Mathematical Logic 2016

Lecture 4: Normal forms

Instructor: Ashutosh Gupta

TIFR, India

Compile date: 2016-08-12

Where are we and where are we going?

We have seen

- propositional logic syntax and semantics
- truth tables as methods for deciding SAT
- some common equivalences
- We will learn
 - Various normal forms
 - NNF (seen in the previous lecture)
 - CNF
 - DNF
 - ► *k*-SAT
 - DNF formula minimization
 - Encoding sat problems

Some terminology

- Propositional variables are also referred as atoms
- A literal is either an atom or its negation
- A clause is a disjunction of literals.

Since \lor is associative, commutative and absorbs multiple occurrences, a clause may be referred as a set of literals

Example 4.1

- p is an atom but $\neg p$ is not.
- ▶ ¬p and p both are literals.
- $p \lor \neg p \lor p \lor q$ is a clause
- $\{p, \neg p, q\}$ is the same clause

Topic 4.1

Conjunctive normal form

Conjunctive normal form(CNF)

Definition 4.1

A formula is in CNF if it is a conjunction of clauses.

Since \wedge is associative, commutative and absorbs multiple occurrences, a CNF formula may be referred as a set of clauses

Example 4.2

- ▶ ¬p and p both are in CNF.
- $(p \lor \neg q) \land (r \lor \neg q) \land \neg r$ in CNF.
- $\{(p \lor \neg q), (r \lor \neg q), \neg r\}$ is the same CNF formula.
- $\{\{p, \neg q\}, \{r, \neg q\}, \{\neg r\}\}$ is the same CNF formula.

Exercise 4.1 Write a formal grammar for CNF

CNF conversion

Theorem 4.1

For every formula F there is another formula F' in CNF s.t. $F \equiv F'$.

Proof.

Let us suppose we have

- ▶ removed \oplus , \Rightarrow , \Leftrightarrow using the equivalences seen earlier,
- converted the formula in NNF, and
- \blacktriangleright flattened \wedge and $\lor.$

Now the formulas have the following form with literals at leaves.

After the push formula size grows! Why should the procedure terminate?

Since \lor distributes over \land , we can always push \lor inside \land .

Eventually, we will obtain a formula that is CNF.

CNF conversion terminates

Theorem 4.2

The procedure of converting a formula in CNF terminates.

Proof.

For a formula F, let $\nu(F) \triangleq$ the maximum height of \vee, \wedge alternations in F. Consider a formula F(G) such that

$$G = \bigvee_{i=0}^{m} \bigwedge_{j=0}^{n_i} G_{ij}.$$

After the push we obtain F(G'), where

$$G' = \bigwedge_{j_1=0}^{n_1} \dots \bigwedge_{j_m=0}^{n_m} \bigvee_{\substack{i=0\\\nu() < \nu(G)}}^m G_{ij_i}$$

Observations

- G' is either the top formula or the parent connective(s) are \wedge
- G_{ii} is either a literal or an \vee formula

We need to apply flattening to keep F(G') in the form_(of the previous slide). Instructor: Ashutosh Gupta Mathematical Logic 2016 $\Theta \oplus \Theta$

CNF conversion terminates (contd.)

(contd.)

Due to Köing lemma, the procedure terminates.(why?)

Exercise 4.2

Consider a set of balls that are labelled with positive numbers. We can replace a k labelled ball with any number of balls with labels less than k. Using Köing lemma, show that the process always terminates.

Hint: in the above theorem, the bag is the subformulas of F(G).

