‘saturation rejection’ (see [33]). Also note that removing the zero-valued measurements does not affect Theorem 1 or Theorem 2 or any other properties of the JSD.

This issue can also be solved by replacing $J(y, A\theta)$ with $J(y + \beta, A\theta)$ for some $\beta \approx 0, \beta > 0$. We have verified that this change does not affect the guarantees offered by Theorem 2. It *insignificantly* affects the tail bound in Theorem 1 because the mean and variance of the JSD in Eqns. 25 and 31 change by small additive constants. These additive constant factors are functions of β and are very loosely upper bounded by 1. Therefore, this new β factor has a negligible impact on the theoretical treatment in this paper.

3.2. Reproducible Research

Our supplemental material at https://www.cse.iitb.ac.in/~ajitvr/SQJSD/ contains scripts for execution of these results in CVX.

4. Relation to Prior Work

There exist excellent algorithms for Poisson reconstruction such as [23, 3, 34, 35], but these methods do not provide performance bounds. In this section, we put our work in the context of existing work on Poisson compressed sensing with theoretical performance bounds. These techniques are based on one of the following categories: (a) optimizing either the Poisson negative log-likelihood (NLL) along with a regularization term, or (b) the LASSO, or (c) using constraints motivated by variance stabilization transforms (VST).
4.1. Comparison with Poisson NLL based methods

These methods include [12, 19, 36, 26, 15, 16, 37]. One primary advantage of the SQJSD-based approach over the Poisson NLL is that the former (unlike the latter) is a metric, and can be bounded by values independent of I as demonstrated in Section 2.2. In principle, this allows for an estimator that in practice does not require tweaking a regularization or signal sparsity parameter, and instead requires a statistically motivated bound ε to be specified, which is more intuitive. Moreover, the methods in [12, 19] (and their extensions to the matrix completion problem in [35, 39, 40]) employ ℓ_0-regularizers for the signal, due to which the derived bounds are applicable only to computationally intractable estimators. The results in both papers have been presented using estimators with ℓ_1 regularizers with the regularization parameters (as in [12]) or signal sparsity parameter (as in [19]) chosen omnisciently, but the derived bounds are not applicable for the implemented estimator. In contrast, our approach proves error bounds with the ℓ_1 sparsity regularizer for which efficient and tractable algorithms exist. Moreover, the analysis in [19] is applicable to exactly sparse signals, whereas our work is applicable to signals that are sparse or compressible in any orthonormal basis. Recently, NLL-based tractable minimax estimators have been presented in [26, 15], but in both cases, knowledge of an upper bound on the signal sparsity parameter (ℓ_q norm of the signal, $0 < q \leq 1$) is required for the analysis, even if the sensing matrix were to obey the RIP. A technique for deriving a regularization parameter to ensure statistical consistency of the ℓ_1-penalized NLL estimator has been proposed in [16], but that again requires knowledge of the signal sparsity parameter. In our work, the constraint $\|x\|_1 = I$ was required only due to the specific structure of the sensing matrix, and even there, it was not found to be necessary in practical implementation. For clarity the specific objective functions used in these techniques is summarized in Table 4.1. The work in [36] deals with a specific type of sensing matrices called the expander-based matrices, unlike the work in this paper which deals with any randomly generated matrices of the form Eqn. 9 and the bounds derived in [36] are only for signals that are sparse in the canonical basis. In [37], performance bounds are derived in situ with system calibration error estimates for multiple measurements, which is essentially a different computational problem, which again requires knowledge of regularization parameters.

4.2. Comparison with LASSO-based methods

These methods include [13, 14, 43, 28, 44, 42] and are based on optimization of a convex function of the form $\sum_{i=1}^{N}(y_i - \langle \Phi x \rangle_i)^2 + \lambda\|\Psi^T x\|_1$. The performance of the LASSO (designed initially for homoscedastic noise) under heterscedasticity associated with the Poisson noise model is examined in [28] and necessary and sufficient conditions are derived for the sign consistency of the LASSO. Weighted/adaptive LASSO and group LASSO schemes with provable guarantees based on Poisson concentration inequalities have been proposed in [13, 14]. Group LASSO based bounds have also been derived in [43] and applied to Poisson regression.
This paper Problem (P2) from Section 1.1, with ε chosen using properties of the SQJSD.

<table>
<thead>
<tr>
<th>Method</th>
<th>Objective Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>This paper</td>
<td>Problem (P2) from Section 1.1 with ε chosen using properties of the SQJSD</td>
</tr>
<tr>
<td>[12]</td>
<td>$\text{NLL}(y, \Phi x) + \lambda \text{pen}(\Psi^T x)$ such that $x \succeq 0, |x|_1 = I$ where $\text{pen}(\Psi^T x) = |\Psi^T x|_0$</td>
</tr>
<tr>
<td>[19]</td>
<td>$\text{NLL}(y, \Phi x)$ such that $x \succeq 0, |x|_1 = I, |\Psi^T x|_0 \leq s$</td>
</tr>
<tr>
<td>[15]</td>
<td>$\text{NLL}(y, \Phi x)$ such that $x \succeq 0, |\Psi^T x|_1 \leq s$</td>
</tr>
<tr>
<td>[26]</td>
<td>$\text{NLL}(y, \Phi x)$ such that $x \succeq 0, |x|_1 = I, |\Psi^T x|_0^q \leq s$</td>
</tr>
<tr>
<td>[11]</td>
<td>$|\Psi^T x|_1$ such that $|\sqrt{y} - \sqrt{\Phi x}|_2 \leq \varepsilon, x \succeq 0, |x|_1 = I$ with ε picked based on chi-square tail bounds</td>
</tr>
<tr>
<td>[14]</td>
<td>$|y - \Phi x|^2 + \lambda \sum_k d_k(\Psi^T x)_k$, with weights d_k picked statistically</td>
</tr>
<tr>
<td>[12]</td>
<td>$|\Psi^T x|_1$ such that $\text{NLL}(y, \Phi x) \leq \varepsilon$ where no criterion to choose ε is analyzed</td>
</tr>
</tbody>
</table>

Table 1: Objective functions optimized by various Poisson compressed sensing methods. Note that Ψ refers to an orthonormal signal basis.

