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Where are we and where are we going?

We have seen

I propositional logic syntax and semantics

I normal forms

I proof methods tableaux and resolution

We will see

I soundness and completeness of the proof methods
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Topic 6.1

Soundness
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Why soundness theorems?

We need to show that

if

our proof method proves a theorem

then

it is a valid formula in the logic.
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Structural induction in uniform notation

Since the uniform notation absorbs single negations, the original structural
induction is not immediately applicable. We need the following theorem.

Theorem 6.1
Every propositional formula∗ has a property Q if

I Base case: every atomic formula and its negation have property Q

I induction steps: if F has property Q so does ¬¬X ,
if α1 and α2 have property Q so does α, and
if β1 or β2 have property Q so does β.

Proof Hint.
Induction hyp: F and ¬F has property Q. Now apply the original structural
induction to complete this proof.

Exercise 6.1
Complete the above proof.

Note: ∗Technically, only those formulas that do not contain ⊥, >,⊕ and ⇔.
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Satisfiable tableaux/resolution derivation

Definition 6.1 (Recall)

A set of formulas Σ is sat if there is a model m s.t. for each F ∈ Σ, m |= F .
We write m |= Σ.

Definition 6.2
A branch ρ of a tableaux is sat if the set of formulas that are labels of the
nodes of the branch are satisfiable. If the model involved is m, we write
m |= ρ.

Definition 6.3
A tableaux T is sat if there is a satisfiable branch in T . If the model involved
is m, we write m |= T .

Definition 6.4
A resolution derivation R is sat if the set of clauses in R is sat. If the model
involved is m, we write m |= R.
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Tableaux expansion preserves satisfiability

Theorem 6.2
If Σ is sat then a tableaux T for Σ is sat

Proof.
Let model m |= Σ.
base case: empty tableaux satisfies any model.
induction step: Assume m |= T . Let ρ be a branch of T s.t. m |= ρ.
Let T ′ be a tableaux obtained after application of an expansion rule.

I case ρ is not expanded in T ′: ρ is a branch of T ′ and m |= T ′.

I case ρ is expanded using F ∈ Σ : m |= F , m |= ρF , and m |= T ′.

I case ρ is expanded using F ∈ ρ : Therefore, m |= F .
case F = β : ρ is expanded into two branches ρβ1 and ρβ2. Due to
semantics of β, m |= β1 or m |= β2. Therefore, m |= ρβ1 or m |= ρβ2.
case F = α : .... case F = ¬¬G : ....

Exercise 6.2
a. Complete the above proof
b. Prove if Σ is sat then a resolution derivation R for Σ is sat
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Tableaux method is sound

Theorem 6.3
If `pt F then |= F .

Proof.
Let us suppose |= F does not hold.
Therefore, for some model m, m |= ¬F .
Therefore, there is no closed tableaux for {¬F}.
Therefore, `pt F does not hold.

Exercise 6.3
Prove if `pr F then |= F .
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Topic 6.2

Completeness
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Completeness

The completeness property says that

if

there is a valid formula in the logic

then

there exists a proof in the proof system

Stronger claim: finding the proof is decidable/semi-decidable

First we will see a general technique to prove completeness.
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Topic 6.3

Model existence theorem
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Hintikka set
Definition 6.5
A set M of formulas is called Hintikka set if

1. for each p ∈ Vars, not both p ∈ M and ¬p ∈ M

2. if ¬¬F ∈ M then F ∈ M

3. if α ∈ M then α1 ∈ M and α2 ∈ M

4. if β ∈ M then β1 ∈ M or β2 ∈ M

Example 6.1

{(p ∧ (¬q ⇒ ¬p)), p, (¬q ⇒ ¬p)} is not a Hintikka set
{(p ∧ (¬q ⇒ ¬p)), p, (¬q ⇒ ¬p),¬¬q, q} is a Hintikka set
{(p ∧ (¬q ⇒ ¬p)), p, (¬q ⇒ ¬p),¬p} is not a Hintikka set

Exercise 6.4
Extend the following sets into Hintikka sets

I {(p ∨ q), (¬p ∧ ¬q)}
I {¬(p ⇒ (q ⇒ p))}
I {¬(¬r ∨ (r ⇒ s)) ∨ (q ∧ (r ⇒ s))}

Due to 2-4, if F ∈ M then some formulas in sub(F ) must be
in M. Hintikka sets are the result of a downward saturation.
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Hintikka’s Theorem
Theorem 6.4
Every Hintikka set M is sat

Proof.
We construct a model m s.t. m |= M.
For each p ∈ Vars,

1. if p ∈ M then m(p) := 1,

2. if ¬p ∈ M then m(p) := 0, and

3. assign m(p) any value otherwise.

By the new structural induction we will show that for each F ∈ M, m |= F .
base: trivially due to the assignment
step: F ∈ M

I case F = ¬¬H: Since H ∈ M, m |= H. Therefore m |= ¬¬H

I case F = α: Since α1, α2 ∈ M, m |= α1 and m |= α2.Therefore, m |= α.

