
cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 1

Mathematical Logic 2016

Lecture 10: SAT Solvers

Instructor: Ashutosh Gupta

TIFR, India

Compile date: 2016-09-04

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 2

Where are we and where are we going?

We have seen

I definition of propositional logic and proof systems for the logic

I various properties of the proof systems

I subclasses of propositional logic

I BDD, a practical solving method for SAT

We will look into the modern SAT solvers

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 3

Topic 10.1

DPLL

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 4

DPLL(Davis-Putnam-Loveland-Logemann) framework

Before presenting the framework, let us define a few terminology

Under partial model m,

A literal ` is true if m(`) = 1
` is false if m(`) = 0
Otherwise, ` is undefined.

A clause C is true if there is ` ∈ C s.t. ` is true
C is false if for each ` ∈ C , ` is false
Otherwise, C is undefined.

CNF F is true if for each C ∈ F , C is true
F is false if there is C ∈ F s.t. C is false
Otherwise, F is undefined.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 5

Unit clause

Definition 10.1
C is a unit clause under m if exactly one literal in C is undefined and all
others are false. The undefined literal is called unit literal.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 6

DPLL (Davis-Putnam-Loveland-Logemann)
Algorithm 10.1: DPLL(F,m)

Input: CNF F , partial model m
1 if F is true under m then
2 return sat

3 if F is false under m then
4 return unsat

5 if ∃ unit literal x under m then
6 return DPLL(F ,m[x 7→ 1])

7 if ∃ unit literal ¬x under m then
8 return DPLL(F ,m[x 7→ 0])

9 Choose an undefined x ;
10 if DPLL(F ,m[x 7→ 0]) == sat then
11 return sat
12 else
13 return DPLL(F ,m[x 7→ 1])

Backtracking at
conflict

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 7

Example: Brancing and bracktracking in DPLL

Example 10.1

c1 = (¬p1 ∨ p2)

c2 = (¬p1 ∨ p3 ∨ p5)

c3 = (¬p2 ∨ p4)

c4 = (¬p3 ∨ ¬p4)

c5 = (p1 ∨ p5 ∨ ¬p2)

c6 = (p2 ∨ p3)

c7 = (p2 ∨ ¬p3)

c8 = (p6 ∨ ¬p5)

p6

p5

0

p1

0, c8

p3

1

p2

1, c2

p4

1, c1

p3

1, c3

conflict

0, c4

..
0

Decision
variable

Propagated
variable

Exercise 10.1
Complete the DPLL run

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 8

Optimizations

There are various optimizations in implementing DPLL

We will discuss only four optimizations.

I clause learning

I 2-watch literals

I variable ordering

I restarts

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 9

Topic 10.2

Clause learning

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 10

Clause learning

As we decide and propagate, we may construct a data structure that allows
us to do efficient back tracking.

Definition 10.2 (implication graph)

An implication graph is a labeled directed graph (N,E), where

I N contains true literals and a conflict node to denote contradiction

I E = {(`1, `2)|¬`1 ∈ clause(`2)}
clause(`) , clause due to which unit propagation made ` true
Note: For decision literals clause(`) is undefined

Note: Not same definition as defined for 2-SAT!

We also annotate each node with decision level (e. g., ¬p@3), i.e., the
number of decisions after which the variable was assigned

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 11

Example: implication graph

Example 10.2

c1 = (¬p1 ∨ p2)

c2 = (¬p1 ∨ p3 ∨ p5)

c3 = (¬p2 ∨ p4)

c4 = (¬p3 ∨ ¬p4)

c5 = (p1 ∨ p5 ∨ ¬p2)

c6 = (p2 ∨ p3)

c7 = (p2 ∨ ¬p3∨p7)

c8 = (p6 ∨ ¬p5)

Note: Modified example

p6

p5

0

p7

p1

0

0, c8

p3

1

p2

1, c2

p4

1, c1

p3

1, c3

conflict
0, c4

Implication graph

¬p6@1

¬p5@1

c8

¬p7@2 p1@3

p3@3

c2 c2

p2@3

c1

p4@3

c3

conflict

c4

c4

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 12

Conflict clause
In the case of conflict, we traverse the implication graph backwards to find
the set of decisions that caused the conflict.

We construct a clause of the negations of the decisions, which we call
conflict clause.