Bounds on recovery error using an ℓ_1 penalty are derived in [12] and [14] based on the RIP and maximum eigenvalue condition respectively. These techniques do not provide bounds for realistic physical constraints in the form of flux-preserving sensing matrices. The quantity ε is not analyzed theoretically in [12] unlike in our method - see Table 4.1. Moreover the LASSO is not a probabilistically motivated (i.e. penalized likelihood based) estimator for the case of Poisson noise. Even considering an approximation of Poisson(λ) by $\mathcal{N}(\lambda, \lambda)$, the approximated likelihood function would be $K(y, \Phi x) \triangleq \sum_{i=1}^N \frac{(y_i - [\Phi x]_i)^2}{[\Phi x]_i} + \log([\Phi x]_i)$ and not $\sum_{i=1}^N (y_i - [\Phi x]_i)^2$ as considered in the LASSO. While $K(y, \Phi x)$ is nonconvex, $J(y, \Phi x)$ is a convex function. Moreover $J(y, \Phi x)$ is a lower bound on $K(y, \Phi x)$ if $[\Phi x]_i \geq 1$. This is shown in Eqn. 24 while proving Theorem 1. Therefore our SQJSD method provides a tractable way to implement an estimator using $K(y, \Phi x)$ if the parameter ε is chosen based on the statistics of $\sqrt{K(y, \Phi x)}$.

4.3. Comparison with VST-based methods

VST-based methods, especially those based on variants of the square-root transformations, have been used extensively in denoising [45] and deblurring [46] under Poisson noise, but without performance bounds. In the context of Poisson CS, the VST converts a linear problem into a non-linear one. However, our group has recently shown [47, 41] that this non-linear regression has various advantages for Poisson CS reconstructions, with similar statistically motivated parameter (ε) selection. However in this paper, we present the result that the SQJSD also possesses such variance stabilizing properties for the Poisson distribution.
5. Relation between the JSD and a Symmetrized Poisson Negative Log Likelihood

In this section, we demonstrate the relationship between the JSD and an approximate symmetrized version of the Poisson negative log likelihood function. Consider an underlying noise-free signal \(x \in \mathbb{R}_{+}^{m \times 1} \). Consider that a compressive sensing device acquires \(N \ll m \) measurements of the original signal \(x \) to produce a measurement vector \(y \in \mathbb{Z}_{+}^{N \times 1} \). Assuming independent Poisson noise in each entry of \(y \), we have \(\forall i, 1 \leq i \leq N, y_{i} \sim \text{Poisson}(\Phi x)_{i} \), where as considered before, \(\Phi \) is a non-negative flux-preserving sensing matrix. The main task is to estimate the original signal \(x \) from \(y \). A common method is to maximize the following likelihood in order to infer \(x \):

\[
L(y|\Phi x) = \prod_{i=1}^{N} p(y_{i}|(\Phi x)_{i})
= \prod_{i=1}^{N} \frac{(\Phi x)_{i}^{y_{i}}}{y_{i}!} e^{-(\Phi x)_{i}}.
\] \hfill (14)

The negative log-likelihood \(NLL \) can be approximated as:

\[
NLL(y, \Phi x) \approx \sum_{i=1}^{N} y_{i} \log \frac{y_{i}}{(\Phi x)_{i}} - y_{i} + (\Phi x)_{i} + \log y_{i} - \frac{\log 2\pi}{2}.
\] \hfill (15)

This expression stems from the Stirling’s approximation [48] for \(\log y_{i}! \) given by

\[
\log y_{i}! \approx y_{i} \log y_{i} - y_{i} + \frac{\log y_{i}}{2} + \frac{\log 2\pi}{2}.
\] \hfill (16)

This is derived from Stirling’s series given below as follows for some integer \(n \geq 1 \):

\[
n! \approx \sqrt{2\pi n} \left(\frac{n}{e} \right)^{n} \left(1 + \frac{1}{12n} + \frac{1}{288n^{2}} \right) \approx \sqrt{2\pi n} \left(\frac{n}{e} \right)^{n}.
\] \hfill (17)

Consider the generalized Kullback-Leibler divergence between \(y \) and \(\Phi x \), denoted as \(G(y, \Phi x) \) and defined as

\[
G(y, \Phi x) \triangleq \sum_{i=1}^{N} y_{i} \log \frac{y_{i}}{(\Phi x)_{i}} - y_{i} + (\Phi x)_{i}.
\] \hfill (18)

The generalized Kullback-Leibler divergence turns out to be the Bregman divergence for the Poisson noise model [49] and is used in maximum likelihood fitting and non-negative matrix factorization under the Poisson noise model [10]. The negative log-likelihood can be expressed in terms of the generalized Kullback-Leibler divergence in the following manner:

\[
NLL(y, \Phi x) \approx G(y, \Phi x) + \frac{\sum_{i=1}^{N} y_{i}}{2} + \frac{\log 2\pi}{2}.
\] \hfill (19)

Let us consider the following symmetrized version of the \(NLL \):

\[
SNLL(y, \Phi x) = NLL(y, \Phi x) + NLL(\Phi x, y) \approx G(y, \Phi x) + G(\Phi x, y) + \sum_{i=1}^{N} \left(\frac{\log y_{i}}{2} + \frac{\log(\Phi x)_{i}}{2} + \log 2\pi \right)
\geq G(y, \Phi x) + G(\Phi x, y) = D(y, \Phi x) + D(\Phi x, y),
\] \hfill (20)
where D is the Kullback-Leibler divergence from Eqn. \[10\]. The inequality above is true when the term in parantheses is non-negative, which is true when either (1) for each i, we must have $y_i \geq \frac{1}{4\pi^2(\Phi x)_i}$, or (2) the minimum value for $y_i \geq d \triangleq \frac{1}{4\pi^2} \left(\prod_{i=1}^{N} (\Phi x)_i \right)^{(1/N)}$. We collectively denote these conditions as ‘Condition 1’ henceforth. Note that, given the manner in which Φ is constructed, we have the guarantee that $(\Phi x)_i \geq x_{\text{min}}/N$ with a probability of $1 - Np^m$ where x_{min} is the minimum value in x. The quantity on the right hand side of the last equality above follows from Eqns. \[10\] and \[18\] and yields a symmetrized form of the Kullback-Leibler divergence $D_s(y, \Phi x) \triangleq D(y, \Phi x) + D(\Phi x, y)$. Now, we have the following useful lemma giving an inequality relationship between D_s and J, the proof of which follows \[50\] and can be found in the supplemental material.