I case F = β: ....
Exercise 6.5
Show for a Hintikka set M, for each F either F 6∈ M or ¬F 6∈ M.

Hintikka sets explicate what syntax
can possibly say about semantics!!
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Consistency property

Definition 6.6
Let C be a collection of sets of formulas. C is a consistency property if each
S ∈ C satisfies the following.

1. for each p ∈ Vars, either p /∈ S or ¬p /∈ S

2. if ¬¬F ∈ S then {F} ∪ S ∈ C
3. if α ∈ S then {α1, α2} ∪ S ∈ C
4. if β ∈ S then {β1} ∪ S ∈ C or {β2} ∪ S ∈ C

Note that the above definition defines a collection of sets
The definition reads like Hinttika set but it is not.
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Subset closed consistency property

Theorem 6.5
Every consistency property C can be extended to a consistency property that
is subset closed.

Proof.
Let C+ , {S ′|S ′ ⊆ S and S ∈ C}. We show C+ is consistency property.
Consider S ′ ∈ C+. By definition, there is S ∈ C s.t. S ′ ⊆ S .

1. Therefore, S ′ does not contain contradictory literals.

2. If ¬¬F ∈ S ′. Therefore, ¬¬F ∈ S . Therefore, {F} ∪ S ∈ C. Therefore,
{F} ∪ S ′ ∈ C+.

3. ....

Exercise 6.6
Complete the above argument
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Finite character

Definition 6.7
A consistency property C has finite character if

S ∈ C iff every finite subset of S is in C.

Theorem 6.6
if C is of finite character then C is subset closed.

Exercise 6.7
Prove the above theorem.

Commentary: Please note the peculiar use of ”iff” in the above definition.
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Extendable to finite character

Theorem 6.7
A subset closed consistency property C is extendable to one of finite character.

Proof.
claim: C+ , {S ′| all finite subsets of S ′ are in C} is consistency property.
Let S ′ ∈ C+. We have four conditions to satisfy.

1. If {p,¬p} ⊆ S ′, then {p,¬p} ∈ C. contradiction. First cond. holds.

2. case ¬¬F ∈ S ′: Consider finite set T ⊆ S ′ ∪ {F}.
Therefore, (T − {F}) ⊆ S ′.
Therefore, {¬¬F} ∪ (T − {F}) ⊆ S ′.
Therefore, {¬¬F} ∪ (T − {F}) ∈ C.
Since C is consistency property, {¬¬F} ∪ (T − {F}) ∪ {F} ∈ C.
Therefore, {¬¬F} ∪ T ∪ {F} ∈ C.
Since C is subset closed, T ∈ C.
Therefore, S ′ ∪ {F} ∈ C+.

3. ....

Exercise 6.8 Write α and β cases.
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Limits in finite character

Theorem 6.8
Let consistency property C is of finite character. If S1, S2, . . . is a sequence of
members of C such that S1 ⊆ S2 ⊆ . . . . Then,

⋃
i Si ∈ C.

Proof.
Consider finite set {F1, . . . ,Fk} ⊆

⋃
i Si .

Let nj be the smallest number s.t. Fj ∈ Snj .
Let n = max(n1, . . . , nk).
Therefore, {F1, . . . ,Fk} ⊆ Sn

Since C is subset closed, {F1, . . . ,Fk} ∈ C
Since C is of finite character,

⋃
i Si ∈ C
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Model existence theorem

Theorem 6.9
Let C be a consistency property. If S ∈ C, S is sat.

Proof.
Wlog, we assume C is of finite character(why?).

Let F1,F2, . . . be enumeration of all the formulas in some order(why?).

Let us define a sequence S1,S2, . . . as follows.

S1 , S Sn+1 ,

{
Sn ∪ {Fn} Sn ∪ {Fn} ∈ C
Sn otherwise

Since Sn are in C and C is of finite character,
⋃

n Sn ∈ C.

Let M ,
⋃

n Sn. ...
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Model existence theorem (contd. I)

Proof(contd.)

claim: M is maximal in C.

Assume M is not maximal and there is M ′ ∈ C such that M ⊂ M ′.

There is Fn such that Fn ∈ M ′ and Fn /∈ M.

By def. of M, Sn ∪ {Fn} /∈ C.

Since Sn ∪ {Fn} ⊆ M ′ and C is subset closed, Sn ∪ {Fn} ∈ C. Contradiction.
...
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Model existence theorem (contd. II)

Proof(contd.)

claim: M is a Hinttika set.

If α ∈ M then {α1, α2} ∪M ∈ C. Since M is maximal, {α1, α2} ⊆ M.

Other conditions hold similarly.

Since M is a Hinttika set, M is sat. Since S ⊆ M, S is sat.
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Compactness theorem

Theorem 6.10
For a set of formulas S, if every finite subset of S is sat, then S is sat

Proof.
Let C , {S ′|all finite subsets of S ′ are sat }.
claim: C is a consistency property.
Let S ′ ∈ C. We need to satisfy the four conditions.

