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Where are we and where are we going?

We have seen

I Syntax and semantics of FOL

I Herbrand model and Hinttika theorem

We will see

I Model existence theorem

I Compactness theorem

I Löwenheim-Skolem Theorem
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Topic 13.1

Model existence theorem
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Parameters
One often needs fresh symbols when instantiating an existential quantifiers.

Example 13.1

Consider S = ({a/0, b/0}, {P/1}).
Is the following formula sat?

P(a) ∧ P(b) ∧ ∃x . ¬P(x)

We need to have a new constant symbol c that denotes a value s.t. ¬P(c) is
true. Note that a and b can not do the job.

Example 13.2

Consider S = ({}, {P/1}). Is the following formula sat?

∀x . P(x) ∧ ∃x . ¬P(x)

1. Instantiate existential quantifier with a fresh symbol c.

¬P(c) ∧ ∀x . P(x) ∧ ∃x . ¬P(x)

2. Instantiate universal quantifier with a term c.

P(c) ∧ ¬P(c) ∧ ∀x . P(x) ∧ ∃x . ¬P(x)

Contradiction.
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Parameters

We will need a supply of fresh symbols.

Let us define an extension of signature that ensures a supply of new constant
symbols.

Definition 13.1
Let S = (F,R) be a signature. Let par be a infinite countable set of constant
symbols disjoint from S. Let Spar = (F,R∪par).
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Consistency property

Definition 13.2
Let S = (F,R) be a signature. Let C be a collection of sets of sentences in
signature Spar. C is a consistency property wrt to S if for each S ∈ C satisfies
the following.

1. for each F ∈ ASpar , either F /∈ S or ¬F /∈ S

2. if ¬¬F ∈ S then {F}∪S ∈ C
3. if α ∈ S then {α1, α2}∪S ∈ C
4. if β ∈ S then {β1}∪S ∈ C or {β2}∪S ∈ C
5. if γ ∈ S then {γ(t)}∪S ∈ C for each t ∈ T̂Spar

6. if δ ∈ S then {δ(c)}∪S ∈ C for some c ∈ par

7. S∪{t ≈ t} ∈ C for each t ∈ T̂Spar

8. if t1 ≈ u1,..,tn ≈ un ∈ S then S∪{f (t1, .., tn) ≈ f (u1, .., un)} ∈ C for
each f /n ∈ F

9. if t1 ≈ u1,..,tn ≈ un, P(t1, .., tn) ∈ S then S∪{P(u1, .., un)} ∈ C for each
P/n ∈ R∪{≈ /2}
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Model existence theorem

Theorem 13.1
Let C be a consistency property wrt to S, S be a set of S-sentences. If S ∈ C
then S is sat.

Recall the proof in propositional case.

1. convert C into finite character

2. show limit exists in finite character

3. construct a monotonic sequence of elements of C starting from S

4. show its limit is a maximal element of C
5. show the limit is a Hinittika set

Naturally things are more complicated here.
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Recall: subset closed consistency property

Theorem 13.2
Every consistency property C can be extended to a consistency property that
is subset closed.

Proof.
Let C+ := {S ′|S ′ ⊆ S and S ∈ C}. We show C+ is consistency property.
Consider S ′ ∈ C+. By definition, there is S ∈ C s.t. S ′ ⊆ S .

1. Therefore, S ′ does not contain contradictory literals.

2. If ¬¬F ∈ S ′. Therefore, ¬¬F ∈ S . Therefore, {F}∪S ∈ C. Therefore,
{F}∪S ′ ∈ C+.

3. .... (trivially extends to all 9 cases)
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Recall: finite character

Definition 13.3
A consistency property C has finite character if
S ∈ C iff every finite subset of S is in C.

Theorem 13.3
if C is of finite character then C is subset closed.

Theorem 13.4
Let consistency property C is of finite character. If S1, S2, . . . is sequence of
members of C such that S1 ⊆ S2 ⊆ . . . . Then,

⋃
iSi ∈ C.

Proofs of the above theorems were given in lecture 6.
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Extendable to finite character

Theorem 13.5
A subset closed consistency property C is extendable to one of finite
character.

(counter case).

C+ := {S ′|all finite subsets of S ′are in C} is consistency property. Let
S ′ ∈ C+.

6. case δ ∈ S ′: Consider finite set T ⊆ S ′∪{δ(c)} for some c ∈ par.
Therefore, (T − {δ(c)}) ⊆ S ′.
Therefore, {δ}∪(T − {δ(c)}) ⊆ S ′. Therefore, {δ}∪(T − {δ(c)}) ∈ C.
Since C is consistency property, {δ}∪(T − {δ(c)})∪{δ(c ′)} ∈ C.
7Therefore, {δ}∪T∪{δ(c)} ∈ C.
Since C is subset closed, T ∈ C. Therefore, S ′∪{δ(c)} ∈ C+.