Example 10.3
¬p6@1

¬p5@1

c8

¬p7@2 p1@3

p3@3

c2 c2

p2@3

c1

p4@3

c3

conflict
c4

c4

Conflict clause : p6 ∨ ¬p1

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 13

Clause learning

We add conflict clause in the original constraints and back track to the
second last conflicting decision and then proceed like DPLL

Theorem 10.1
Adding conflict clause does not change the set of satisfying assignments

Theorem 10.2
Adding conflict clause implies that the conflicting partial assignment will be
rejected, if tried again.

We will see that many clauses can satisfy the above two conditions.

Definition 10.3
In the following we will say if a clause satisfies the above two conditions then
it is a conflict clause.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 14

Benefit of adding conflict clauses
1. Prunes away search space
2. Records past work of the SAT solver
3. Enables very many other heuristics without much complications.

We will see them shortly.

Example 10.4

In the previous example, we made decisions :
m(p6) = 0, m(p7) = 0, and m(p1) = 1

We learned a conflict clause : p6 ∨ ¬p1

Adding this clause to the input clauses results in

1. m(p6) = 0, m(p7) = 1, and m(p1) = 1 will never be tried

2. m(p6) = 0 and m(p1) = 1 will never occur simultaneously.

One does not have to choose the
decision literals to construct a
conflict clause.

Impact of clause learning was so profound that some people call the optimized
algorithm CDCL(conflict driven clause learning) instead of DPLL

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 15

CDCL as an algorithm

Algorithm 10.2: CDCL
Input: CNF F

1 AddClauses(F); m := UnitPropagation(); dl := 0; dstack := λx .0;
2 do
3 // backtracking
4 while ∃x {x 7→ 0, x 7→ 1} ⊆ m do
5 if dl = 0 then return unsat;
6 (C , dl) := AnalyzeConflict(m) ; // clause learning via implication graph

7 m.resize(dstack(dl)); AddClauses({C}); m := UnitPropagation();

8 // Boolean decision
9 if m is partial then

10 dstack(dl) := m.size();
11 dl := dl + 1; m := Decide(); m := UnitPropagation() ;

12 while m is partial or ∃x {x 7→ 0, x 7→ 1} ⊆ m;
13 return sat

stands for decision level

dstack records history
for backtracking

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 16

Choices of conflict clauses

Some choices of clauses are found to be better than others

I Smaller conflict clauses prune more search space

I Decision variables may not be the critical variables that are the center of
action for producing conflict.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 17

Cut clauses

Definition 10.4
Consider a cut of an implication graph that separates the decision nodes from
the conflict node. Let `1, . . . , `k be the literals that occur at the cut
boundary. The cut clause for the cut is ¬`1 ∨ · · · ∨ ¬`k .

Example 10.5
¬p6@1

¬p5@1

c8

¬p7@2 p1@3

p3@3

c2 c2

p2@3

c1

p4@3

c3

conflict

c4

c4

Cut clause : ¬p1 ∨ p5

observation
Cut clauses may act as conflict clauses.

Exercise 10.2
Other choices for the cut clauses?

Literals that are sources
of cut edges

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 18

Cut clauses preserve models

Theorem 10.3
Cut clauses satisfy all the models of the original formula.

Proof.
Choose a cut.
Consider the nodes at the boundary as the decision literals.
The graph from the boundary to conflict node is a valid implication
graph.(why?)

Therefore, the cut clause will satisfy all the assignments of the original
formula.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 19

Unique implication point (UIP)

Definition 10.5
In an implication graph, a node `@d ′ is a unique implication point (UIP) at
decision level d if every path from dth decision literal to the conflict passes
through `@d ′.

Example 10.6

Consider the following implication graph (Example source: SörenssonBiere-SAT09)

u@0

p@1 q@1 r@1

v@2 w@2

t@3 x@3 y@3 z@3

s@3 conflict

Note: Edges need not labeled with clauses.

UIPs @ level 1 : p@1,q@1
UIPs @ level 2 : v@2,w@2,x@3
UIPs @ level 3 : t@3,x@3

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 20

First UIP strategy

Algorithm:
Iteratively replace a decision literal by one of its UIP in the conflict clause.

Preferably choose UIP that is closest to the conflict, which may result in
introduction of a single UIP that replaces multiple decision literals.