Lemma 3: Given non-negative vectors u and v, we have $\frac{1}{4}D_s(u, v) \geq J(u, v)$.

Combining Eqns. \[21\] and Lemma 3, we arrive at the following conclusion if ‘Condition 1’ holds true:

$$SNLL(y, \Phi x) \leq \varepsilon \implies J(y, \Phi x) \leq \varepsilon/4 \implies \sqrt{J(y, \Phi x)} \leq \varepsilon' \triangleq \sqrt{\varepsilon}/2. \tag{21}$$

Let us consider the following optimization problem:

$$(P3): \text{minimize} \|z\|_1 \text{ such that } SNLL(y, Az) \leq \varepsilon, \Psi z \succeq 0, \|\Psi z\|_1 = I. \tag{22}$$

Following Eqn. \[21\] we observe that a solution to (P2) is also a solution to (P3) if the parameter ε is chosen based on the statistics of $\sqrt{SNLL(y, Az)}$. Note that Condition 1 can fail with higher probability if $(\Phi x)_i$ is small, due to which the $J \leq SNLL$ bound may no longer hold. However, this does not affect the validity of Theorem 1.3 or the properties of the estimator proposed in this paper. Note that we choose to solve (P2) instead of (P3) in this paper, as the SQJSD and not $SNLL$ is a metric, which makes it easier to establish theoretical bounds using SQJSD.

6. Conclusion

In this paper, we have presented new upper bounds on the reconstruction error from compressed measurements under Poisson noise in a realistic imaging system obeying the non-negativity and flux-preservation constraints, for a *computationally tractable* estimator using the ℓ_1 norm sparsity regularizer. Our bounds are easy to derive and follow the skeleton of the technique laid out in \[1\]. The bounds are based on the properties of the SQJSD from Section 2.2 of which some, such as signal-independent mean and variance, are derived in this paper. Our are applicable to sparse as well as compressible signals in any chosen orthonormal basis. We have presented numerical simulations with parameters chosen based on noise statistics (unlike the choice of regularization or signal sparsity parameters in other techniques), showing the efficacy of the method in reconstruction from compressed measurements under Poisson noise. We observe that the derived
upper bounds decrease with an increase in the original signal flux, i.e. I. However, the bounds do not decrease with an increase in the number of measurements N, unlike conventional compressed sensing. This observation, though derived independently and using different techniques, agrees with existing literature on Poisson compressed sensing or Poisson matrix completion [12, 38, 39, 40]. The reason for this observation is the division of the signal flux across the N measurements, thereby leading to poorer signal to noise ratio per measurement.

There exist several avenues for future work, as follows. A major issue is to derive lower-bounds on the reconstruction error, and to derive bounds for (P4) with a consistency condition for ρ. Moreover, it will be interesting to extend our theory to the problem of matrix completion under Poisson noise.

7. Appendix

7.1. Proof of Theorem 1

To prove this theorem, we first begin by considering $y \sim \text{Poisson}(\gamma)$ where $\gamma \in \mathbb{R}$ and derive bounds for the mean and variance of $J(y, \gamma)$. Thereafter, we generalize to the case with multiple measurements.

Let $f(y) \triangleq J(y, \gamma)$. Hence we have

$$f(y) = \frac{1}{2} (\gamma \log \gamma + y \log y - \frac{\gamma + y}{2} \log \left(\frac{\gamma + y}{2}\right)).$$

$$\therefore f^{(1)}(y) = \frac{1}{2} \left[\log y - \log \left(\frac{\gamma + y}{2}\right)\right].$$

$$\therefore f(y) = \int_{x}^{y} f^{(1)}(t) dt \text{ as } f(\gamma) = 0.$$

where $f^{(k)}(y)$ stands for the k^{th} derivative of $f(y)$. As $f^{(1)}(y)$ is a non-decreasing function (since $f^{(2)}(y)$ is non-negative for all y), we have

$$f(y) \leq (y - \gamma) f^{(1)}(y). \quad (23)$$

Likewise, noting that $f^{(1)}(\gamma) = 0$ we get $f^{(1)}(y) = \int_{\gamma}^{y} f^{(2)}(t) dt$. We know that $f^{(2)}(y) = \frac{1}{2} \left[\frac{1}{y} - \frac{1}{y + \gamma}\right]$ is a decreasing function as $f^{(3)}(y)$ is negative for all y.

If $y \geq \gamma$ then $f^{(2)}(y) \leq f^{(2)}(\gamma)$. Therefore, $f^{(1)}(y) \leq (y - \gamma) f^{(2)}(\gamma)$. If $y \leq \gamma$ then $f^{(2)}(y) \geq f^{(2)}(\gamma)$.

Therefore, $-f^{(1)}(y) \geq (\gamma - y) f^{(2)}(\gamma)$. Combining Eqn. 23 with the above inequality, we get

$$f(y) \leq (y - \gamma)^2 f^{(2)}(\gamma) = \frac{1}{4\gamma} (y - \gamma)^2. \quad (24)$$

Therefore, using $E[(y - \gamma)^2] = \gamma$ for a Poisson random variable, we have

$$E[f(y)] \leq \frac{1}{4\gamma} E[(y - \gamma)^2] = \frac{1}{4}. \quad (25)$$

Thus, we have found an upper bound on $E[f(y)]$ which is independent of γ.

We will now derive a lower bound on $E[f(y)]$, as it will be useful in deriving an upper bound for $\text{Var}(f(y))$.

