
cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 1

Mathematical Logic 2016

Lecture 2: Propositional logic - Syntax and Semantics

Instructor: Ashutosh Gupta

TIFR, India

Compile date: 2016-08-03

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 2

Propositional logic
Propositional logic

I deals with propositions,

I only infers from the structure over propositions, and

I does not look inside propositions.

Example 2.1

If the seed catalog is correct then if seeds are planted in April then the
flowers bloom in July. The flowers do not bloom in July. Therefore, if seeds
are planted in April then the seed catalog is not correct.

The above argument contains the following propositions

I c = the seed catalogue is correct

I s = seeds are planted in April

I f = the flowers bloom in July

If c then if s then f . not f .Therefore, if s then not c.
((c ⇒ (s ⇒ f)) ∧ ¬f) ⇒ (s ⇒ ¬c)

Analysis of such strings
is propositional logic

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 3

Topic 2.1

Syntax

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 4

Propositional variables

We assume that there is a set Vars of countably many propositional variables.

I Since Vars is countable, we assume that variables are indexed.

Vars = {p1, p2, . . . }

I The variables are just names/symbols without inherent meaning

I We may also use p, q, r , .., x , y , z to denote the propositional variables

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 5

Logical connectives

The following 10 symbols that are called logical connectives.

formal name symbol read as

true > top
}

0-ary symbols
false ⊥ bot

negation ¬ not
}

unary symbols
conjunction ∧ and

binary symbols
disjunction ∨ or
implication ⇒ implies
equivalence ⇔ iff
exclusive or ⊕ xor

open parenthesis (
close parenthesis)

We assume that the logical connectives are not in Vars.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 6

Propositional formulas

A propositional formula is a finite string containing symbols in Vars and
logical connectives.

Definition 2.1
The set of propositional formulas is the smallest set P such that

I >,⊥ ∈ P

I if p ∈ Vars then p ∈ P

I if F ∈ P then ¬F ∈ P

I if ◦ is a binary symbol and F ,G ∈ P then (F ◦ G) ∈ P

Definition 2.2 (Alternate presentation of the above definition)

F ∈ P if

F , p | > | ⊥ | ¬F | (F ∨ F) | (F ∧ F) | (F ⇒ F) | (F ⇔ F) | (F ⊕ F)

where p ∈ Vars.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 7

Some notation

Definition 2.3
>,⊥, and p ∈ Vars are atomic formulas.

Definition 2.4
For each F ∈ P, let Vars(F) be the set of variables appearing in F .

Exercise 2.1
“appear in” is not defined yet. Give a formal definition of the phrase.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 8

Examples of propositional formulas

Exercise 2.2
Is the following belongs to P?

I > ⇒ ⊥ 7

I (> ⇒ ⊥) 3

I (p1 ⇒ ¬p2) 3

I (p1)7

I ¬¬¬¬¬¬¬p1 3

Not all strings over Vars and logical connectives are in P.

How can we argue that a string does or does not belong to P?

We need a method to recognize a
string belongs to P or not.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 9

Parse tree
By def. 2.1, F ∈ P iff F is obtained by unfolding of the generation rules

Definition 2.5
A parse tree of a formula F ∈ P is a tree such that

I the root is F ,

I leaves are atomic formulas, and

I each internal node is formed by applying some formation rule on its
children.

Theorem 2.1
F ∈ P iff there is a parse tree of F

Example 2.2 (p1 ⇒ (¬p2 ⇔ (p1 ∧ p3)))

p1 (¬p2 ⇔ (p1 ∧ p3)))

¬p2

p2

(p1 ∧ p3)

p1 p3

reverse direction is immediate. for forward direction, we will
prove stronger theorem, i.e., existance of unique parsing tree

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 10

Principle of structural induction

In order to prove, such theorems we need to get used to the principle of
structural induction.

Theorem 2.2
Every formula in P has a property Q if

I Base case: every atomic formula has property Q

I induction steps: if F ,G ∈ P have property Q so do ¬F and (F ◦ G),
where ◦ is a binary symbol

Exercise 2.3
Prove theorem 2.2.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 11

Topic 2.2

Unique parsing

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 12

Matching parenthesis

Theorem 2.3
Every F ∈ P has matching parenthesis, i.e., equal number of ‘(’ and ‘)’.