CNF examples

Example 4.3 Consider $(p \Rightarrow (\neg q \land r)) \land (p \Rightarrow \neg q)$ $\equiv (\neg p \lor (\neg q \land r)) \land (\neg p \lor \neg q)$ $\equiv ((\neg p \lor \neg q) \land (\neg p \lor r)) \land (\neg p \lor \neg q)$ $\equiv (\neg p \lor \neg q) \land (\neg p \lor r) \land (\neg p \lor \neg q)$

Exercise 4.3

Convert the following formulas into CNF

1.
$$\neg((p \Rightarrow q) \Rightarrow ((q \Rightarrow r) \Rightarrow (p \Rightarrow r)))$$

2. $(p \Rightarrow (\neg q \Rightarrow r)) \land (p \Rightarrow \neg q) \Rightarrow (p \Rightarrow r)$

Conjunctive normal form(CNF) (2)

- A unit clause contains only one single literal.
- A binary clause contains two literals.
- A ternary clause contains three literals.
- \blacktriangleright We naturally extend definition of the clauses to empty set of literals. We refer to \bot as empty clause.

Example 4.4

- $(p \land q \land \neg r)$ has three unit clauses
- $(p \lor \neg q \lor \neg s) \land (p \lor q) \land \neg r$ has a ternary, a binary and a unit clause

Exercise 4.4

a. Show F' obtained from the procedure may be exponentially larger than F

b. Give a linear time algorithm to prove validity of a CNF formula

Tseitin's encoding

We can translate every formula into CNF without exponential explosion using Tseitin's encoding by introducing fresh variables.

- 1. Assume input formula F is NNF without \oplus , \Rightarrow , and \Leftrightarrow .
- 2. Find a $G_1 \wedge \cdots \wedge G_n$ that is just below a \vee in $F(G_1 \wedge \cdots \wedge G_n)$
- 3. Replace $F(G_1 \land .. \land G_n)$ by $F(p) \land (\neg p \lor G_1) \land .. \land (\neg p \lor G_n)$, where p is a fresh variable
- 4. goto 2

Exercise 4.5

Convert the following formulas into CNF using Tseitin's encoding

1.
$$(p \Rightarrow (\neg q \land r)) \land (p \Rightarrow \neg q)$$

2. $(p \Rightarrow q) \lor (q \Rightarrow \neg r) \lor (r \Rightarrow q) \Rightarrow \neg(\neg(q \Rightarrow p) \Rightarrow (q \Leftrightarrow r)$

Exercise 4.6

Modify the encoding such that it works without the assumptions at step 1 Hint: Download sat solver \$wget http://fmv.jku.at/limboole/limboo

))

Tseitin's encoding preserves satisfiability

Theorem 4.3 if $m \models F(p) \land (\neg p \lor G_1) \land \cdots \land (\neg p \lor G_n)$ then $m \models F(G_1 \land \cdots \land G_n)$ Proof.

Assume $m \models F(p) \land (\neg p \lor G_1) \land \cdots \land (\neg p \lor G_n).$

Case $m \models p$:

- Therefore, $m \models G_i$ for all $i \in 1..n$.
- Therefore, $m \models G_1 \land \cdots \land G_n$.
- Therefore, $m \models F(G_1 \land \cdots \land G_n)$.

Case $m \not\models p$ and $m \not\models G_1 \land \cdots \land G_n$:

• Due to the substitution theorem, $m \models F(G_1 \land \cdots \land G_n)$

Tseitin's encoding preserves satisfiability(contd.)

Proof(contd.)

Case $m \not\models p$ and $m \models G_1 \land \cdots \land G_n$:

• Since $F(G_1 \land \cdots \land G_n)$ is in NNF, p occurs only positively in F.

• Therefore,
$$m[p \mapsto 1] \models F(p)_{(why?)}$$
.

- Since p does not occur in G_i s, $m[p \mapsto 1] \models G_1 \land \dots \land G_n$.
- ▶ Due to the substitution theorem, $m[p \mapsto 1] \models F(G_1 \land \dots \land G_n)$
- Therefore, $m \models F(G_1 \land \cdots \land G_n)$.

Exercise 4.7

Show if
$$\not\models F(p) \land (\neg p \lor G_1) \land .. \land (\neg p \lor G_n)$$
 then $\not\models F(G_1 \land .. \land G_n)$

Topic 4.2

Disjunctive normal form

Disjunctive normal form(DNF)

Definition 4.2

A formula is in DNF if it is a disjunction of conjunctions of literals.