20
Using Eqn. 24 we get,

\[f(y) = f(\gamma) + f^{(1)}(\gamma)(y - \gamma) + \frac{f^{(2)}(\gamma)}{2!}(y - \gamma)^2 + \frac{f^{(2)}(z(y))}{3!}(y - \gamma)^3 \]

\[= \frac{1}{8\gamma}(y - \gamma)^2 - \frac{1}{12}(y - \gamma)^3 \left[\frac{1}{z^2(y)} - \frac{1}{(\gamma + z(y))^2} \right] \]

for some \(z(y) \) that lies in the interval \((y, \gamma) \) or \((\gamma, y) \). Therefore,

\[
E[f(y)] = \frac{1}{8\gamma}E[(y - \gamma)^2] - \frac{1}{12} \left[\sum_{y=0}^{\infty} \frac{e^{-\gamma y^2}}{y!} (y - \gamma)^3 \left(\frac{1}{z^2(y)} - \frac{1}{(\gamma + z(y))^2} \right) \right]
\]

\[
= \frac{1}{8} - \frac{1}{12} \left[\sum_{y=0}^{\infty} \frac{e^{-\gamma y^2}}{y!} (y - \gamma)^3 \left(\frac{1}{z^2(y)} - \frac{1}{(\gamma + z(y))^2} \right) \right].
\]

Let \(\alpha \) be the largest integer less than or equal to \(\gamma \). We can split the second term in the RHS of the above expression into the sum of two terms \(I_1 \) and \(-I_2 \), depending upon whether \(y \) is greater than \(\alpha \) or not. \(I_1 \) and \(I_2 \) are defined as follows:

\[
I_1 = \frac{1}{12} \left[\sum_{y=0}^{\alpha} \frac{e^{-\gamma y^2}}{y!} (y - \gamma)^3 \left(\frac{1}{z^2(y)} - \frac{1}{(\gamma + z(y))^2} \right) \right]
\]

\[
I_2 = \frac{1}{12} \left[\sum_{y=\alpha+1}^{\infty} \frac{e^{-\gamma y^2}}{y!} (y - \gamma)^3 \left(\frac{1}{z^2(y)} - \frac{1}{(\gamma + z(y))^2} \right) \right].
\]

In order to lower bound \(E[f(y)] \), we want to minimize \(I_1 \) and maximize \(I_2 \) w.r.t. \(z(y) \). Since \(\frac{1}{z^2(y)} - \frac{1}{(\gamma + z(y))^2} \) is a decreasing function of \(z(y) \), it can be proved that \(I_1 \) is minimized when \(z(y) = \gamma \) and that \(I_2 \) attains a maximum when \(z(y) = \gamma \). Therefore, we obtain

\[
E[f(y)] \geq \frac{1}{8} - \frac{1}{16\gamma^2}E[(y - \gamma)^3] = \frac{1}{8} - \frac{1}{16\gamma}. \quad (26)
\]

This lower bound is loose if \(\gamma < 0.5 \) since we know that \(E[f(y)] \) must clearly be non-negative. Hence it is more apt to express the lower bound as follows:

\[
E[f(y)] \geq \max(0, \frac{1}{8} - \frac{1}{16\gamma}). \quad (27)
\]

In summary, we have

\[
\max(0, \frac{1}{8} - \frac{1}{16\gamma}) \leq E[f(y)] \leq \frac{1}{4}. \quad (28)
\]

We now proceed to derive an upper bound on the variance of \(f(y) \).

Using Eqn. 24 we get,

\[
E[(f(y))^2] \leq \frac{1}{16\gamma^2}E[(y - \gamma)^4] = \frac{\gamma(1 + 3\gamma)}{16\gamma^2} \leq \frac{3}{16} + \frac{1}{16\gamma}.
\]

21
Recall that \(\text{Var}[f(y)] = E[(f(y))^2] - (E[f(y)])^2 \). Using Eqn. 26 and 7.1 we get

\[
\text{Var}(f(y)) \leq \frac{3}{16} + \frac{1}{16\gamma} - \left(\max(0, \left[\frac{1}{8} - \frac{1}{16\gamma} \right]) \right)^2 \quad (29)
\]

\[
\leq \max(0, \frac{11}{64} + \frac{5}{64\gamma} - \frac{1}{256\gamma^2}) \quad (30)
\]

\[
\leq \frac{11}{64} + \frac{5}{64\gamma}. \quad (31)
\]

Now consider that \(y \) is a vector of \(N \) measurements such that \(\forall i \in \{1, 2, ..., N\}, y_i \sim \text{Poisson}(\gamma_i) \) and all measurements are independent. We will later replace \(\gamma_i \) by \((\Phi x)_i\) where \(\Phi \) is a non-negative flux-preserving matrix and \(x \) is the unknown signal to be estimated. Let us define some terminology as follows:

\[
f_i(y_i) \triangleq \frac{(\gamma_i \log \gamma_i + y_i \log y_i)}{2} - \frac{\gamma_i + y_i}{2} \log \left(\frac{\gamma_i + y_i}{2} \right), \quad f(y) \triangleq \sum_{i=1}^{N} f_i(y_i), \quad g(y) \triangleq \sqrt{f(y)}.
\]

Jensen’s inequality gives the following upper bound on the expected value of \(g(y) \):

\[
E[g(y)] = E[\sqrt{f(y)}] \leq \sqrt{\sum_{i=1}^{N} E[f_i(y_i)]} \leq \sqrt{\frac{N}{4}}. \quad (32)
\]

In order to lower bound \(E[g(y)] \) we use the following inequality for the non-negative variable \(f \):

\[
\sqrt{f} \geq 1 + \frac{f - 1}{2} - \frac{(f - 1)^2}{2}.
\]

This inequality follows since it is equivalent to \(3f - f^2 \leq 2\sqrt{f} \) which implies \(3b - b^3 \leq 2 \) which is true for any \(b \geq 0 \). Define \(\tilde{f} \triangleq \frac{f}{E[f]} \) such that \(E[\tilde{f}] = 1 \). Therefore, we have the following inequalities:

\[
\sqrt{\tilde{f}} \geq 1 + \frac{\tilde{f} - 1}{2} - \frac{(\tilde{f} - 1)^2}{2}
\]

\[
\therefore E[\sqrt{\tilde{f}}] \geq 1 - \frac{\text{Var}(\tilde{f})}{2}
\]

\[
\therefore E[\sqrt{f}] \geq \sqrt{E[\tilde{f}]} \left(1 - \frac{\text{Var}(f)}{2E[f]^2} \right)
\]

\[
\therefore E[g] \geq \sqrt{E[f]} \left(1 - \frac{\text{Var}(f)}{2E[f]^2} \right).
\]