Example 10.7 u@0

p@1 q@1 r@1

v@2 w@2

t@3 x@3 y@3 z@3

s@3 conflict

Conflict clause using decision literals:
¬p ∨ ¬v ∨ ¬t

We can replace v with w
¬p ∨ ¬w ∨ ¬t

After replacing t with x
¬p ∨ ¬x

Commentary: We may not always able to choose all UIPs. Since some of them are descendents of one another. A cut cannot have
two nodes that have a path from one to another.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 21

Topic 10.3

Other heuristics

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 22

2-watched literals
This data structure optimizes unit clause propagation

Observation:
To decide if a clause is ready for unit propagation, we need to look at only
two literals that are not false

For each clause we choose two literals and we call them watched literals.

In a clause,

I if watched literals are non-false then the clause is not a unit clause

I if any of the two becomes false then we look for another two non-false
literals

I If we can not find another two then the clause is a unit clause

Exercise 10.3
Reason why this scheme may optimize DPLL?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 23

Example: 2-watched literals

Example 10.8

Consider clause p1 ∨ p2 ∨ ¬p3 ∨ ¬p4 in a formula among other variables and
clauses. Let us suppose initially we watch p1 and p2 in the clause.
∗ , watched literals.
© , no work to be done!

Initially: p∗1 ∨ p∗2 ∨ ¬p3 ∨ ¬p4 m = {}
...
Assign p1 = 0: p1 ∨ p∗2 ∨ ¬p∗3 ∨ ¬p4 m = {. . . , p1 7→ 0}
Assign p2 = 1: p1 ∨ p∗2 ∨ ¬p∗3 ∨ ¬p4 m = {. . . , p1 7→ 0, p2 7→ 1} ©
Backtrack to p1: p1 ∨ p∗2 ∨ ¬p∗3 ∨ ¬p4 m = {. . . } ©
Assign p4 = 1: p1 ∨ p∗2 ∨ ¬p∗3 ∨ ¬p4 m = {. . . , p4 7→ 1} ©

The benefit: often no work to be done!

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 24

Detecting pure literals

Definition 10.6
A literal ` is called pure in F if ¯̀ does not occur in F .

Benefit: assign ` immediately 1.

As DPLL proceeds, more and more literals may become pure literals.(why?)

We may remove them similar to unit clause propagation.

However, this optimization is at odds with 2-watched literal optimization.

I In each step, 2-watched literal optimization only visits those clauses that
have literals that are just assigned

I No data structure to track disabled clauses due to true literals

I Adding such data structure will defeat the benefit of 2-watched literal.

Often not implemented

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 25

Decision ordering

There are many proposed strategies for the decision order.

Important properties:
allows different order after backtracking and less overhead

A couple of famed strategies are.

I select a literal with maximum occurrences in undefined clauses
I Variable state independent decaying sum

I each literal has a score
I initial score based on the number of occurrences of the literals in the

formula
I score of a literal incremented whenever a new clause containing the literal

is learned
I pick the unassigned literal with the highest score, tie broken randomly
I regularly divided the scores by a constant

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 26

Restart

SAT solvers are likely to get stuck in a local search space.

The solution is to time to time restart DPLL with a different variable
ordering

I Keep learned clauses across restarts

I Slowly increase the interval of restarts such that tool becomes a
complete solver (various strategies in the literature.)

Exercise 10.4
Suggest a design of a parallel sat solver.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 27

Learned clause deletion

CDCL may learn a lot of clauses.

The solvers delete learned clauses time to time with some strategy.
For example, clauses are deleted randomly and longer ones with higher
probability.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 28

Cache aware CDCL

SAT solvers are memory intensive.

The implementation should try to make localized accesses.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 29

Topic 10.4

Resolution proof generation from SAT solver

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 30

Evidence of unsat

If a formula is sat then SAT solver produces a model as evidence of
satisfiability.

Otherwise, it produces only unsat.

Solvers should also produce a proof for unsat.

We will see how learned clause find their another use here.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 31

Resolution Proofs

A resolution proof rule is

p ∨ C ¬q ∨ D

C ∨ D

Example 10.9

Suppose F = (p ∨ q) ∧ (¬p ∨ q) ∧ (¬q ∨ r) ∧ ¬r

p ∨ q ¬p ∨ q

q ¬q ∨ r

r ¬r
⊥

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 32

Reading proofs from implication graphs

I For each learned clause we assign a resolution proof that proves that the
learned clause is implied by the clauses in the solver so far.

