Mathematical Logic 2016

Lecture 8: Low complexity subclasses of SAT

Instructor: Ashutosh Gupta

TIFR, India

Compile date: 2016-08-27

Where are we and where are we going?

- We have seen
 - propositional logic
 - proof methods for the logic
 - soundness, completeness, and complexity of the methods
- We will see
 - Low complexity subclasses of SAT

Special classes of formulas

We will discuss the following subclasses whose SAT problems are polynomial

- 2-SAT
- Horn clauses
- XOR-SAT
- SLUR

Topic 8.1

2-SAT

2-SAT

Definition 8.1 A 2-sat formula is a CNF formula that has only binary clauses

We assume that unit clauses are replaced by clauses with repeated literals.

Example 8.1

Implication graph

Definition 8.2 Let F be a 2-SAT formula s.t. $Vars(F) = \{p_1, ..., p_n\}$. The implication graph (V, E) for F is defined as follows.

►
$$V = \{p_1, ..., p_n, \neg p_1, ..., \neg p_n\}$$

► $E = \{(\bar{\ell}_1, \ell_2), (\bar{\ell}_2, \ell_1) | (\ell_1 \lor \ell_2) \in F\},$

where $\bar{p} = \neg p$ and $\overline{\neg p} = p$.

Example 8.2

Consider $(\neg p \lor q) \land (\neg q \lor r) \land (\neg r \lor p) \land (r \lor q)$.

Exercise 8.1

Draw implication graphs of the following 1. $(p \lor q) \land (\neg p \lor \neg q)$ 3. $(p \lor p) \land (\neg p \lor \neg p)$ 2. $(p \lor \neg q) \land (q \lor p) \land (\neg p \lor \neg r) \land (r \lor \neg p)$ 4. $(p \lor \neg p) \land (p \lor \neg p)$ ©©©© Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India

Properties of implication graph

Consider a formula F and its implication graph (V, E).

Theorem 8.1

If there is a path from ℓ_1 to ℓ_2 in (V, E) then there is a path from $\overline{\ell_2}$ to $\overline{\ell_1}$.

Exercise 8.2

- a. Prove the above theorem.
- b. Does the above theorem imply

if there is a path from p to $\neg p$ in (V, E) then there is a path from $\neg p$ to p?

Theorem 8.2

For every strongly connected component(scc) $S \subseteq V$ in (V, E), there is another scc S^c , called complementary component, that has exactly the set of literals that are negation of the literals in S.

Proof.

Due to theorem 8.1.

Properties of implication graph (contd.)

Theorem 8.3

For each model $m \models F$, if there is a path from ℓ_1 to ℓ_2 in (V, E) then if $m(\ell_1) = 1$ then $m(\ell_2) = 1$.

Theorem 8.4 For each model $m \models F$ and each scc S in (V, E), either for each $\ell \in S$ $m(\ell) = 1$ or for each $\ell \in S$ $m(\ell) = 0$.

Exercise 8.3

Prove the above theorems.

Reduced implication graph

Definition 8.3

The reduced implication DAG (V^R, E^R) is a graph over scc's of (V, E) and is defined as follows.

•
$$V^R = \{S|S \text{ is a scc in } (V,E)\}$$

•
$$E^R = \{(S, S') | \text{there are } \ell \in S \text{ and } \ell' \in S' \text{ s.t. } (\ell, \ell') \in E\}$$

Theorem 8.5 If $(S, S') \in E^R$ then $(S'^c, S^c) \in E^R$

Exercise 8.4

Prove the above theorem.

2-SAT satisfiablity

Theorem 8.6 A 2-SAT formula F is unsat iff there is a scc S in its implication graph (V, E) such that $\{p, \neg p\} \subseteq S$ for some p.

Proof.

Reverse direction

There must be a path that goes from p to $\neg p$.

$$p \longrightarrow \ell_1 \dashrightarrow \neg p$$

By applying resolution on corresponding clauses, we can derive $\neg p$.

$$\frac{(\neg p \lor \ell_1) \quad (\neg \ell_1 \lor \ell_2) \quad \dots \quad (\neg \ell_{n-1} \lor \ell_n) \quad (\neg \ell_n \lor \neg p)}{\neg p}$$

Similarly, we can derive p due to the path from $\neg p$ to p. Therefore, we can derive empty clause.

F is unsat.

2-SAT satisfiablity(contd.)

Proof(contd.)

