Mathematical Logic 2016

Lecture 7: Resolution proof complexity

Instructor: Ashutosh Gupta

TIFR, India

Compile date: 2016-08-27

Where are we and where are we going?

- We have seen
 - propositional logic
 - proof methods for the logic
 - soundness and completeness of the methods
- We will see
 - proof complexity of resolution

Topics skipped in this course!

We are also skipping

- NP-Hardness of satisfiability(Cook's theorem)
- (*many other things*)

Topic 7.1

Proof complexity

Properties of proof systems

We know finding a proof is hard.

We may wish to know other vital properties of our proof methods.

For example

- what is the length of shortest proof of a given theorem?
- Are there theorems that have large proofs no matter, which proof system we choose?

Here, we will consider only CNF formulas and resolution is the choice for a proof method.

We will study one such property of resolution.

Proof complexity of resolution

Theorem 7.1

For every n, there is a formula F_n whose shortest resolution refutation proof is exponentially large.

Proof sketch.

 Θ

The proof proceeds in the following two steps

- 1. wide proofs for narrow formulas are long
- 2. there are narrow formulas that necessarily have wide proofs

Commentary: The presentation is borrowed from The Art of computer programming Section 7.2.2.2 (Beta), Donald Kunuth, p57-60. http://www-cs-faculty.stanford.edu/~uno/fasc6a.ps.gz

Mathematical Logic 2016	6
-------------------------	---

Instructor: Ashutosh Gupta

Resolution derivation

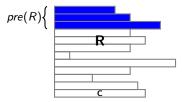
Since we assume that input formulas are in CNF, we only need the resolution rule.

Definition 7.1

A resolution derivation R that derives clause C form formula F is a sequence of clauses that

- ▶ are either from F or derived by applying resolution on earlier clauses, and
- has C as the last clause.

Let pre(R) is the set of clauses in R that are from F.



 Commentary: The drawing may be misleading. The clauses from F are not forced to be at the prefix. They may appear anywhere in R.

 [©] © © Mathematical Logic 2016

 Instructor: Ashutosh Gupta

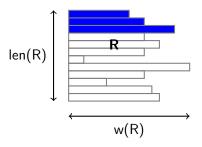
 TIFR, India
 7

Width and length

Definition 7.2 Let w(F) denote the size of largest clause in F. We say w(F) is width of F. Similarly for a resolution derivation R, w(R) is defined.

Definition 7.3

For a resolution derivation R, let len(R) be the length of the derivation.



Proofs

Definition 7.4

Let $F \vdash C$ denote that there is a resolution derivation that derives clause C from F.

Definition 7.5 (Narrowest proofs) Let $w(F \vdash C) \triangleq min(\{w(R) | R \text{ derives } C \text{ from } F\}).$ Let N_F be a derivation that derives \emptyset from F and $w(N_F) = w(F \vdash \emptyset).$

Definition 7.6 (Shortest proofs) Let $|F \vdash C| \triangleq min(\{len(R)|R \text{ derives } C \text{ from } F\})$. Let S_F be a derivation that derives \emptyset from F and $len(S_F) = |F \vdash \emptyset|$.

Commentary: N_F is the narrowest proof and S_F is the shortest proof. N_F and S_F may not be the same

Conditional proofs

Definition 7.7 For a clause C and literal ℓ , let

$$C|_{\ell} \triangleq egin{cases} \top & C \in \ell \ C - \{\overline{\ell}\} & otherwise \end{cases}$$

For a formula F, let $F|_{\ell} \triangleq \{ C|_{\ell} | C \in F \}$. Similarly for a derivation $R = C_1, \ldots, C_n$, let $R|_{\ell} \triangleq C_1|_{\ell}, \ldots, C_n|_{\ell}$.

We further generalize the notation. For partial model $m = \{p_1 \mapsto b_1, ..., p_k \mapsto b_k\}$, $F|m \triangleq F|_{p_1 \mapsto b_1}| ... |_{p_k \mapsto b_k}$

Exercise 7.1 Let $F = \{(p \lor q), (\neg p \lor \neg q), (q \lor \neg r), r\}$. Give $F|_p, F|_{\neg p}, F|_q$, and $F|_{\neg q}$.