Theorem 4.4 For every formula F there is another formula F' in DNF s.t. $F \equiv F'$.

Proof. Proof is similar to CNF.

Exercise 4.8

- a. Give the formal grammar of DNF
- b. Give a linear time algorithm to prove satisfiability of a DNF formula

Topic 4.3

k-sat

k-sat

Definition 4.3

A k-sat formula is a CNF formula and has at most k literals in each of its clauses

Example 4.5

•
$$(p \land q \land \neg r)$$
 is 1-SAT

•
$$(p \lor \neg p) \land (p \lor q)$$
 is 2-SAT

•
$$(p \lor \neg q \lor \neg s) \land (p \lor q) \land \neg r$$
 is 3-SAT

3-SAT satisfiablity

Theorem 4.5

For each k-SAT formula F there is a 3-SAT formula F' with linear blow up such that F is sat iff F' is sat.

Proof.

Consider F a k-SAT formula with $k \ge 4$. Consider a clause $G = (\ell_1 \lor \cdots \lor \ell_k)$ in F, where ℓ_i are literals.

Let x_2, \ldots, x_{k-2} be variables that do not appear in F. Let G' be the following set of clauses

$$(\ell_1 \vee \ell_2 \vee x_2) \wedge \bigwedge_{i \in 2..k-2} (\neg x_i \vee x_{i+1} \vee \ell_{i+1}) \wedge (\neg x_{k-2} \vee \ell_{k-1} \vee \ell_k).$$

We show G is sat iff G' is sat.

Exercise 4.9 Convert the following CNF in 3-SAT

$$(p \lor \neg q \lor s \lor \neg t) \land (\neg q \lor x \lor \neg y \lor z)$$

$$(0) \otimes (0) \otimes$$

TIFR, India

3-SAT satisfiability(cont. I)

Proof(contd. from last slide).

Recall

$$G' = (\ell_1 \vee \ell_2 \vee x_2) \land \bigwedge_{i \in 2..k-2} (\neg x_i \vee x_{i+1} \vee \ell_{i+1}) \land (\neg x_{k-2} \vee \ell_{k-1} \vee \ell_k).$$

Assume $m \models G'$: Assume for each $i \in 1..k$, $m(\ell_i) = 0$. Due to the first clause $m(x_2) = 1$. Due to *i*th clause, if $m(x_i) = 1$ then $m(x_{i+1}) = 1$. Due to induction, $m(x_{k-2}) = 1$. Due to the last clause of G', $m(x_{k-2}) = 0$. Contradiction. Therefore, exists $i \in 1..k$ $m(\ell_i) = 1$. Therefore $m \models G$.

3-SAT satisfiability(cont. II) Proof(contd. from last slide). Recall

$$G' = (\ell_1 \vee \ell_2 \vee x_2) \land \bigwedge_{i \in 2..k-2} (\neg x_i \vee x_{i+1} \vee \ell_{i+1}) \land (\neg x_{k-2} \vee \ell_{k-1} \vee \ell_k).$$

Assume
$$m \models G$$
:
There is a $m(\ell_i) = 1$.
Let $m' = m[x_2 \mapsto 1, ..., x_{i-1} \mapsto 1, x_i \mapsto 0, ..., x_{k-2} \mapsto 0]$
Therefore, $m' \models G'_{(why?)}$.

G' contains 3(k-2) literals. In the worst case, the formula size will increase 3 times.

Exercise 4.10

a. Complete the above argument.

b. Show a 3-SAT formula cannot be converted into 2-SAT using Tseitin's encoding

Topic 4.4

Encoding in SAT

SAT encoding

- Since SAT is a NP-complete problem, therefore any NP-hard problem can be encoded into SAT in polynomial size.
- We will look into a few interesting examples.