We demonstrate the process using an example.

Example 10.10
¬p6@1

¬p5@1

c8

p1@3

p3@3

c2 c2

p2@3

c1

p4@3

c3

conflict

c4

c4

Input clauses:
c8 = (p6 ∨ ¬p5) c2 = (¬p1 ∨ p3 ∨ p5)

c1 = (¬p1 ∨ p2) c3 = (¬p2 ∨ p4) c4 = (¬p3 ∨ ¬p4)

Conflict clause : p6 ∨ ¬p1

Conflict as a resolution proof:

¬p1 ∨ p3 ∨ p5

p6 ∨ ¬p5 ¬p6

¬p5

¬p1 ∨ p3 p1

p3

¬p3 ∨ ¬p4

¬p2 ∨ p4

¬p1 ∨ p2 p1

p2

p4

¬p3

⊥

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 33

Resolution proofs for conflict clauses

Example 10.11 (contd.)

¬p1 ∨ p3 ∨ p5

p6 ∨ ¬p5 6¬p6

p6∨¬p5

p6∨¬p1 ∨ p3 6p1

p6 ∨ ¬p1∨p3

¬p3 ∨ ¬p4

¬p2 ∨ p4

¬p1 ∨ p2 6p1

¬p1∨p2

¬p1∨p4

¬p1∨¬p3

p6 ∨ ¬p1∨⊥
The above is a resolution proof of the conflict clause.

One more issue:
There may be a leaf of the above proof that is a conflict clause in itself.

I In the case, there must be a resolution proof for the conflict clause.

I We “stitch” that proof on top of the above proof .

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 34

CDCL with proof generation

Algorithm 10.3: CDCL
Input: CNF F

1 AddClauses(F); m := UnitPropagation(); dl := 0; dstack := λx .0; proofs = λC .C ;
2 do
3 // backtracking
4 while ∃x {x 7→ 0, x 7→ 1} ⊆ m do
5 (C , dl , proof) := AnalyzeConflict(m,proofs); proofs(C) := proof ;
6 if C = ∅ then return unsat(proof);
7 m.resize(dstack(dl)); AddClauses({C}); m := UnitPropagation();

8 // Boolean decision
9 if m is partial then

10 dstack(dl) := m.size();
11 dl := dl + 1; m := Decide(); m := UnitPropagation() ;

12 while m is partial or ∃x {x 7→ 0, x 7→ 1} ⊆ m;
13 return sat(m)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 35

Issues in generation proofs in SAT solvers or any solver

Proof format vs. checking

I Detailed proofs require non-trivial work from solvers, causing overhead.

I Missing details in proofs imply expensive proof checkers.

Proof minimization

I Problems of moderate size may have very large proofs

I Proofs often have redundancies

I It is wise to minimize proofs before dumping it out

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 36

Proof formats in SAT solvers

SAT solvers typically return two kinds of proofs

I List of learned clauses (low overhead)

I Resolution proofs (detailed)

Example 10.12

Input CNF

p cnf 3 6

-2 3 0

1 3 0

-1 2 0

-1 -2 0

1 -2 0

2 -3 0

Learned clauses

-2 0

3 0

0

Resolution proof

1 -2 3 0 0

2 1 3 0 0

3 -1 2 0 0

4 -1 -2 0 0

5 1 -2 0 0

6 2 -3 0 0

7 -2 0 4 5 0

8 3 0 1 2 3 0

9 0 6 7 8 0
`1 ∨ C1 .. `k ∨ Ck ¬`1 ∨ .. ∨ ¬`k ∨ D

C1 ∨ .. ∨ Ck ∨ D

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 37

Proof checking

A proof is a proof only if an independent checker can check it efficiently.

To check a learned clauses proof, we need to check the following things

1. Unit propagation on the input+learned clauses leads to conflict

2. Each learned clause is implied by the preceding+input clauses

Exercise 10.5
a. Give procedure for the 2nd step in the above proof checking
b. Give procedure for checking resolution proofs as presented in the the
previous slide

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 38

Proof minimization

I There are several kinds of redundancies that may occur in proofs.

I We may apply several passes to minimize for each kind

I A minimization pass should preferably be a linear-time algorithm

Here we present one such case.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 39

Redundent resolutions
The process of resolution removes a literal in each step until none is left.
In a step, the pivot literal is removed and others may be introduced.

