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Where are we and where are we going?

We have seen

I propositional logic

I proof methods for the logic

I soundness and completeness of the methods

We will see

I proof complexity of resolution
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Topics skipped in this course!

We are also skipping

I NP-Hardness of satisfiability(Cook’s theorem)

I (*many other things*)
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Topic 7.1

Proof complexity
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Properties of proof systems

We know finding a proof is hard.

We may wish to know other vital properties of our proof methods.

For example

I what is the length of shortest proof of a given theorem?

I Are there theorems that have large proofs no matter, which proof
system we choose?

Here, we will consider only CNF formulas and resolution is the choice for a
proof method.

We will study one such property of resolution.
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Proof complexity of resolution

Theorem 7.1
For every n, there is a formula Fn whose shortest resolution refutation proof
is exponentially large.

Proof sketch.
The proof proceeds in the following two steps

1. wide proofs for narrow formulas are long

2. there are narrow formulas that necessarily have wide proofs

Commentary: The presentation is borrowed from The Art of computer programming Section 7.2.2.2 (Beta), Donald Kunuth, p57-60.
http://www-cs-faculty.stanford.edu/~uno/fasc6a.ps.gz
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Resolution derivation

Since we assume that input formulas are in CNF, we only need the resolution
rule.

Definition 7.1
A resolution derivation R that derives clause C form formula F is a sequence
of clauses that

I are either from F or derived by applying resolution on earlier clauses, and

I has C as the last clause.

Let pre(R) is the set of clauses in R that are from F .

C

R

pre(R)

Commentary: The drawing may be misleading. The clauses from F are not forced to be at the prefix. They may appear anywhere in
R.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/


cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 8

Width and length

Definition 7.2
Let w(F ) denote the size of largest clause in F . We say w(F ) is width of F .
Similarly for a resolution derivation R, w(R) is defined.

Definition 7.3
For a resolution derivation R, let len(R) be the length of the derivation.

R
len(R)

w(R)
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Proofs

Definition 7.4
Let F ` C denote that there is a resolution derivation that derives clause C
from F .

Definition 7.5 (Narrowest proofs)

Let w(F ` C ) , min({w(R)|R derives C from F}).
Let NF be a derivation that derives ∅ from F and w(NF ) = w(F ` ∅).

Definition 7.6 (Shortest proofs)

Let |F ` C | , min({len(R)|R derives C from F}).
Let SF be a derivation that derives ∅ from F and len(SF ) = |F ` ∅|.

Commentary: NF is the narrowest proof and SF is the shortest proof. NF and SF may not be the same.
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Conditional proofs

Definition 7.7
For a clause C and literal `, let

C |` ,

{
> C ∈ `
C − {`} otherwise

For a formula F , let F |` , { C |` |C ∈ F}.
Similarly for a derivation R = C1, . . . ,Cn, let R|` , C1|`, . . . ,Cn|`.

We further generalize the notation.
For partial model m = {p1 7→ b1, .., pk 7→ bk}, F |m , F |p1 7→b1 | . . . |pk 7→bk

Exercise 7.1
Let F = {(p ∨ q), (¬p ∨ ¬q), (q ∨ ¬r), r}. Give F |p, F |¬p, F |q, and F |¬q.

Exercise 7.2
Prove if R derives C from F then R|` derives C |` from F |`.
(we may need to add weakening rule in the proof system)
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Width increment

Theorem 7.2
If k ≥ w(F ), w(F |` ` ∅) ≤ k − 1, and w(F |` ` ∅) ≤ k then w(F ` ∅) ≤ k.

Proof.
R1 := derivation that derives ∅ from F |` and w(R1) ≤ k − 1.
R2 := derivation that derives ∅ from F |` and w(R2) ≤ k .

Construct derivation R ′1 by expanding each clause appropriately in R1 with
literal ` such that R ′1 is a derivation of ` from F (how?). Note w(R ′1) ≤ k.

Construct a resolution sequence R3 that is obtained by applying resolution
between clauses of F and {`} and produces pre(R2). Note w(R3) ≤ w(F ).