Proof.
base case:
atomic formulas have no parenthesis. Therefore, matching parenthesis

induction steps:
We assume F ,G ∈ P has matching parenthesis.
Let nF and nG be the number of ‘(’ in F and G respectively.
Trivially, ¬F has matching parenthesis.
For some binary symbol ◦, the number of both ‘(’ and ‘)’ in (F ◦ G) is
nF + nG + 1.

Due to the structural induction, the property holds.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 13

Prefix of a formula

Theorem 2.4
A proper prefix of a formula is not a formula.

Proof.
We show a proper prefix of a formula is in one of the following forms.

1. strictly more ‘(’ than ‘)’,

2. a (possibly empty) sequence of ¬.

None of the above are clearly in P.

base case:
A proper prefix of atomic formulas is empty string, which is the second case
...

Exercise 2.4
Give examples of the above two cases

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 14

Prefix of a formula

Proof.
induction step:
Let F ,G ∈ P.

Consider proper prefix F ′ of ¬F . There are two cases.

I F ′ = ε, case 2
I F ′ = ¬F ′′, where F ′′ is a proper prefix of F . Now we again have two

subcases for F ′′.
I If F ′′ is in case 1 then F ′ belongs to case 1
I If F ′′ = ¬..¬ then F ′ belongs to case 2

Consider proper prefix F ′ of (F ◦ G). There are several cases....

Exercise 2.5
Complete the above proof.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 15

Unique parsing

Theorem 2.5
Each F ∈ P has a unique parsing tree.

Proof.
ν(F) , number of logical connectives in F . We apply induction over ν(F).
base case: ν(F) = 0
F is an atomic formula, therefore has a single node parsing tree.
inductive steps: ν(F) = n
We assume that each F ′ with ν(F ′) < n has a unique parsing tree.
case F = ¬G : Since G has a unique parsing tree, F has a unique parsing tree.
case F = (G ◦ H):
Suppose there is another formation rule s.t. F = (G ′ ◦′ H ′).
Since F = (G ◦ H) = (G ′ ◦′ H ′), G ◦ H) = G ′ ◦′ H ′).
Wlog, G is prefix of G ′.
Since G ,G ′ ∈ P, G can not be proper prefix of G ′. Therefore, G = G ′.
Therefore, ◦ = ◦′. Therefore, H = H ′. Therefore, one way to unfold F .
F has a unique parsing tree.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 16

Parsing algorithm
The previous proofs suggest a parsing algorithm to generate parsing tree.

Algorithm 2.1: Parser

Input: F : a string over Vars and logical connectives
Output: parse tree if F ∈ P, exception Fail otherwise

1 if F = p or F = > or F = ⊥ then return ({F}, ∅) ;
2 if F = ¬G then
3 (V ,E) := Parser(G);
4 return (V ∪ {F},E ∪ {(F ,G)});

5 if F = (F ′) then
6 G := smallest prefix of F ′ where parenthesis match or atomic formula
7 after a sequence of negation symbols;
8 o ′H := tail(F ′, len(G));
9 (V1,E1) := Parser(G);

10 (V2,E2) := Parser(H);
11 return (V1 ∪ V2 ∪ {F},E1 ∪ E2 ∪ {(F ,G), (F ,H)});

12 else
13 Throw Fail

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 17

Parse tree is a DAG

We have been thinking that the parsing algorithm produces parse tree.

However, the previous algorithm produced a parse DAG, because it maintains
a set of formulas as node of the parse tree.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 18

Subformula

Definition 2.6
A formula G is a subformula of formula F if G occurs within F . G is a proper
subformula of F if G 6= F . Let sub(F) denote the set of subformulas of F .

All the nodes of the parse tree of F is the set of subformulas of F .

Definition 2.7
Immediate subformulas are the children of a formula in its parse tree.
And, leading connective is the connective that is used to join the children to
the formula.