Now, we can find an upper bound on \(\text{Var}[g(y)] \)

\[
\text{Var}(g) = E[g^2] - E[g]^2
\]

\[
\leq E[f] - E[f] \left(1 - \frac{\text{Var}(f)}{2E[f]^2} \right)^2
\]

\[
\leq \frac{\text{Var}(f)}{E[f]} - \frac{1}{4} \frac{\text{Var}(f)^2}{E[f]^3}.
\]

Note that the first inequality in the chain above requires that \((E[g])^2 \geq E[f] \left(1 - \frac{\text{Var}(f)}{2E[f]^2} \right)^2 \). This follows from the earlier relationship \(E[g] \geq \sqrt{E[f]} \left(1 - \frac{\text{Var}(f)}{2E[f]^2} \right) \), only if its RHS is non-negative. Since \(E[f] \geq 0 \),
this is equivalent to the condition that \(1 - \frac{\text{Var}(f)}{2\sigma(f)} \geq 0 \). It can be shown that this is guaranteed if \(N \geq 32 \) in the \(\gamma \geq 1 \) case, by invoking the lower bound on \(E[f] \) from Eqn. \(27 \) and the upper bound on \(\text{Var}(f) \) from Eqn. \(31 \).

As for different \(i \), the variables \(f_i(y_i) \) are independent of each other, we get \(\text{Var}(f) = \sum_{i=1}^{N} \text{Var}(f_i) \), due to which we have:

\[
\text{Var}(g) \leq \frac{\sum_{i=1}^{N} \text{Var}(f_i)}{\sum_{i=1}^{N} E(f_i)} - \frac{1}{4} \left(\sum_{i=1}^{N} \text{Var}(f_i) \right)^2 \leq \frac{11N + 5 \sum_{i=1}^{N} 1/\gamma_i}{\sum_{i=1}^{N} \max(0,4(2 - 1/\gamma_i))}.
\]

The last step follows from Eqns. \(31 \) and \(27 \). Now we consider replacing \(\gamma_i \) by \((\Phi x)_i\). Since \(\Phi \) contains the values 0 or \(\frac{1}{N} \), we see that \(s_\gamma = N \times (\Phi x)_i \) is the summation of a subset of the elements in the vector \(x \). This gives us the final upper bound

\[
\text{Var}[\sqrt{J(y, \Phi x)}] \leq \frac{11 + 5 \sum_{i=1}^{N} 1/s_i}{\sum_{i=1}^{N} \max(0,4(2 - 1/s_i))}.
\]

In order to obtain a tail bound on \(\sqrt{J(y, \Phi x)} \), we can use Chebyshev’s inequality to prove that \(P(\sqrt{J(y, \Phi x)} \leq \sqrt{N/4 + \frac{11}{8}\sqrt{N}}) \geq 1 - \frac{1}{N} \), since the variance of \(\sqrt{J(y, \Phi x)} \) is upper bounded by (approximately) \(\frac{11}{8} \). However, we show here that \(\sqrt{J(y, \Phi x)} \) is approximately Gaussian distributed which leads to tighter bounds and with an even higher probability: \(P(\sqrt{J(y, \Phi x)} \leq \sqrt{N/4 + \frac{11}{8}\sqrt{N}}) \geq 1 - 2e^{-N^2/2} \) using upper bounds on the mean and variance of \(\sqrt{J(y, \Phi x)} \) from Eqns. \(32 \) and \(33 \) respectively. However while proving the Gaussianity, we further get a constant factor improvement as shown in the following paragraph.

By the central limit theorem, we know that \(P(\frac{(y) - \mu}{\sigma \sqrt{N}} \leq \alpha) \to \Phi_g(\alpha) \) as \(N \to \infty \), where \(\Phi_g \) is the CDF for \(N(0,1) \), and \(\mu, \sigma \) respectively the expected value and standard deviation of \(f_i \). All the \(f_i \) values will have near-identical variances (\(\leq 11/64 \) from Eqn. \(31 \)) if the intensity of the measurements is sufficiently high. Due to the continuity of \(\Phi_g^5 \), we have \(P(\frac{(y) - \mu}{\sigma \sqrt{N}} \leq \alpha + \frac{\sigma^2 \sigma^2}{4\mu \sigma \sqrt{N}}) \to \Phi_g(\alpha) \) as \(N \to \infty \)

Hence we have \(P(f(y) \leq (\sqrt{N} \mu + \frac{\sigma^2}{\sigma^2})^2 \to \Phi_g(\alpha) \) as \(N \to \infty \), and taking square roots we get \(P(\sqrt{f(y)} \leq (\sqrt{N} \mu + \frac{\sigma^2}{\sigma^2}) \to \Phi_g(\alpha) \) as \(N \to \infty \). By rearrangement, we obtain \(P(\sqrt{f(y)} - \mu \leq \alpha) \to \Phi_g(\alpha) \) as \(N \to \infty \). With this development and since \(\mu \leq 1/4, \sigma \leq \sqrt{11/8} \) from Eqns. \(25 \) and \(31 \), we can now invoke a Gaussian tail bound to establish that

\[
P(\sqrt{J(y, \Phi x)} \leq \sqrt{N/4 + \frac{11}{8}\sqrt{N}}) \geq 1 - 2e^{-N^2/2}.
\]

Note that the Gaussian nature of \(\sqrt{J(y, \Phi x)} \) emerges from the central limit theorem and is only an asymptotic result. However we consistently observe it to be true even for small values of \(N \sim 10 \) as confirmed by a Kolmogorov-Smirnov test (see \[18\].)

5inspired from https://stats.stackexchange.com/questions/241504/central-limit-theorem-for-square-roots-of-sums-of-i-i-d-random-variables

23
7.2. Proof of Theorem 2

Our proof follows the approach for the proof of the key results in [1, 8] for the case of bounded, signal-independent noise, but meticulously adapted here for the case of Poisson noise.