Exercise 7.2

Prove if R derives C from F then $R|_{\ell}$ derives $C|_{\ell}$ from $F|_{\ell}$. (we may need to add weakening rule in the proof system)

Width increment

Theorem 7.2 If $k \ge w(F)$, $w(F|_{\ell} \vdash \emptyset) \le k - 1$, and $w(F|_{\overline{\ell}} \vdash \emptyset) \le k$ then $w(F \vdash \emptyset) \le k$. Proof.

- $R_1 :=$ derivation that derives \emptyset from $F|_\ell$ and $w(R_1) \le k-1$.
- $R_2 :=$ derivation that derives \emptyset from $F|_{\overline{\ell}}$ and $w(R_2) \leq k$.

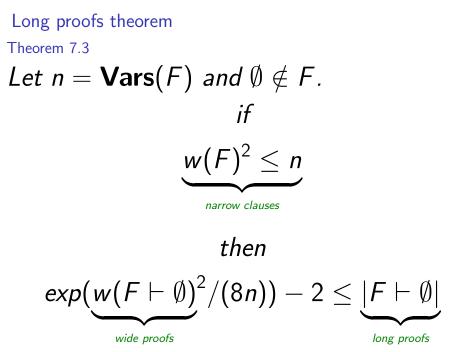
Construct derivation R'_1 by expanding each clause appropriately in R_1 with literal $\overline{\ell}$ such that R'_1 is a derivation of $\overline{\ell}$ from F (how?). Note $w(R'_1) \leq k$.

Construct a resolution sequence R_3 that is obtained by applying resolution between clauses of F and $\{\bar{\ell}\}$ and produces $pre(R_2)$. Note $w(R_3) \leq w(F)$.

 $R'_1R_3R_2$ is a derivation that derives \emptyset from $F_{(why?)}$.

 $w(R_1'R_3R_2) \leq max(w(R_1'),w(R_3),w(R_2)) \leq max(k,w(F),k) \leq k$

Therefore,	$w(F \vdash \emptyset) \leq k.$
<u>ାର</u> ୍ଭ)	Mathematical Logic 2016



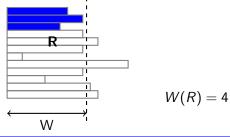
©**)**\$0

Long proofs theorem

Theorem 7.4 Let n = Vars(F) and $\emptyset \notin F$. if $w(F)^2 \le n$ then $exp(w(F \vdash \emptyset)^2/(8n)) - 2 \le |F \vdash \emptyset|$

Proof.

Let $W \ge w(F)$ be a fixed constant and its value will be chosen later. We will call a clause C fat if $w(C) \ge W$. Let fat(R) be the number of fat clauses in R.



Long proofs theorem(contd.) II

Proof(contd.)

Observation:

Fat clauses contain at least fat(R)W occurrences of literals.

There is a literal ℓ that occurs in at least fat(R)W/(2n) fat clauses.

Therefore, ℓ does not occur in at most fat(R)(1 - W/(2n)) fat clauses.

Let $\rho = (1 - W/(2n))$.

Exercise 7.3 Show $1 > \rho \ge 1/2$ is the only interesting range

Long proofs theorem(contd.) III

Proof(contd.) claim: We will prove by induction if $\rho^{-(b-1)} \leq fat(S_F|_m) < \rho^{-b}$ then $w(F|_m \vdash \emptyset) \leq W + b$. on $fat(S_F|_m)$ and length of $S_F|_m$.

base case: $fat(S_F|_m) = 0 < \rho^{-0}$. Since $W \ge w(F)$, $w(F|_m \vdash \emptyset) \le W$.

induction step: Consider $\rho^{-(b-1)} \leq fat(S_F|_m) < \rho^{-(b)}$.

Choose ℓ that occurs in at least $fat(S_F|_m)W/(2n)$ clauses.

Long proofs theorem(contd.) IV

Proof(contd.)

Therefore, $fat(S_F|_m|_{\ell}) < fat(S_F|_m)(1 - W/(2n)) < fat(S_F|_m)\rho < \rho^{-(b-1)}$. Due to ind. hyp., $w(F|_m|_{\ell} \vdash \emptyset) \le W + b - 1$.