Example 2.3

Consider F = (p1 ⇒ (¬p2 ⇔ (p1 ∧ p3)))
sub(F) = {(p1 ⇒ (¬p2 ⇔ (p1 ∧ p3))), (¬p2 ⇔ (p1 ∧ p3)),¬p2, (p1 ∧ p3),

p1, p2, p3}
The leading connective of F is ⇒.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 19

Topic 2.3

Shorthands

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 20

Too many parenthesis

In the above syntax, we need to write a large number of parenthesis.

Using precedence order over logical connectives, we may drop some
parenthesis without loosing the unique parsing property.

Example 2.4

Consider ((p ∧ q)⇒ (r ∨ p))

I We may drop outermost parenthesis without any confusion

(p ∧ q)⇒ (r ∧ p)

I If ∧ and ∨ get precedence over ⇒ in unfolding during parsing then we
do not need the rest of parenthesis

p ∧ q ⇒ r ∧ p

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 21

Precedence order

We will use the following precedence order in writing the propositional
formulas

¬

∧∨ ⊕

⇔ ⇒

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 22

Using precedence order
Consider the following formula for n > 1

F0 ◦1 F1 ◦2 F2 · · · ◦n Fn,

where F0,..,Fn are either atomic or enclosed by parenthesis, or their negation.

We transform the formula as follows

I Find a oi such that oi−1 and oi+1 have lower precedence.

I Introduce parenthesis around (Fi−1 ◦i Fi) and call it F ′i .

F0 ◦1 . . .Fi−2 ◦i−1 F ′i ◦i+1 Fi+1 · · · ◦n Fn

We apply the above until n = 1 and then apply the normal parsing procedure.

Inside of Fi s may also have similar ambiguities, which are recursively resolved
using the above procedure.

Exercise 2.6
Write a formal procedure from the informal description above.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 23

Example precedence order

Example 2.5

Which of the following formulas can be unambiguously parsed?

I ¬p ∨ (p ⊕ q)⇔ p ∧ q 3

I p ∨ q ∧ r 7

I p ∨ q ∨ r 7

I p ⇒ q ⇒ r 7

Exercise 2.7
Modify the parsing procedure of the previous slide to incorporate associativity
preference.

Associativity preference may further
reduce the need of parenthesis

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 24

Substitution

Definition 2.8
For F ∈ P and p1, . . . , pk ∈ Vars, let F [G1/p1, . . . ,Gk/pk] denote another
formula obtained by simultaneously replacing all occurrence of pi by a
formula Gi for each i ∈ 1..k.

For short hand, we may write a formula as F (p1, . . . , pk), where we say that
p1, . . . , pk are the variables that play a special role in the formula F . Let
F (G1, . . . ,Gn) be F [G1/p1, . . . ,Gk/pk].

Example 2.6

1. (p ⇒ (r ⇒ p))[(r ⊕ s)/p] = ((r ⊕ s)⇒ (r ⇒ (r ⊕ s)))

2. (p ⇒ (r ⇒ p))[(r ⊕ s)/p, x/r] 6= (p ⇒ (r ⇒ p))[(r ⊕ s)/p][x/r]

Exercise 2.8
a. The definition 2.8 is informal. Give a formal definition.
b. Write the result of substitutions in the second example.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 25

Topic 2.4

Semantics

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 26

Truth values

We denote the set of truth values as B , {0, 1}.

0 and 1 are only distinct objects without any intuitive meaning.

We may view 0 as false and 1 as true but this is only our emotional response
to the symbols.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 27

Model

Definition 2.9
A model is an element of Vars→ B.

Since Vars is countable, the set of models is non-empty, and infinitely many.

A model m may or may not satisfy a formula F .
The satisfaction relation is usually denoted by m |= F in infix notation.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 28

Propositional Logic Semantics

Definition 2.10
The satisfaction relation |= between models and formulas is the relation that
satisfies the following conditions.

m |=>
m |=p if m(p) = 1

m |=¬F if m 6|= F

m |=F1 ∨ F2 if m |= F1 or m |= F2

m |=F1 ∧ F2 if m |= F1 and m |= F2

m |=F1 ⊕ F2 if m |= F1 or m |= F2, but not both

m |=F1 ⇒ F2 if if m |= F1 then m |= F2

m |=F1 ⇔ F2 if m |= F1 iff m |= F2

Theorem 2.6
There is exactly one relation that satisfies the above conditions.