1. If {p,¬p} ⊆ S ′, then {p,¬p} is sat. contradiction. First cond. holds.

2. Let α ∈ S ′.
We need to show that every finite subset of {α1, α2} ∪ S ′ is sat(why?).

...
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Compactness theorem(contd.)

Proof(contd.)

Consider a finite T ⊆ {α1, α2} ∪ S ′.
There is a finite T ′ ⊆ S ′ s.t. T ⊆ {α, α1, α2} ∪ T ′.
Since T ′ ∪ {α} ⊆ S ′, T ′ ∪ {α} is sat.
Therefore, T ′ ∪ {α, α1, α2} is sat.
Therefore, T is sat.
Therefore, every finite subset of {α1, α2} ∪ S ′ is sat.
Therefore, {α1, α2} ∪ S ′ ∈ C

.... similarly other cases are proven.
Due to model existence theorem, S is sat.

Exercise 6.9
Write down the β case.

Evidence of unsatisfiablity
is always a finite subset.
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Topic 6.4

Completeness of Tableaux and Resolution

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/


cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 25

Tableaux completeness
Theorem 6.11
The collection of sets of formulas that are tableaux consistent is a
consistency property.

Proof.
Let Σ be a tableaux consistent set. We need to show the 4 conditions hold.

1. If {p,¬p} ⊆ Σ then there is a closed tableaux. Therefore, {p,¬p} 6⊆ Σ

2. If ¬¬F ∈ Σ. Suppose {F} ∪ Σ has a closed tableaux T .
Then, we can construct a closed tableaux for Σ as follows.

¬¬F

F

T ′′

where T ′′ is obtained by removing all the nodes with label F in T if the
node was added due to the introduction rule. Contradiction.
Therefore, {F} ∪ Σ is a tableaux consistent set.

3. ... other cases have similar proofs.
Exercise 6.10 Complete the above proof
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Resolution completeness

Theorem 6.12
The collection of sets of formulas that are resolution consistent is a
consistency property.

Proof.
Let Σ be a resolution consistent set.

1. If {p,¬p} ⊆ Σ then there is a closed derivation. Therefore, {p,¬p} 6⊆ Σ

2. case ¬¬F ∈ Σ:
Suppose {F} ∪ Σ has a closed derivation R.
Then, we can construct a closed derivation for Σ as follows.

{¬¬F}
{F}
R ′

where R ′ is obtained by deleting occurrences of {F} in R. Contradiction.
Therefore, {F} ∪ Σ is a resolution consistent set.

3. case α ⊆ Σ: similarly as above ...
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Resolution completeness (contd.) I

Proof(contd.)

4. case β ∈ Σ:
Assume {β1} ∪ Σ and {β2} ∪ Σ have closed derivations R1 and R2.

We define derivation R ′1 as follows:
I R ′

1 := replace {β1} clauses by {β1, β2} in R1

I Repeat i ∈ 1..|R ′
1|, R ′

1 := repair ith clause C in R ′
1 as follows.

If any antecedent of C is extended by β2 then apply the expansion rule
again and obtain a replacement, which is either C or C ∪ {β2}(why?).

I R ′
1 := remove {β1, β2} in R ′

1

...

Constructing a closed derivation
for Σ is not straight forward.
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Resolution completeness (contd.) II

Proof(contd.)

case R ′1 has {}:

{β}
{β1, β2}

R ′1

is closed derivation of Σ.
Contradiction.

case R ′1 has {β2}:
R ′2 := remove {β2} in R2.

{β}
{β1, β2}

R ′1
R ′2

is closed derivation of Σ. Contradiction.

{β1} ∪ Σ or {β2} ∪ Σ is resolution consistent.

Exercise 6.11
In which step of the above proof, the resolution rule plays a role?
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Topic 6.5

Proofs are Enumerable
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Implication is effectively enumerable.

Theorem 6.13
If Σ is a finite set of formulas, then Σ |= F is decidable.

Proof.
Due to truth tables.

Theorem 6.14
If Σ is effectively enumerable, then Σ |= F is semi-decidable.

Proof.
Due to compactness theorem, if Σ |= F there is a finite set Σ0 such that
Σ0 |= F .
Since Σ is effectively enumerable, let G1,G2, .... be the enumeration of Σ.
Let Sn , {G1, . . . ,Gn}
There must be a Σ0 ⊆ Sk (why?).
Therefore, Sk |= F .
We may enumerate Sn and check Sn |= F , which is decidable.
Therefore, eventually we will say yes if Σ |= F .
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Topic 6.6

Problems
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Other basis of operators

Exercise 6.12
Assume ⊥ and ⇒ are the only fundamental operators in a propositional
formalism.
a. Show the formalism is as expressive as the propositional logic
b. Define corresponding Hinttika set in the formalism
c. Prove that every Hinttika set is SAT, using the new definition.
(Hint: you may need to invent a uniform notation for the formalism).
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End of Lecture 6
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