1. Consider an upper bound \(\varepsilon \) on \(\sqrt{J(y, \Phi x)} \), i.e., \(\sqrt{J(y, \Phi x)} \leq \varepsilon \). We will later set \(\varepsilon \) using tail bounds on the distribution of the random variable \(\sqrt{J(y, \Phi x)} \) from Theorem 1. For now, we prove the following result:

\[
\| \Phi \Psi (\theta - \theta^*) \|_2 \leq 2\sqrt{8} \varepsilon. \tag{34}
\]

We have

\[
\| \Phi \Psi \theta - \Phi \Psi \theta^* \|_2 \leq \| \Phi \Psi (\theta - \theta^*) \|_1 = I \| \Phi \Psi (\theta - \theta^*) \|_1
\]

\[
\leq I \sqrt{8J(\Phi \Psi \theta, \Phi \Psi \theta^*)} \quad \text{by Lemma 2}
\]

\[
\leq I \sqrt{8J(\Phi \Psi \theta, y)} + I \sqrt{8J(\Phi \Psi \theta^*, y)} \quad \text{by Lemma 1}
\]

\[
= \frac{I}{\sqrt{I}} \sqrt{8J(\Phi \Psi \theta, y)} + \frac{I}{\sqrt{I}} \sqrt{8J(\Phi \Psi \theta^*, y)} \leq 2\sqrt{8} \varepsilon.
\]

Note that Lemma 2 can be used in the third step above because we have imposed the constraint that \(\| \Psi \theta^* \|_1 = \| \Psi \theta \|_1 = I \) and because by the flux-preserving property of \(\Phi \), we have \(\| \Phi \Psi \theta \|_1 \leq I \) and \(\| \Phi \Psi \theta^* \|_1 \leq I \).

2. Let us define vector \(\mathbf{h} \triangleq \theta^* - \theta \) which is the difference between the estimated and true coefficient vectors. Let us denote vector \(\mathbf{h}_T \) as the vector equal to \(\mathbf{h} \) only on an index set \(T \) and zero at all other indices. Let \(T^c \) denote the complement of the index set \(T \). Let \(T_0 \) be the set of indices containing the \(s \) largest entries of \(\theta \) (in terms of absolute value), \(T_1 \) be the set of indices of the next \(s \) largest entries of \(\mathbf{h}_{T_0} \), and so on. We will now decompose \(\mathbf{h} \) as the sum of \(\mathbf{h}_{T_0}, \mathbf{h}_{T_1}, \mathbf{h}_{T_2}, \ldots \). Our aim is to prove a logical and intuitive bound for both \(\| \mathbf{h}_{T_0 \cup T_1} \|_2 \) and \(\| \mathbf{h}_{(T_0 \cup T_1)^c} \|_2 \).

3. We will first prove the bound on \(\| \mathbf{h}_{(T_0 \cup T_1)^c} \|_2 \), in the following way:

(a) We have

\[
\| \mathbf{h}_{T_j} \|_2 = \sqrt{\sum_k \mathbf{h}_{T_{j,k}}^2} \leq s^{1/2} \| \mathbf{h}_{T_j} \|_\infty,
\]

\[
s \| \mathbf{h}_{T_j} \|_\infty \leq \sum_i \mathbf{h}_{T_{j-1,i}} = \| \mathbf{h}_{T_{j-1}} \|_1.
\]

Therefore,

\[
\| \mathbf{h}_{T_j} \|_2 \leq s^{1/2} \| \mathbf{h}_{T_j} \|_\infty \leq s^{-1/2} \| \mathbf{h}_{T_{j-1}} \|_1.
\]
(b) Using Step 3(a), we get

\[\| h_{(T_0 \cup T_1)^c} \|_2 = \| \sum_{j \geq 2} h_{T_j} \|_2 \leq \sum_{j \geq 2} \| h_{T_j} \|_2 \]

\[\leq s^{-1/2} \sum_{i \geq 1} \| h_{T_i} \|_1 \]

\[\leq s^{-1/2} \| h_{(T_0)^c} \|_1. \]

(c) Using the reverse triangle inequality and the fact that \(\theta^* \) is the solution of (P2), we have

\[\| \theta \|_1 \geq \| \theta + h \|_1 \]

\[= \sum_{i \in T_0} |\theta_i + h_i| + \sum_{i \in (T_0)^c} |\theta_i + h_i| \]

\[\geq \| \theta_{T_0} \|_1 - \| h_{T_0} \|_1 + \| h_{(T_0)^c} \|_1 - \| \theta_{(T_0)^c} \|_1. \]

Rearranging the above equation gives us

\[\| h_{(T_0)^c} \|_1 \leq \| h_{(T_0)} \|_1 + 2 \| \theta - \theta_s \|_1 \]

(d) We have

\[\| h_{(T_0 \cup T_1)^c} \|_2 \leq s^{-1/2} \| h_{(T_0)^c} \|_1 \]

\[\leq s^{-1/2} (\| h_{(T_0)} \|_1 + 2 \| \theta - \theta_s \|_1) \]

\[\leq \| h_{(T_0)} \|_2 + 2s^{-1/2} \| \theta - \theta_s \|_1 \]

Using \(\| h_{(T_0)} \|_2 \leq \| h_{T_0 \cup T_1} \|_2 \), we get

\[\| h_{(T_0 \cup T_1)^c} \|_2 \leq \| h_{T_0 \cup T_1} \|_2 + 2s^{-1/2} \| \theta - \theta_s \|_1. \] \((35) \)

4. We will now prove the bound on \(\| h_{(T_0 \cup T_1)} \|_2 \), in the following way:

(a) We have

\[\Phi = \sqrt{p(1-p)} \tilde{\Phi} \Phi + \frac{(1-p)}{N} 1_{N \times m} \]

\[\Phi \Psi(\theta - \theta^*) = \sqrt{p(1-p)} \tilde{\Phi} \Psi(\theta - \theta^*) + \]

\[\frac{(1-p)}{N} 1_{N \times m} \Psi(\theta - \theta^*) \]

\[\leq \sqrt{p(1-p)} \tilde{\Phi} \Psi(\theta - \theta^*) + \]

\[\frac{(1-p)}{N} (\| \Psi \theta \|_1 - \| \Psi \theta^* \|_1) \]

25
As $\|\Psi \theta\|_1 = \|\Psi \theta\|_1 = I$, we get
\[
\Phi \Psi (\theta - \theta^*) = \sqrt{\frac{p(1 - p)}{N}} \Phi \Psi (\theta - \theta^*).
\] (36)

Let us define $B \triangleq \tilde{\Phi} \Psi$. If $N \geq O(s \log m)$, then $\tilde{\Phi}$ obeys RIP of order $2s$ with very high probability, and so does the product B since Ψ is an orthonormal matrix [9].