Since $S_F|_m|_{\overline{\ell}}$ derives \emptyset from $F|_m|_{\overline{\ell}}$, $len(S_F|_m|_{\overline{\ell}}) < len(S_F|_m)$. (why?) Due to ind. hyp., $w(F|_m|_{\overline{\ell}} \vdash \emptyset) \leq W + b$.

Due to the width increment theorem, $w(F|_m \vdash \emptyset) \leq W + b$.

Exercise 7.4 *Give the proof of the above why.*

Long proofs theorem(contd.) V

Proof(contd.)

For empty m, we have proven

$$\text{if } \rho^{-(b-1)} \leq fat(S_F) < \rho^{-b} \text{ then } w(F \vdash \emptyset) \leq W + b.$$

Let us choose

$$W=\sqrt{2n\ln|F\vdash\emptyset|}.$$

Since we assumed $n > w(F)^2$ and $|F \vdash \emptyset| \ge 2_{(why?)}$, (narrow formula)

$$W = \sqrt{2n \ln |F \vdash \emptyset|} \ge w(F).$$
 (why?)

Commentary: The choice of W is clever! No automated theorem prover can guess the W.

Instructor: Ashutosh Gupta

Long proofs theorem(contd.) VI

Proof(contd.)

Consider the mathematical identity,

$$e^{cx^2} < \underbrace{(1-cx)^{-x}}_{increasing} = e^{1+cx^2+c^2x^3/2+..}$$

Let c = 1/2n and $x = W = \sqrt{2n \ln |F \vdash \emptyset|}$. We obtain

$$|F \vdash \emptyset| < (1 - \sqrt{2n \ln |F \vdash \emptyset|}/(2n))^{-\lceil \sqrt{2n \ln |F \vdash \emptyset|} \rceil}.$$

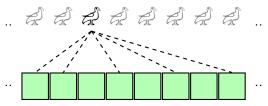
Therefore, $|F \vdash \emptyset| < \rho^{-\lceil W \rceil}$. Therefore, $fat(S_F) < \rho^{-\lceil W \rceil}$. Therefore, $w(F \vdash \emptyset) \le W + \lceil W \rceil \le 2W + 1$ Therefore, $w(F \vdash \emptyset) \le \sqrt{8n \ln |F \vdash \emptyset|}$ (if wide then long)

Narrow formulas with wide proofs

Now we present narrow unsat formulas that has only wide proofs.

Restricted pigeon hole principle

Consider n + 1 pigeons and n holes. Each pigeon i is assigned at most 5 holes $R_i = \{h_{i1}, ..., h_{i5}\}$ where it can sit.



And, R_i s satisfy the following property.

For each $P \subseteq 0..n$ with $|P| \le n/3000$ $|\{k|$ unique $i \in P$ s.t. $k \in R_i\}| \ge |P|$.

The principle: if pigeons are sitting in the respective assigned holes then there is a hole with at least 2 pigeons.

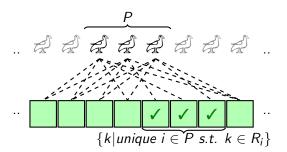
Mathematical Logic 2016

Understanding the restriction

Recall:

For each $P \subseteq 0..n$ with $|P| \le n/3000$ $|\{k|$ unique $i \in P$ s.t. $k \in R_i\}| \ge |P|$. Example 7.1

Let $n \ge 9000$. If |P| = 3, P must have the above property.



Exercise 7.5

a. Is it possible to have $|\{k|unique i \in 1..n \text{ s.t. } k \in R_i\}| = n$?

b. Show any subset of pigeons that are less than n/3000 can sit without offending each other.

SAT encoding for restricted pigeon hole principle Variables: p_{ij} for $i \in 0..n$ and $j \in \{h_{i1}, ..., h_{i5}\}$.

Clauses: Let F consists of the following clauses.

Each pigeon sits in at least one of its assigned holes

for each
$$i \in 0..n$$
 $C_i = (p_{ih_{i1}} \lor \cdots \lor p_{ih_{i5}})$

► There is at most one pigeon in each hole. for each 0 ≤ i < j ≤ n, k ∈ R_i ∩ R_j

$$(\neg p_{ik} \lor \neg p_{jk})$$

Let H denote all the hole clauses.