Proof. Since each F ∈ P has a unique parse tree, we have a terminating
procedure to check if m |= F or not.

Why is “smallest relation”
not mentioned?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 29

Example: satisfaction relation

Example 2.7

Consider model m = {p1 7→ 1, p2 7→ 0, p3 7→ 0, . . . }
And, formula (p1 ⇒ (¬p2 ⇔ (p1 ∧ p3)))

(p1 ⇒ (¬p2 ⇔ (p1 ∧ p3)))

p1 (¬p2 ⇔ (p1 ∧ p3)))

¬p2

p2

(p1 ∧ p3)

p1 p3

m |=

m |=m 6|= m 6|=

m |= m 6|=

m 6|=

m 6|=

Exercise 2.9
write the satisfiability checking procedure formally.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 30

Satisfiable, valid, unsatisfiable

We say

I m satisfies F if m |= F ,

I F is satisfiable if there is a model m s.t. m |= F ,

I F is valid (written |= F) if for each model m m |= F , and

I F is unsatisfiable (written 6|= F) if there is no model m s.t. m |= F .

Exercise 2.10
If F is sat then ¬F is .
If F is valid then ¬F is .
If F is unsat then ¬F is .

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 31

Implication

We extend the usage of |=.

Definition 2.11
Let M be a (possibly infinite) set of models.
M |= F if for each m ∈ M, m |= F .

Definition 2.12
Let Σ be a (possibly infinite) set of formulas.
Σ |= F if for each model m that satisfies each formula in Σ, m |= F .

Σ |= F is read Σ implies F .
If {G} |= F then we may write G |= F .

Theorem 2.7
F |= G iff |= (F ⇒ G).

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 32

Equisatisfiable

Definition 2.13
Let F ≡ G if m |= F iff m |= G .

Theorem 2.8
F ≡ G iff |= (F ⇔ G).

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 33

Topic 2.5

Decidability of SAT

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 34

Partial models

Let m|Vars(F) : Vars(F)→ B and for each p ∈ Vars(F), m|Vars(F)(p) = m(p)

Theorem 2.9
If m|Vars(F) = m′|Vars(F) then m |= F iff m′ |= F

Proof sketch.
the procedure to check m |= F only looks at the Vars(F) part of m.
Therefore any extension of m|Vars(F) will have same result as m |= F or
m 6|= F .

Definition 2.14
We will call elements of Vars ↪→ B as partial models.

Exercise 2.11
Write the above proof formally.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 35

Propositional satisfiability problem

The following problem is called the satisfiability problem

For a given F ∈ P, is F satisfiable?

Theorem 2.10
The propositional satisfiability problem is decidable.

Proof.
Let n = |Vars(F)|.
We need to enumerate 2n elements of Vars(F)→ B.
If any of the models satisfy the formula, then we can always extend to a the
full model and F is sat
Otherwise, F is unsat.

Exercise 2.12
Give a procedure to decide the validity of a formula.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 36

Topic 2.6

Truth tables

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 37

Truth tables

Truth tables was the first method to decide propositional logic.

The method is usually presented in slightly different notation.

We need to assign a truth value to every formula.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 38

Truth function

A model m is in Vars→ B.

We can extend m to P→ B in the following way.

m(F) =

{
1 m |= F

0 otherwise.

The extended m is called truth function.

Since truth functions are natural extensions of models, we did not introduce
new symbols.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 39

Truth functions for logical connectives

Let F and G are logical formulas, and m is a model.
Due to the semantics of the propositional logic, the following holds for the
truth functions.

m(F) m(¬F)

0 1
1 0

m(F) m(G) m(F ∧ G) m(F ∨ G) m(F ⊕ G) m(F ⇒ G) m(F ⇔ G)

0 0 0 0 0 1 1
0 1 0 1 1 1 0
1 0 0 1 1 0 0
1 1 1 1 0 1 1

Exercise 2.13
Verify the above table against the definition of |=

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 40

Truth table
For a formula F , a truth table consists of 2|Vars(F)| rows. Each row considers
one of the partial models and computes the truth value of F for each model.