From Eqn. 36 above we have,
\[
\|B(\theta - \theta^*)\|_2 = \sqrt{\frac{N}{p(1 - p)}} \|\Phi \Psi (\theta - \theta^*)\|_2
\]
\[
\leq 2 \sqrt{\frac{8NI}{p(1 - p)}} \varepsilon \text{ using Eqn. 34}
\]
\[
\therefore \|B\|_2 \leq 2 \sqrt{\frac{8NI}{p(1 - p)}} \varepsilon
\]

Defining $C_1 \triangleq 2 \sqrt{\frac{8}{p(1 - p)}}$, we have
\[
\|B\|_2 \leq C_1 \sqrt{NI\varepsilon}
\] (37)

(b) The RIP of B with RIC δ_{2s} gives us,
\[
\|Bh_{T_0 \cup T_1}\|_2 \leq \sqrt{1 + \delta_{2s}} \|h_{T_0 \cup T_1}\|_2
\]

Using Eqn. 37 and the Cauchy-Schwartz inequality,
\[
|\langle Bh_{T_0 \cup T_1}, Bh \rangle| \leq \|Bh_{T_0 \cup T_1}\|_2 \|Bh\|_2
\]
\[
\leq C_1 \sqrt{NI(1 + \delta_{2s})} \|h_{T_0 \cup T_1}\|_2.
\] (38)

(c) Note that the vectors h_{T_0} and h_{T_j}, $j \neq 0$ have disjoint support. Consider
\[
|\langle Bh_{T_0}, Bh_{T_j} \rangle| = \|h_{T_0}\|_2 \|h_{T_j}\|_2 |\langle B\hat{h}_{T_0}, B\hat{h}_{T_j} \rangle|
\]
where \hat{h}_{T_0} and \hat{h}_{T_j} are unit-normalized vectors. This further yields,
\[
|\langle Bh_{T_0}, Bh_{T_j} \rangle|
\]
\[
= \|h_{T_0}\|_2 \|h_{T_j}\|_2 \frac{\|B(\hat{h}_{T_0} + \hat{h}_{T_j})\|^2 - \|B(\hat{h}_{T_0} - \hat{h}_{T_j})\|^2}{4}
\]
\[
\leq \|h_{T_0}\|_2 \|h_{T_j}\|_2 \frac{(1 + \delta_{2s})(\|\hat{h}_{T_0}\|^2 + \|\hat{h}_{T_j}\|^2) - (1 - \delta_{2s})(\|\hat{h}_{T_0}\|^2 + \|\hat{h}_{T_j}\|^2)}{4}
\]
\[
\leq \delta_{2s} \|h_{T_0}\|_2 \|h_{T_j}\|_2.
\] (39)

Analogously,
\[
|\langle Bh_{T_1}, Bh_{T_j} \rangle| \leq \delta_{2s} \|h_{T_1}\|_2 \|h_{T_j}\|_2.
\] (40)
(d) We observe that

$$B_{T_0 \cup T_1} = Bh - \sum_{j \geq 2} Bh_{T_j}$$

$$\|B_{T_0 \cup T_1}\|_2^2 = \langle Bh_{T_0 \cup T_1}, Bh \rangle - \langle Bh_{T_0 \cup T_1}, \sum_{j \geq 2} Bh_{T_j} \rangle.$$

(41)

(e) Using the RIP of B and Eqs. 38, 39, 40, 41, we obtain

$$(1 - \delta_{2s})\|h_{T_0 \cup T_1}\|_2^2 \leq \|Bh_{T_0 \cup T_1}\|_2^2 \leq C_1 \|h_{T_0 \cup T_1}\|_2 + \delta_{2s}(\|h_{T_0}\|_2 + \|h_{T_1}\|_2)\|h_{T_j}\|_2.$$

As h_{T_0} and h_{T_1} are vectors with disjoint sets of non-zero indices, it follows that

$$\|h_{T_0}\|_2 + \|h_{T_1}\|_2 \leq \sqrt{2}\|h_{T_0 \cup T_1}\|_2.$$

Therefore, we get

$$(1 - \delta_{2s})\|h_{T_0 \cup T_1}\|_2^2 \leq \|h_{T_0 \cup T_1}\|_2\left(C_1 \|h_{T_0 \cup T_1}\|_2 + \sqrt{2}\delta_{2s}\sum_{j \geq 2} \|h_{T_j}\|_2\right).$$

(42)

(f) We have

$$\sum_{j \geq 2} \|h_{T_j}\|_2 \leq s^{-1/2}\|h_{(T_0)'}\|_1$$

$$\leq s^{-1/2}\|h_{(T_0)}\|_1 + 2s^{-1/2}\|\theta - \theta_s\|_1$$

$$\leq \|h_{(T_0)}\|_2 + 2s^{-1/2}\|\theta - \theta_s\|_1$$

$$\leq \|h_{T_0 \cup T_1}\|_2 + 2s^{-1/2}\|\theta - \theta_s\|_1.$$

(43)

Combining Eqs. 42 and 43

$$\|h_{T_0 \cup T_1}\|_2 \leq C_1 \frac{\sqrt{NI(1 + \delta_{2s})}}{1 - (1 + \sqrt{2})\delta_{2s}} + \frac{2\sqrt{2}\delta_{2s}}{1 - (1 + \sqrt{2})\delta_{2s}} s^{-1/2}\|\theta - \theta_s\|_1.$$