10

Extendable to finite character

Theorem 13.5
A subset closed consistency property C is extendable to one of finite
character.

A subset closed consistency property C is extendable to one of
finite character.(counter case).

C+ := {S ′|all finite subsets of S ′are in C} is consistency property. Let
S ′ ∈ C+.

6. case δ ∈ S ′: Consider finite set T ⊆ S ′∪{δ(c)} for some c ∈ par.
Therefore, (T − {δ(c)}) ⊆ S ′.
Therefore, {δ}∪(T − {δ(c)}) ⊆ S ′. Therefore, {δ}∪(T − {δ(c)}) ∈ C.
Since C is consistency property, {δ}∪(T − {δ(c)})∪{δ(c ′)} ∈ C.
7Therefore, {δ}∪T∪{δ(c)} ∈ C.
Since C is subset closed, T ∈ C. Therefore, S ′∪{δ(c)} ∈ C+.



10

Extendable to finite character

Theorem 13.5
A subset closed consistency property C is extendable to one of finite
character.

A subset closed consistency property C is extendable to one of
finite character.

(counter case).

C+ := {S ′|all finite subsets of S ′are in C} is consistency property. Let
S ′ ∈ C+.

6. case δ ∈ S ′: Consider finite set T ⊆ S ′∪{δ(c)} for some c ∈ par.
Therefore, (T − {δ(c)}) ⊆ S ′.

Therefore, {δ}∪(T − {δ(c)}) ⊆ S ′. Therefore, {δ}∪(T − {δ(c)}) ∈ C.
Since C is consistency property, {δ}∪(T − {δ(c)})∪{δ(c ′)} ∈ C.
7Therefore, {δ}∪T∪{δ(c)} ∈ C.
Since C is subset closed, T ∈ C. Therefore, S ′∪{δ(c)} ∈ C+.



10

Extendable to finite character

Theorem 13.5
A subset closed consistency property C is extendable to one of finite
character.

A subset closed consistency property C is extendable to one of
finite character.

(counter case).

C+ := {S ′|all finite subsets of S ′are in C} is consistency property. Let
S ′ ∈ C+.

6. case δ ∈ S ′: Consider finite set T ⊆ S ′∪{δ(c)} for some c ∈ par.
Therefore, (T − {δ(c)}) ⊆ S ′.
Therefore, {δ}∪(T − {δ(c)}) ⊆ S ′. Therefore, {δ}∪(T − {δ(c)}) ∈ C.

Since C is consistency property, {δ}∪(T − {δ(c)})∪{δ(c ′)} ∈ C.
7Therefore, {δ}∪T∪{δ(c)} ∈ C.
Since C is subset closed, T ∈ C. Therefore, S ′∪{δ(c)} ∈ C+.



10

Extendable to finite character

Theorem 13.5
A subset closed consistency property C is extendable to one of finite
character.

A subset closed consistency property C is extendable to one of
finite character.

(counter case).

C+ := {S ′|all finite subsets of S ′are in C} is consistency property. Let
S ′ ∈ C+.

6. case δ ∈ S ′: Consider finite set T ⊆ S ′∪{δ(c)} for some c ∈ par.
Therefore, (T − {δ(c)}) ⊆ S ′.
Therefore, {δ}∪(T − {δ(c)}) ⊆ S ′. Therefore, {δ}∪(T − {δ(c)}) ∈ C.
Since C is consistency property, {δ}∪(T − {δ(c)})∪{δ(c ′)} ∈ C.

7Therefore, {δ}∪T∪{δ(c)} ∈ C.
Since C is subset closed, T ∈ C. Therefore, S ′∪{δ(c)} ∈ C+.



10

Extendable to finite character

Theorem 13.5
A subset closed consistency property C is extendable to one of finite
character.

A subset closed consistency property C is extendable to one of
finite character.

(counter case).

C+ := {S ′|all finite subsets of S ′are in C} is consistency property. Let
S ′ ∈ C+.

6. case δ ∈ S ′: Consider finite set T ⊆ S ′∪{δ(c)} for some c ∈ par.
Therefore, (T − {δ(c)}) ⊆ S ′.
Therefore, {δ}∪(T − {δ(c)}) ⊆ S ′. Therefore, {δ}∪(T − {δ(c)}) ∈ C.
Since C is consistency property, {δ}∪(T − {δ(c)})∪{δ(c ′)} ∈ C.
7Therefore, {δ}∪T∪{δ(c)} ∈ C.

Since C is subset closed, T ∈ C. Therefore, S ′∪{δ(c)} ∈ C+.