Encoding into CNF

CNF is the form of choice

- Most problems specify collection of restrictions on solutions
- Each restriction is usually of the form

 $\mathsf{if}\mathsf{-this}\ \Rightarrow\ \mathsf{then}\mathsf{-this}$

The above constraints are naturally in CNF.

"Even if the system has hundreds and thousands of formulas, it can be put into CNF piece by piece without any multiplying out" – Martin Davis and Hilary Putnam

Exercise 4.11

Which of the following two encodings of ite(p, q, r) is in CNF?

1.
$$(p \land q) \lor (\neg p \land r)$$

2. $(p \Rightarrow q) \land (\neg p \Rightarrow r)$

Coloring graph

Problem:

color a graph($\{v_1, \ldots, v_n\}, E$) with at most d colors s.t. if $(v_i, v_j) \in E$ then color of v_1 is different from v_2 .

SAT encoding

Variables: p_{ij} for $i \in 1..n$ and $j \in 1..d$. p_{ij} is true iff v_i is assigned *j*th color. Clauses:

Each vertex has at least one color

for each $i \in 1..n$ $(p_{i1} \lor \cdots \lor p_{id})$

• if $(v_i, v_j) \in E$ then color of v_1 is different from v_2 .

 $(\neg p_{ik} \lor \neg p_{jk})$ for each $k \in 1..d$, $(v_i, v_j) \in 1..n$

Exercise 4.12

a. Encode: "every vertex has at most one color."

b. Do we need this constraint to solve the problem?

Pigeon hole principle

Prove:

if we place n+1 pigeons in n holes then there is a hole with at least 2 pigeons

The theorem holds true for any n, but we can prove it for a fixed n.

SAT encoding

Variables: p_{ij} for $i \in 0..n$ and $j \in 1..n$. p_{ij} is true iff pigeon i sits in hole j. Clauses:

Each pigeon sits in at least one hole

for each $i \in 0..n$ $(p_{i1} \vee \cdots \vee p_{in})$

There is at most one pigeon in each hole.

 $(\neg p_{ik} \lor \neg p_{jk})$ for each $k \in 1..n$, $i < j \in 1..n$

Bounded model checking

Consider a Mealy machine

$$\xrightarrow{I} T(I, X, X', O) \xrightarrow{O} X'$$

- I is a vector of variables representing input
- O is a vector of variables representing output
- ► X is a vector of variables representing current state
- X' is a vector of variables representing next state

Prove: After *n* steps, the machines always produces output O that satisfies some formula F(O).

Bounded model checking encoding

SAT encoding:

Variables:

- ▶ $I_0, ..., I_{n-1}$ representing input at every step
- ▶ O_1, \ldots, O_n representing output at every step
- X_0, \ldots, X_n representing internal state at every step

Clauses:

Encoding system runs

$$T(I_0, X_0, X_1, O_1) \wedge \cdots \wedge T(I_{n-1}, X_{n-1}, X_n, O_n)$$

Encoding property

$$\neg F(O_n)$$

If the encoding is unsat the property holds.

Topic 4.5

Problems

Exercise 4.13 Convert the following formulas into CNF

1.
$$(p \Rightarrow q) \lor (q \Rightarrow \neg r) \lor (r \Rightarrow q) \Rightarrow \neg(\neg(q \Rightarrow p) \Rightarrow (q \Leftrightarrow r))$$

Exercise 4.14

What is wrong with the following proof of P=NP? Give counterexample.

Tseitin's encoding does not explode and proving validity of CNF formulas has a linear time algorithm. Therefore, we can convert every formula into CNF in polynomial time and check validity in linear time. As a consequence, we can solve sat of F in linear time by checking validity of \neg F in linear time.

Validity

Exercise 4.15

Give a procedure like Tseitin's encoding that converts a formula into another formula while preserving validity. Prove correctness of your transformation.

SAT encoding

Exercise 4.16

Encode N-queens problem in a SAT problem.

N-queens problem: Place n queens in $n \times n$ chess such that none of the queens threatens each other.

End of Lecture 4