(44)

5. Combining the upper bounds on $\|h_{(T_0 \cup T_1)'}\|_2$ and $\|h_{(T_0 \cup T_1)'}\|_2$ yields the final result as follows:

$$\|h\|_2 = \|h_{T_0 \cup T_1} + h_{(T_0 \cup T_1)'}\|_2 \leq \|h_{T_0 \cup T_1}\|_2 + \|h_{(T_0 \cup T_1)'}\|_2 \leq 2\|h_{T_0 \cup T_1}\|_2 + 2s^{-1/2}\|\theta - \theta_s\|_1.$$

Using Eqn. 44 we get

$$\|h\|_2 \leq 2C_1 \frac{\sqrt{NI(1 + \delta_{2s})}}{1 - (1 + \sqrt{2})\delta_{2s}} + \left(\frac{2 - 2\delta_{2s} + 2\sqrt{2\delta_{2s}}}{1 - (1 + \sqrt{2})\delta_{2s}}\right)s^{-1/2}\|\theta - \theta_s\|_1.$$

Let us define $C' \triangleq \frac{4\sqrt{8(1 + \delta_{2s})}}{\sqrt{p(1 - p)}(1 - (1 + \sqrt{2})\delta_{2s})}$ and $C'' \triangleq \left(\frac{2 - 2\delta_{2s} + 2\sqrt{2\delta_{2s}}}{1 - (1 + \sqrt{2})\delta_{2s}}\right).$ This yields

$$\|h\|_2 \leq C'\sqrt{NI\varepsilon} + C'' s^{-1/2}\|\theta - \theta_s\|_1.$$

(45)
The positivity requirements for \(C' \) and \(C'' \) are met by \(\delta_{2s} < \sqrt{2} - 1 \). Dividing both sides by \(I \) we obtain the first part of the theorem,
\[
\frac{\|\theta - \hat{\theta}\|_2}{I} \leq C' \sqrt{\frac{N}{I}} \varepsilon + \frac{C'' s^{-1/2} \|\theta - \theta_s\|_1}{I}.
\]
However using tail bounds on \(\sqrt{J(y, \Phi x)} \) from Theorem 1 in Section 2.2 we can set \(\varepsilon = \sqrt{N} (\frac{1}{2} + \frac{\sqrt{11}}{\sqrt{8}}) \). This yields the following:
\[
\Pr\left(\frac{\|\theta - \hat{\theta}\|_2}{I} \leq \tilde{C} \frac{N}{\sqrt{I}} + \frac{C'' s^{-1/2} \|\theta - \theta_s\|_1}{I} \right) \geq 1 - \frac{1}{N},
\]
where \(\tilde{C} \triangleq C'(1/2 + \sigma) \) where \(\sigma \) is the upper bound of \(\frac{\sqrt{11}}{\sqrt{8}} \) on the standard deviation of the SQJSD as stated in Theorem 1. For sufficiently high intensity signals, the previous analysis shows that \(\sigma \) is independent of both \(I \) and \(N \). Also, the probability of \(1 - \frac{1}{N} \) can be refined to \(1 - 2e^{-N/2} \) as argued in the comments after Theorems 1 and 2. □

References

URL http://arxiv.org/abs/1509.08892

URL http://arxiv.org/abs/1707.00475

Figure 2: Results for intensity experiment from left to right, top to bottom: Box plots of RRMSE versus I for the following problems: (P2) with $\varepsilon = \sqrt{N}/2$, (P2) with $\varepsilon = \text{99 percentile of SQISD values}$, (P4) with ρ by cross-validation (CV), (P4) with omniscient ρ, (P-NLL) with ρ by CV, (P-NLL) with omniscient ρ, (P2-L4) with ρ by CV, (P2-L4) with omniscient ρ. All results are for an ensemble of $Q = 100$ 1D signals of 100 elements, for fixed $N = 50$ and fixed signal sparsity $s = 10$ in the 1D-DCT basis.
Figure 3: Results for experiment on number of measurements from left to right, top to bottom: Box plots of RRMSE versus N (expressed in these plots as a fraction of the signal dimension $m = 100$) for the following problems: (P2) with $\varepsilon = \sqrt{N/2}$, (P2) with $\varepsilon = 99$ percentile of SQJSD values, (P4) with ρ by cross-validation (CV), (P4) with omniscient ρ, (P-NLL) with ρ by CV, (P-NLL) with omniscient ρ, (P2-L4) with ρ by CV, (P2-L4) with omniscient ρ. All results are for an ensemble of $Q = 100$ 1D signals of 100 elements, for fixed $I = 10^6$ and fixed signal sparsity $s = 10$ in the 1D-DCT basis.
Figure 4: Results for sparsity experiment from left to right, top to bottom: Box plots of RRMSE versus s for the following problems: (P2) with $\varepsilon = \sqrt{N}/2$, (P2) with $\varepsilon = 99$ percentile of SQJSD values, (P4) with ρ by cross-validation (CV), (P4) with omniscient ρ, (P-NLL) with ρ by CV, (P-NLL) with omniscient ρ, (P2-L4) with ρ by CV, (P2-L4) with omniscient ρ. All results are for an ensemble of $Q = 100$ 1D signals of 100 elements, for fixed $I = 10^6$ and fixed $N = 50$. Signal sparsity is in the 1D-DCT basis.
Figure 5: Sample reconstruction results for Poisson-corrupted compressed measurements of an image using (P2) with $\varepsilon = \sqrt{N/2}$ and a 2D-DCT basis. Left to right, top to bottom: original image, reconstructions for $I = 10^5$, $I = 10^6$, $I = 10^7$, $I = 10^8$, $I = 10^9$, $I = 10^{10}$. The respective relative reconstruction errors (RRMSE) are 0.17, 0.11, 0.092, 0.089, 0.0885, 0.0884. Refer to Section 3 for more details.

Figure 6: Left: Time taken for the CVX solver on problem (P2) versus signal dimension m, Right: RMSE comparison for problem (P2) with and without imposition of the $\|x^*\|_1 = I$ constraint.