Example 2.8

Consider (p1 ⇒ (¬p2 ⇔ (p1 ∧ p3)))
We will not write m(.) in the top row for brevity.

p1 p2 p3 (p1 ⇒ (¬ p2 ⇔ (p1 ∧ p3)))

0 0 0 0
0
0
0
1
1
1
1

1
1
1
1
0
1
1
0

1
1
0
0
1
1
0
0

0
0
1
1
0
0
1
1

0
0
1
1
0
1
1
0

0
0
0
0
1
1
1
1

0
0
0
0
0
1
0
1

0
1
0
1
0
1
0
1

0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

The column under the leading connective has 1s therefore the formula is sat.
But, there are some 0s in the column therefore the formula is not valid.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 41

Tedious truth tables

I We need to write 2n rows even if some simple observations about the
formula may prove unsatisfiablity/satisfiability.
For example,

I (a ∨ (c ∧ a)) is sat (why? - no negation)
I (a ∨ (c ∧ a)) ∧ ¬(a ∨ (c ∧ a)) is unsat (why?- contradiction at top level)

I We should be able to take such shortcuts?

We will see many methods that will allow
us to take such shortcuts. But not now!

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 42

Topic 2.7

Problems

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 43

Parse Algorithm

Exercise 2.14
Show the run of Algorithm 2.1 on the following formulas.

1. ¬q ⇒ (p ⊕ r ⇔ s)

2. (¬(p ⇒ q) ∧ (r ⇒ (p ⇒ q)))

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 44

Let expression
We may extend the grammar of proportional logic with let expressions.

F := · · · | (let p = F in F)

Let-expression is a syntactic device to represent large formulas succinctly.

(let p = F in G) represents G [F/p]

Example 2.9

(let p = (q ∧ r) in ((p ∧ s) ∨ (q ⇒ ¬p)))
represents

((q ∧ r) ∧ s) ∨ (q ⇒ ¬(q ∧ r))

Exercise 2.15
Give an example in which let expressions allow us to represent a formula in
exponentially less space.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 45

Precedence order

Exercise 2.16
Add minimum parenthesis in the following formulas such that it has unique
parsing under our precedence order

1. p ∧ q ∨ r ∧ s ∧ t ∨ u ∨ v ∧ w

2. p ⇒ ¬q ⊕ p ∨ p ∧ ¬r ⇔ s ∧ t

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 46

Custom Precedence order

Exercise 2.17
Consider the following precedence order

¬ ⊕

⇔ ⇒

∧ ∨

Add minimal parentheses in the following formulas such that they have
unique parsing tree

1. ¬p ⇒ q ∧ r ⇒ p ⇒ q

2. p ⇒ ¬q ⊕ p ∨ p ∧ ¬r ⇔ s ∧ t

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 47

Semantics

Exercise 2.18
Show F (⊥/p) ∧ F (>/p) |= F |= F (⊥/p) ∨ F (>/p).

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 48

Truth tables

Exercise 2.19
Prove/disprove validity of the following formulas using truth tables.

1. (p ∨ q)⇔ ¬(¬p ∧ ¬q)

2. p ∧ (q ∧ r)⇔ (p ∧ q) ∧ r

3. p ∧ (q ∨ r)⇔ (p ∧ q) ∨ (q ∧ r)

4. (p ⇒ (q ⇒ r))⇔ ((p ∧ q)⇒ r))

5. p ∧ (q ⊕ r)⇔ (p ∧ q)⊕ (q ∧ r)

6. ⊥ ⇒ F for any F

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 49

End of Lecture 2

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

	Syntax
	Unique parsing
	Shorthands
	Semantics
	Decidability of SAT
	Truth tables
	Problems