R ′1R3R2 is a derivation that derives ∅ from F (why?).

w(R ′1R3R2) ≤ max(w(R ′1),w(R3),w(R2)) ≤ max(k ,w(F ), k) ≤ k

Therefore, w(F ` ∅) ≤ k .
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Long proofs theorem

Theorem 7.3

Let n = Vars(F ) and ∅ /∈ F .

if

w(F )2 ≤ n︸ ︷︷ ︸
narrow clauses

then

exp(w(F ` ∅)︸ ︷︷ ︸
wide proofs

2/(8n))− 2 ≤ |F ` ∅|︸ ︷︷ ︸
long proofs
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Long proofs theorem

Theorem 7.4
Let n = Vars(F ) and ∅ /∈ F .
if w(F )2 ≤ n then exp(w(F ` ∅)2/(8n))− 2 ≤ |F ` ∅|

Proof.
Let W ≥ w(F ) be a fixed constant and its value will be chosen later.
We will call a clause C fat if w(C ) ≥W .
Let fat(R) be the number of fat clauses in R.

...

R

W

W (R) = 4
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Long proofs theorem(contd.) II

Proof(contd.)

Observation:
Fat clauses contain at least fat(R)W occurrences of literals.

There is a literal ` that occurs in at least fat(R)W /(2n) fat clauses.

Therefore, ` does not occur in at most fat(R)(1−W /(2n)) fat clauses.

Let ρ = (1−W /(2n)). ...

Exercise 7.3
Show 1 > ρ ≥ 1/2 is the only interesting range
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Long proofs theorem(contd.) III

Proof(contd.)

claim: We will prove by induction

if ρ−(b−1) ≤︸ ︷︷ ︸
only for b≥1

fat(SF |m) < ρ−b then w(F |m ` ∅) ≤W + b.

on fat(SF |m) and length of SF |m.

base case:
fat(SF |m) = 0 < ρ−0. Since W ≥ w(F ), w(F |m ` ∅) ≤W .

induction step:
Consider ρ−(b−1) ≤ fat(SF |m) < ρ−(b).

Choose ` that occurs in at least fat(SF |m)W /(2n) clauses. ...

Recall :
Let ρ = (1−W /(2n)).
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Long proofs theorem(contd.) IV

Proof(contd.)

Therefore, fat(SF |m|`) < fat(SF |m)(1−W /(2n)) < fat(SF |m)ρ < ρ−(b−1).
Due to ind. hyp., w(F |m|` ` ∅) ≤W + b − 1.

Since SF |m|` derives ∅ from F |m|`, len(SF |m|`) < len(SF |m).(why?)

Due to ind. hyp., w(F |m|` ` ∅) ≤W + b.

Due to the width increment theorem, w(F |m ` ∅) ≤W + b. ...

Exercise 7.4
Give the proof of the above why.
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Long proofs theorem(contd.) V

Proof(contd.)

For empty m, we have proven

if ρ−(b−1) ≤ fat(SF ) < ρ−b then w(F ` ∅) ≤W + b.

Let us choose

W =
√

2n ln |F ` ∅|.
Since we assumed n > w(F )2 and |F ` ∅| ≥ 2(why?), (narrow formula)

W =
√

2n ln |F ` ∅| ≥ w(F ). (why?)

...

Commentary: The choice of W is clever! No automated theorem prover can guess the W .
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Long proofs theorem(contd.) VI

Proof(contd.)

Consider the mathematical identity,

ecx
2
< (1− cx)−x︸ ︷︷ ︸

increasing

= e1+cx2+c2x3/2+...

Let c = 1/2n and x = W =
√

2n ln |F ` ∅|. We obtain

|F ` ∅| < (1−
√

2n ln |F ` ∅|/(2n))−d
√

2n ln |F`∅|e.

Therefore, |F ` ∅| < ρ−dW e.Therefore, fat(SF ) < ρ−dW e.
Therefore, w(F ` ∅) ≤W + dW e ≤ 2W + 1
Therefore, w(F ` ∅) ≤

√
8n ln |F ` ∅| (if wide then long)

5 min break!
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Narrow formulas with wide proofs
Now we present narrow unsat formulas that has only wide proofs.

Restricted pigeon hole principle

Consider n + 1 pigeons and n holes. Each pigeon i is assigned at most 5
holes Ri = {hi1, .., hi5} where it can sit.

.. f f f f f f f f ..

.. ..

And, Ri s satisfy the following property.

For each P ⊆ 0..n with |P| ≤ n/3000 |{k |unique i ∈ P s.t. k ∈ Ri}| ≥ |P|.

The principle: if pigeons are sitting in the respective assigned holes then
there is a hole with at least 2 pigeons.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/


cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 20

Understanding the restriction
Recall:
For each P ⊆ 0..n with |P| ≤ n/3000 |{k |unique i ∈ P s.t. k ∈ Ri}| ≥ |P|.
Example 7.1

Let n ≥ 9000. If |P| = 3, P must have the above property.