Fwd direction: Let us assume there is no such S.

We will construct a model of F as follows.

- 1. Initially all literals are unassigned.
- 2. if(some scc in V^R is unassigned)
- 3. Let $S \in V^R$ be an unassigned scc whose all children are assigned 1.
- 4. Assign literals of S to 1. Consequently, S^c is assigned 0.

5. goto 2.

We need to show that at step 3 we always find S.

claim: at step 3, there is a node whose all children are assigned.

Choose an unassigned node and descend down if there is unassigned child. Since the DAG is finite, termination.

claim: an unassigned node can not have a child that is assigned 0.

If S is assigned 1, all its children are already 1. Therefore, all the parents of S^c are already assigned 0(due to theorem 8.5).

Exercise 8.5 Show the above procedure produces a satisfying model.

2-SAT is polynomial

Theorem 8.7

A 2-SAT satisfiability problem can be solved in linear time.

Proof.

Due to the previous theorem, 2-SAT satisfiability problem is polynomial.

Practice 2-SAT solving

Exercise 8.6

Find a satisfying assignment of the following formula

1.
$$(\neg x \lor \neg y) \land (\neg y \lor \neg z) \land (\neg z \lor \neg x) \land (x \lor \neg w) \land (y \lor \neg w) \land (z \lor \neg w)$$

2.
$$(p_0 \lor p_2) \land (p_0 \lor \neg p_3) \land (p_1 \lor \neg p_3) \land (p_1 \lor \neg p_4) \land (p_2 \lor \neg p_4) \land (p_0 \lor \neg p_5) \land (p_1 \lor \neg p_5) \land (p_2 \lor \neg p_5) \land (p_3 \lor p_6) \land (p_4 \lor p_6) \land (p_5 \lor p_6)$$

Topic 8.2

Horn Clauses

Horn clauses

Definition 8.4 A Horn clause is a clause that has the following form

 $\neg p_1 \lor \cdots \lor \neg p_n \lor q$,

where $p_1, \ldots, p_n \in \mathbf{Vars}$, and $q \in \mathbf{Vars} \cup \{\bot\}$.

A Horn formula is a set of Horn clauses, which is interpreted as conjunction of the Horn clauses.

The clauses with \perp literals are called goal clauses and others are called implication clauses.

Example 8.3

The following set is a Horn formula $\{p, \neg q \lor \neg r \lor \neg t \lor p, \\ \neg p \lor q, \neg p \lor \neg r \lor t, \\ \neg p \lor \neg q \lor t, \neg r \lor \bot, \\ \neg p \lor \neg q \lor \neg t \lor \bot\}$

Implication view of the horn clauses

We may view a Horn clause

$$\neg p_1 \lor \cdots \lor \neg p_n \lor q$$

as

$$p_1\wedge\cdots\wedge p_n\Rightarrow q.$$

Example 8.4

The following is an implication view of a Horn formula $\{T \Rightarrow p, \quad q \land r \land t \Rightarrow p, \quad p \Rightarrow q, \quad p \land r \Rightarrow t, \quad \neg p \land q \Rightarrow t, \quad r \Rightarrow \bot, \quad p \land q \land t \Rightarrow \bot\}$

Note $\top \Rightarrow p$ means p, which is a Horn clause without negative literals

Horn Satisfiability

Algorithm 8.1: HORNSAT(Hs,Gs)Input: Hs: implication clauses, Gs : goal clausesOutput: model/unsat $m = \lambda x.0;$ while $m \not\models (p_1 \land .. \land p_n \Rightarrow p) \in Hs$ do $m \triangleq m[p \mapsto 1];$ if $m \not\models (q_1 \land .. \land q_k \Rightarrow \bot) \in Gs$ then return unsat;

return m

Exercise 8.7 Solve $\{\top \Rightarrow p, q \land r \land t \Rightarrow p, p \Rightarrow q, p \land r \Rightarrow t, \neg p \land q \Rightarrow t, r \Rightarrow \bot, p \land q \land t \Rightarrow \bot\}$

Recognizing Horn clauses

Sometimes a set of clauses are not immediately recognizable as Horn clause.

We may convert a CNF into a Horn formula by flipping the negation sign for some variables. Such CNF are called Horn clause renameable.

Definition 8.5

Let F be a CNF formula and m be a model. Let flip(F, m) denote the formula obtained by flipping the variables that are assigned 1 in m.