We need to show that $F = H \wedge \bigwedge_{i=0}^{n} C_i$ is unsat.

Narrow formulas : Vars(F) = 5n + 5, w(F) = 5, and $|F \vdash \emptyset| > 2_{(why?)}$.

Existence of the restriction

Theorem 7.5 There exists R_is for sufficiently large n such that

for each $P \subseteq 0..n$ with $|P| \le n/3000$ $|\{k| unique i \in P \text{ s.t. } k \in R_i\}| \ge |P|$. Proof.

We overestimate the probability p_t of existence of P of size t such that $|\{k| \text{unique } i \in P \text{ s.t. } k \in R_i\}| < t.$

$$p_t < \underbrace{\binom{n+1}{t}}_{1} \underbrace{\binom{5t}{2t}}_{2} \underbrace{(\frac{3t}{n})^{2t}}_{3}$$

- 1. Choose a P of size t.
- 2. Choose 2t places that repeat the values that are in the other 3t places
- 3. ratio of available choices for the chosen places

22

Existence of the restriction

Proof. Simplifying

$$p_t < \binom{n+1}{t} \binom{5t}{2t} \left(\frac{3t}{n}\right)^{2t} < 2\binom{n}{t} \binom{5t}{2t} \left(\frac{3t}{n}\right)^{2t}$$

Since $\binom{n}{k} \leq (ne/k)^k$,

$$p_t < 2\binom{n}{t}\binom{5t}{2t}(\frac{3t}{n})^{2t} \le 2(\frac{ne}{t})^t(\frac{5te}{2t})^{2t}(\frac{3t}{n})^{2t} = 2(\frac{225e^3}{4}\frac{t}{m})^t.$$

Since $t \leq m/3000$,

$$p_t < 2(rac{225e^3}{12000})^t.$$

$$\sum_{t=2}^{t \le m/3000} p_t < \sum_{t=2}^{\infty} (\frac{225e^3}{12000})^t \approx .455$$

Therefore, the restricted pigeon hole principle exists.

Wide proofs

Theorem 7.6 $w(F \vdash \emptyset) \ge n/6000$ Proof. Let $\alpha(P) = \{C_i | i \in P\} \cup H$. Let $\mu(C) = min\{|P| | P \subseteq 0..n \text{ and } \alpha(P) \vdash C\}$. If $\frac{C' - C''}{C}$ Resolution, $\mu(C) \le \mu(C') + \mu(C'')$.

Due to the restriction def., $\mu(\emptyset) \ge n/3000._{(why?)}$ For each *i*, $\mu(C_i) = 1$ and for each $D \in H$, $\mu(D) = 0$.

Therefore, there is a C such that

$$n/6000 \leq \mu(C) \leq n/3000.$$

Exercise 7.6

Give a proof of the last why.

Wide proofs

Proof.

Let P be s.t. $\alpha(P) \vdash C$ and $|P| = \mu(C)$. Choose hole k s.t. there is unique pigeon $i \in P$ s.t. $k \in R_i$. **claim:** For some *j*, p_{ik} or $\neg p_{ik}$ occurs in *C*. Now assume for any $j \in 0..n$, p_{ik} and $\neg p_{ik}$ do not occur in C. By def. $\alpha(P - \{i\}) \not\vdash C$ Choose m s.t. $m \models \alpha(P - \{i\}), m \not\models C_i$, and $m \not\models C$. For all $j \in 0..n$ if $k \in R_i$, we apply $m := m[p_{ik} \mapsto 0]$.(remove pigeons from kth hole, if any) And still, $m \models \alpha(P - \{i\}), m \not\models C_i$ and $m \not\models C_{.(why?)}$ Now set $m := m[p_{ik} \mapsto 1]$. (placing ith pigeon in kth hole, no challenge to the assignment) Now, $m \models \alpha(P - \{i\})$, $m \models C_i$ and $m \not\models C_{.(why?)}$ Contradiction. Therefore |C| > n/6000.

End of Lecture 7

Commentary: Note that $\alpha(P - \{i\})$ and C do not care who is sitting at kth whole according to m.

Mathematical Logic 2016

Instructor: Ashutosh Gupta

TIFR, India

26