Definition 10.7
if a pivot is repeated in a derivation path to ⊥, then the earlier resolution is
redundant in the path.

Example 10.13

Consider the following resolution proof:

⊥

c¬c

⊥

a ∨ c ¬aa ∨ ¬c

b ¬b ∨ ¬a

a ∨ b ¬a ∨ b

The resolution at b is redundant in both the paths to ⊥.

The proof is shown as
a graph to illustrate that
proofs are DAGs not trees.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 40

Removing redundant resolution
By rewiring the proof, we may remove the redundant node v .

One of the parent of v will be wired to the children of v .

Example 10.14

⊥

c¬c

⊥

a ∨ c ¬aa ∨ ¬c

b ¬b ∨ ¬a

a ∨ b ¬a ∨ b

After rewiring we may need to update clauses in some proof nodes.

Exercise 10.6
Which parent to choose?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 41

Detecting redundant resolution - expansion set
Definition 10.8
For a proof node v, expansion set ρ(v) is the set of literals such that
` ∈ ρ(v) iff ` will be removed in all paths to ⊥. ρ is defined as follows.

ρ(v) =


∅ v = ⊥⋂
v ′∈children(v)

ρ(v ′) ∪ {rlit(v , v ′)} − {¬rlit(v , v ′)} otherwise

where rlit(v , v ′) is the literal involved on the edge (v , v ′).

Exercise 10.7
Calculate ρ(v) for each node:

⊥

c¬c

⊥

a ∨ c ¬aa ∨ ¬c

b ¬b ∨ ¬a

a ∨ b ¬a ∨ b

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 42

Detecting redundant resolution (contd.)

Theorem 10.4
If pivot(v) or ¬pivot(v) ∈ ρ(v) then v is redundant.

Exercise 10.8
a. What is the complexity of computing ρ?
b. Prove ρ(v) ⊇ literals in v
c. Given the above observation suggest an heuristic optimization.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 43

Topic 10.5

SAT technology and its impact

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 44

Efficiency of SAT solvers over the years

Source: http://satsmt2014.forsyte.at/files/2014/07/SAT-introduction.pdf

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/
http://satsmt2014.forsyte.at/files/2014/07/SAT-introduction.pdf

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 45

Impact of SAT technology

Impact is enormous.

Probably, the greatest achievement of the last decade in science after
sequencing of human genome

A few are listed here

I Hardware verification and design assistance
Almost all hardware/EDA companies have their own SAT solver

I Planning: many resource allocation problem is convertible to SAT
problem

I Security: analysis of crypto algorithms

I Solving hard problems, e. g., travelling salesman problem

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 46

Latest trends in SAT solving

I Portfolio solvers

I Learned clause management

I Optimizations for applications, e.g., maxsat, unsatcore, etc.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 47

Topic 10.6

Problems

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 48

UIP

Exercise 10.9
Consider the following implication graph generated in a CDCL solver.

u@3 v@1

¬x@ w@2

¬y@z@ s@4

p@ t@

¬q@r@

conflict

a. Assign decision level to every node (write within the node)
b. Write unique implication points(UIPs) for each level
c. Give the conflict clause that is learned by first UIP strategy.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 49

Lov̀asz local lemma vs. SAT solvers

Theorem 10.5 (Lov̀asz local lemma)

Let φ be a k-CNF formula with all clauses of size k. If each variable in φ
occurs less than 2k−2/k times then φ is sat.

Definition 10.9
A Lov̀asz k-CNF formula is a k-CNF formula that has all variables occur
2k−2

k − 1 times, and for each variable p, p and ¬p occur nearly equal number
of times.

Exercise 10.10

I Write a program that generates uniformly random Lov̀asz k-CNF formula

I Generate 10 instances for k = 3, 4, 5,

I Solve the instances using some sat solver

I Report a plot k vs. average run times

Commentary: There are many sat solvers available online. Look into the following webpage of sat competition to find a usable and
downloadable tool. http://www.satcompetition.org. Please discuss with the instructor if there is any confusion.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/
http://www.satcompetition.org

cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 50

End of Lecture 10

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

	DPLL
	Clause learning
	Other heuristics
	Resolution proof generation from SAT solver
	SAT technology and its impact
	Problems