.. f f f f f f f f ..

.. ..

P

3 3 3

{k|unique i ∈ P s.t. k ∈ Ri}

Exercise 7.5
a. Is it possible to have |{k |unique i ∈ 1..n s.t. k ∈ Ri}| = n?
b. Show any subset of pigeons that are less than n/3000 can sit without
offending each other.
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SAT encoding for restricted pigeon hole principle

Variables: pij for i ∈ 0..n and j ∈ {hi1, . . . , hi5}.

Clauses: Let F consists of the following clauses.

I Each pigeon sits in at least one of its assigned holes

for each i ∈ 0..n Ci = (pihi1 ∨ · · · ∨ pihi5)

I There is at most one pigeon in each hole.
for each 0 ≤ i < j ≤ n, k ∈ Ri ∩ Rj

(¬pik ∨ ¬pjk)

Let H denote all the hole clauses.

We need to show that F = H ∧
∧n

i=0 Ci is unsat.

Narrow formulas : Vars(F ) = 5n + 5, w(F ) = 5, and |F ` ∅| > 2(why?).
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Existence of the restriction

Theorem 7.5
There exists Ri s for sufficiently large n such that

for each P ⊆ 0..n with |P| ≤ n/3000 |{k |unique i ∈ P s.t. k ∈ Ri}| ≥ |P|.

Proof.
We overestimate the probability pt of existence of P of size t such that
|{k |unique i ∈ P s.t. k ∈ Ri}| < t.

pt <

(
n + 1

t

)
︸ ︷︷ ︸

1

(
5t

2t

)
︸ ︷︷ ︸

2

(
3t

n
)

2t

︸ ︷︷ ︸
3

1. Choose a P of size t.

2. Choose 2t places that repeat the values that are in the other 3t places

3. ratio of available choices for the chosen places

...

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/


cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 23

Existence of the restriction

Proof.
Simplifying

pt <

(
n + 1

t

)(
5t

2t

)
(

3t

n
)

2t

< 2

(
n

t

)(
5t

2t

)
(

3t

n
)

2t

.

Since
(n
k

)
≤ (ne/k)k ,

pt < 2

(
n

t

)(
5t

2t

)
(

3t

n
)

2t

≤ 2(
ne

t
)
t
(

5te

2t
)

2t

(
3t

n
)

2t

= 2(
225e3

4

t

m
)t .

Since t ≤ m/3000,

pt < 2(
225e3

12000
)t .

t≤m/3000∑
t=2

pt <
∞∑
t=2

(
225e3

12000
)t ≈ .455

Therefore, the restricted pigeon hole principle exists.
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Wide proofs

Theorem 7.6
w(F ` ∅) ≥ n/6000

Proof.
Let α(P) = {Ci |i ∈ P} ∪ H.
Let µ(C ) = min{|P| |P ⊆ 0..n and α(P) ` C}.

If
C ′ C ′′

C
Resolution, µ(C ) ≤ µ(C ′) + µ(C ′′).

Due to the restriction def., µ(∅) ≥ n/3000.(why?)

For each i , µ(Ci ) = 1 and for each D ∈ H, µ(D) = 0.

Therefore, there is a C such that

n/6000 ≤ µ(C ) ≤ n/3000.(why?)
...

Exercise 7.6
Give a proof of the last why.
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Wide proofs

Proof.
Let P be s.t. α(P) ` C and |P| = µ(C ).
Choose hole k s.t. there is unique pigeon i ∈ P s.t. k ∈ Ri .
claim: For some j , pjk or ¬pjk occurs in C .

Now assume for any j ∈ 0..n, pjk and ¬pjk do not occur in C .
By def, α(P − {i}) 6` C
Choose m s.t. m |= α(P − {i}), m 6|= Ci , and m 6|= C .
For all j ∈ 0..n if k ∈ Rj , we apply m := m[pjk 7→ 0].(remove pigeons from kth hole,if any)

And still, m |= α(P − {i}), m 6|= Ci and m 6|= C .(why?)

Now set m := m[pik 7→ 1]. (placing ith pigeon in kth hole, no challenge to the assignment)

Now, m |= α(P − {i}), m |= Ci and m 6|= C .(why?)Contradiction.
Therefore |C | ≥ n/6000.
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End of Lecture 7

Commentary: Note that α(P − {i}) and C do not care who is sitting at kth whole according to m.
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