10

Extendable to finite character

Theorem 13.5
A subset closed consistency property C is extendable to one of finite
character.

A subset closed consistency property C is extendable to one of
finite character.

(counter case).

C+ := {S ′|all finite subsets of S ′are in C} is consistency property. Let
S ′ ∈ C+.

6. case δ ∈ S ′: Consider finite set T ⊆ S ′∪{δ(c)} for some c ∈ par.
Therefore, (T − {δ(c)}) ⊆ S ′.
Therefore, {δ}∪(T − {δ(c)}) ⊆ S ′. Therefore, {δ}∪(T − {δ(c)}) ∈ C.
Since C is consistency property, {δ}∪(T − {δ(c)})∪{δ(c ′)} ∈ C.
7Therefore, {δ}∪T∪{δ(c)} ∈ C.
Since C is subset closed, T ∈ C. Therefore, S ′∪{δ(c)} ∈ C+.



11

Expanded consistency property

Definition 13.4
Let S = (F,R) be a signature. Let C be a collection of sets of sentences in
signature Spar. C is a expanded consistency property wrt to S if for each
S ∈ C satisfies the following.

1. for each F ∈ ASpar , either F /∈ S or ¬F /∈ S

2. if ¬¬F ∈ S then {F}∪S ∈ C
3. if α ∈ S then {α1, α2}∪S ∈ C
4. if β ∈ S then {β1}∪S ∈ C or {β2}∪S ∈ C
5. if γ ∈ S then {γ(t)}∪S ∈ C for each t ∈ T̂Spar

6. if δ ∈ S then {δ(c)}∪S ∈ C for each c ∈ par and not occurring in S

7. S∪{t ≈ t} ∈ C for each t ∈ T̂Spar

8. if t1 ≈ u1,..,tn ≈ un ∈ S then S∪{f (t1, .., tn) ≈ f (u1, .., un)} ∈ C for
each f /n ∈ F

9. if t1 ≈ u1,..,tn ≈ un, P(t1, .., tn) ∈ H then S∪{P(u1, .., un)} ∈ C for
each P/n ∈ R∪{≈ /2}
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Converting to extended consistency property

Definition 13.5
A parameter substitution π is par→ par. Let Fπ be a formula obtained by
replacing parameter c by π(c) in F for every c ∈ par. The substitution
naturally extends to a set of formulas.

Theorem 13.6
For subset-closed consistency property C, let
C+ := {S |there is π s.t. Sπ ∈ C}.

1. C+ extends C and subset closed

2. C+ is expanded consistency property

Proof.
Part 1 can be easily proved.
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Converting to extended consistency property(contd.)

Proof for part 2.

For part 2 we can easily check that conditions 2-5 and 7-8 holds.

Consider S ∈ C+.

1. Choose closed atom F .
Assume {F ,¬F} ∈ S .
There is a π s.t. Sπ ∈ C.
Since {Fπ, (¬F )π} ⊆ Sπ, {Fπ,¬(Fπ)} ⊆ Sπ. Contradiction.

6. case δ ∈ S :
Choose c ∈ par s.t. c does not occur in S .
Since there is a π s.t. Sπ ∈ C, there is a c ′ ∈ par s.t. Sπ∪{δπ(c ′)} ∈ C.
Therefore, Sπ∪{δ(c)(π[c 7→ c ′])} ∈ C.
Therefore, (S∪{δ(c)})(π[c 7→ c ′]) ∈ C.
Therefore, (S∪{δ(c)}) ∈ C+.
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Extension to finite character

Theorem 13.7
A subset-closed expanded consistency property C is extendable to one of
finite character.

Proof.
C+ := {S ′|all finite subsets of S ′are in C} is consistency property.Let S ′ ∈ C+

6. case δ ∈ S ′:
Consider finite set T ⊆ S ′∪{δ(c)} for some fresh c ∈ par wrt S ′.
Therefore, (T − {δ(c)}) ⊆ S ′.

Therefore, {δ}∪(T − {δ(c)}) ⊆ S ′. Therefore, {δ}∪(T − {δ(c)}) ∈ C.
Since c does not occur in {δ}∪(T − {δ(c)}) and C is expanded
consistency property, {δ}∪(T − {δ(c)})∪{δ(c)} ∈ C.
Therefore, {δ}∪T∪{δ(c)} ∈ C.
Since C is subset closed, T ∈ C. Therefore, S ′∪{δ(c)} ∈ C+.

Other cases are similarly proven.

Exercise 13.1
Prove case 8.
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Model existence theorem

Theorem 13.8
Let C be a consistency property wrt to S. If S ∈ C then S is sat.

Proof.
Wlog, we assume C is of finite character and expanded (why?).
Let F1,F2, .. be an enumeration of all the sentences of Spar in an order(why?).