Example 8.5

$$\textit{flip}((p \lor \neg q \lor \neg s), [p \mapsto 1, q \mapsto 0, s \mapsto 1, ...]) = (\neg p \lor \neg q \lor s)$$

Renaming Horn clauses

Theorem 8.8

A CNF formula $F = \{C_1, ..., C_n\}$, where $C_i = \{\ell_{i1}, ..., \ell_{i|C_i|}\}$ is Horn clause renameable iff the following 2-SAT formula is satisfiable.*

$$G = \{\ell_{ij} \lor \ell_{ik} | i \in 1..n \text{ and } 1 \le j < k \le |C_i|\}$$

Proof.

Forward direction: there is a model *m* such that flip(F, m) is a Horn formula claim: $m \models G$

consider a clause $\ell_{ij} \vee \ell_{ik} \in G$ $\underline{case \ \ell_{ij} = p, \ell_{ik} = q}$: one of them must flip, i.e., m(p) = 1 or m(q) = 1 $\underline{case \ \ell_{ij} = \neg p, \ell_{ik} = \neg q}$: at least one must not flip, i.e., not m(p) = m(q) = 1 $\underline{case \ \ell_{ij} = \neg p, \ell_{ik} = q}$: if p flips then q must, i.e., if m(p) = 1 then m(q) = 1In all the three cases $m \models \ell_{ij} \vee \ell_{ik}$.

*H. Lewis. Renaming a Set of Clauses as a Horn Set. J. of the ACM, 25:134-135, 1978.

Renaming Horn clauses(contd.)

Proof(contd.)

Reverse direction: Let $m \models G$. Let F' = flip(F, m). claim: F' is a Horn formula Suppose F' is not a Horn formula Then, there are positive literals ℓ'_{ij} and ℓ'_{ik} in F'. Therefore, $m \not\models \ell_{ij} \lor \ell_{ik}$ (why?). Contradiction.

Exercise 8.8

What is the complexity of checking if a formula is Horn clause renameable?

Exercise 8.9

Can you improve the above complexity?

Topic 8.3

XOR SAT

XOR-SAT

Definition 8.6

A formula is XOR-SAT if it is a conjunction of xors of literals.

Example 8.6

 $(p \oplus r \oplus s) \land (q \oplus \neg r \oplus s) \land (p \oplus q \oplus \neg s) \land (p \oplus \neg q \oplus \neg r)$ is a XOR-SAT formula.

Solving XOR-SAT

Since xors are negation of equality, we may eliminate variables via substitution.

Theorem 8.9 For a variable, p, xor formula G, and XOR-SAT formula F, $(p \oplus G) \wedge F$ is sat iff $F[\neg G/p]$ is sat

Exercise 8.10 Prove the above theorem.

Example : solving XOR-SAT

Exercise: XOR-SAT

Exercise 8.11

Find a satisfying assignment of the following formula

 $\blacktriangleright (p \oplus r \oplus s) \land (q \oplus r \oplus s) \land (\neg p \oplus q \oplus \neg s) \land (p \oplus \neg q \oplus \neg r)$

Topic 8.4

Single lookahead unit resolution

Single lookahead unit resolution(SLUR)

This subclass is defined using the following algorithm.

```
Algorithm 8.2: SLUR(F)
Input: F: CNF formula
Output: model/unknown
m = \lambda x.0;
while m is partial do
   Choose an unassigned variable p in m;
   Apply unit clause propagation and extend m[p \mapsto 1] to m';
   if m' \not\models F then
       Apply unit clause propagation and extend m[p \mapsto 0] to m';
       if m' \not\models F then return unknown;
   m := m';
return
       m
```

Definition 8.7

F belongs to SLUR class if SLUR(F) can never return unknown.

There is no efficient way to recognize a SLUR formula.

However, SLUR contains several interesting sub-classes proposed earlier.

- Extended horn
- CC balanced

Topic 8.5

Problems

Unsat XOR-sat

Exercise 8.12

Give an unsat XOR-sat formula that has only xors more than 3 arguments.

k-BRLR class

Exercise 8.13

A CNF formula is in k-BRLR if all consequence derived from it using resolution have at most k literals. What is the complexity of checking satisfiability of formulas in k-BRLR?

Exercise 8.14

Consider a CNF formula F such that every clause in F has at least two literals and for each variable p there is a model of F with p is true and a model with p is false. Give a linear time algorithm to find a satisfying assignment of F.

End of Lecture 8