Let us define a sequence S1,S2, . . . as follows.

S1 = S Sn+1 =


Sn∪{Fn, δ(c)} Sn∪{Fn} ∈ C and Fn = δ

Sn∪{Fn} Sn∪{Fn} ∈ C and Fn 6= δ

Sn otherwise

where c is a fresh parameter wrt Sn∪{Fn}.

Since Sn are in C and C is of finite character,
⋃

nSn ∈ C. Let M :=
⋃

nSn.
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Model existence theorem(contd.)

Proof.
Claim: M is maximal in C. (same argument as in propositional logic)

Assume M ′ ∈ C s.t.M ⊂ M ′. There is Fn such that Fn ∈ M ′ and Fn /∈ M.
By def. of M, Sn∪{Fn} /∈ C.
Since Sn∪{Fn} ⊆ M ′ and C is subset closed, Sn∪{Fn} ∈ C. Contradiction.

Claim: M is a Hinttika set.
If α ∈ M then {α1, α2}∪M ∈ C. Since M is maximal, {α1, α2} ⊆ M.
Other conditions hold similarly,except δ case.

Since M is a Hinttika set, M is sat. Since S ⊆ M, S is sat.

Exercise 13.2
Prove δ case to show that M is a Hinttika set.
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Topic 13.2

Consequences of model existence theorem
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Compactness

Theorem 13.9
Let S = (F,R) be a signature and S be a set of S-sentences.
If each finite subset of S is sat then S is sat.

Proof.
Let C := {S ′ ⊂ Spar-sentences| all finite subsets of S ′ are sat and there are
infinitely many parameters in par that do not occur in S ′}.

Claim: C is a consistency property.
Let S ′ ∈ C. We need to satisfy the nine conditions.

1. If {F ,¬F} ⊆ S ′, then {F ,¬F} is sat. contradiction. First cond. holds.

3. Let α ∈ S ′. Consider a finite T ⊆ {α1, α2}∪S ′.
There is a finite T ′ ⊆ S ′ s.t. T ⊆ {α, α1, α2}∪T ′.
Since T ′∪{α} ⊆ S ′, T ′∪{α} is sat.
Therefore, T ′∪{α, α1, α2} is sat.
Therefore, T is sat.
Therefore, every finite subset of {α1, α2}∪S ′ is sat.
Therefore, {α1, α2}∪S ′ ∈ C
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Compactness (contd.)

Exercise 13.3
Prove the δ case.

Proof(contd.)

6. Let δ ∈ S ′.
Consider a finite T ⊆ {δ(c)}∪S ′ for fresh c ∈ par (why possible?).
There is a finite T ′ ⊆ S ′ s.t. T ⊆ {δ, δ(c)}∪T ′.
Since T ′∪{δ} ⊆ S ′, T ′∪{δ} is sat.
Therefore, T ′∪{δ, δ(c)} is sat.
Therefore, T is sat.
Therefore, every finite subset of {δ(c)}∪S ′ is sat.
Therefore, {α1, α2}∪S ′ ∈ C

7. .... similarly other cases are proven.

Due to model existence theorem, S is sat.

Exercise 13.4
If Σ |= F then there is a finite subset S of Σ such that S |= F
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Impossibility of encoding finite models
Theorem 13.10
Let S = (F,R) be a signature and S be a set of S-sentences. If S is sat in
arbitrary large finite models then S is true in an infinite model.

Proof.
Let E/2 be a predicate symbol that is not in S. Let S′ = (F,R∪{E/2}).
As we have seen,
let Fi be a S′-sentence only using predicate E that is false in models with
domain smaller than i , and sometimes true in larger models.
Let S ′ = S∪{F1,F2,F3, . . . }.
By construction, S ′ cannot be satisfied by a finite model.

claim: S ′ is sat.
Let L be a finite subset of S ′. Let k be the largest number s.t. Fk ∈ L.
Since S is sat in arbitrary large finite models and S does not mention E , L is
sat in a model larger than k .
Due to compactness, S ′ is sat.

Therefore, S ′ has infinite model.
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Löwenheim-Skolem Theorem

Theorem 13.11
Let S = (F,R) be a countable signature and S be a set of S-sentences.
If S is sat then S is true in a countable model.

Proof.
Let C := {S ′ ⊂ Spar-sentences| S ′ is sat and there are infinitely many
parameters in par that do not occur in S ′}.

We can easily show C is a consistency property.

Since S ∈ C, we can construct a Herbrand model of S wrt Spar that is
countable.

Remark:
For every satisfiable set of first order sentences. we have a countable model
therefore real numbers can not be axiomatized using formulas in FOL.
Actually the story is more complicated. Check out “skolem’s paradox”!
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