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Where are we and where are we going?

We have seen

I Propositional logic

We will see

I First order logic (FOL) syntax

I semantics
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Topic 11.1

First order logic (FOL) - syntax
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First order logic(FOL)

First order logic(FOL)
=

propositional logic + quantifiers over individuals + functions/predicates

Example 11.1

Consider the following argument:
Humans are mortal. Socrates is a human. Therefore, Socrates is mortal.

In symbolic form,
∀x .(H(x)⇒ M(x)) ∧ H(s)⇒ M(s)

I H(x) = x is a human

I M(x) = x is mortal

I s = Socrates

“First” comes from this property
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Connectives and variables

An FOL consists of three disjoint kinds of symbols

I variables

I logical connectives

I non-logical symbols : function and predicate symbols
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Variables

We assume that there is a set Vars of countably many variables.

I Since Vars is countable, we assume that variables are indexed.

Vars = {x1, x2, . . . , }

I The variables are just names/symbols without any inherent meaning

I We may also sometimes use x , y , z to denote the variables

Now forget all the definitions of the propositional logic. We will redefine
everything and the new definitions will subsume the PL definitions.
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Logical connectives
The following are a finite set of symbols that are called logical connectives.

formal name symbol read as

true > top
}

0-ary
false ⊥ bot

negation ¬ not
}

unary
conjunction ∧ and

binary
disjunction ∨ or
implication ⇒ implies
exclusive or ⊕ xor
equivalence ⇔ iff

equality ≈ equals
}

binary predicate
existential quantifier ∃ there is

}
quantifiers

universal quantifier ∀ for each
open parenthesis (

 punctuationclose parenthesis )
comma ,
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Non-logical symbols

FOL is a parameterized logic

The parameter is a signature S = (F,R), where

I F is a set of function symbols and

I R is a set of predicate symbols.

Each symbol has arity ≥ 0

F and R may either be finite or infinite.

Each S defines an FOL.
We say, consider an FOL with signature S = (F,R) ...

We write f /n ∈ F and P/k ∈ R to explicitly state the arity

With n = 0, f is called constant
With k = 0, P is called propositional variable
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Syntax : terms

Definition 11.1
For signature S = (F,R), S-terms TS are given by the following grammar:

t , x | f (t, . . . , t︸ ︷︷ ︸
n

),

where x ∈ Vars and f /n ∈ F.

Example 11.2

Consider F = {c/0, f /1, g/2}.
The following are terms

I f (x1)

I g(f (c), g(x2, x1))

I c

I x1

Some notation:

I Let ~t , t1, .., tn

You may be noticing some similarities
between variables and constants
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Syntax: atoms and formulas

Definition 11.2
S-atoms AS are given by the following grammar:

a , P(t, . . . , t︸ ︷︷ ︸
n

) | t ≈ t | ⊥ | >,

where P/n ∈ R.

Definition 11.3
S-formulas PS are given by the following grammar:

F ,a | ¬F | (F ∧ F ) | (F ∨ F ) | (F ⇒ F ) | (F ⇔ F ) | (F ⊕ F ) |∀x .(F ) |∃x .(F )

where x ∈ Vars.

Example 11.3

Consider F = {s/0} and R = {H/1,M/1}
The following is a (F,R)-formula: ∀x .(H(x)⇒ M(x)) ∧ H(s)⇒ M(s)
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Unique parsing

For FOL we will ignore the issue of unique parsing,

and assume

all the necessary precedence and associativity orders are defined

for ensuring human readability and unique parsing.
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Some terminology

We may write some functions and predicates in infix notation.
For example, we may write +(a, b) as a + b and similarly < (a, b) as a < b.

We may not mention S if from the context the signature is clear.

Since we know arity of each symbol, we need not write “,” “(”, and “)” to
write a term unambiguously.
For example, f (g(a, b), h(x), c) can be written as fgabhxc.

Definition 11.4
subterms and subformulas are naturally defined.
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Closed terms and quantifier free

Definition 11.5
A closed term is a term without variable. Let T̂S be the set of closed S-terms.
Sometimes closed terms are also referred as ground terms.

Definition 11.6
A formula F is quantifier free if there is no quantifier in F .
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Free variables

Definition 11.7
A variable x ∈ Vars is free in formula F if

I F ∈ AS: x occurs in F ,

I F = ¬G : x is free in G ,

I F = G ◦ H: x is free in G or H, for some binary operator ◦, and

I F = ∃y .G or F = ∀y .G : x is free in G and x 6= y.

Let FV (F ) denote the set of free variables in F .

Exercise 11.1
Is x free?

I H(x) 3

I H(y) 7

I ∀x .H(x) 7

I x ≈ y ⇒ ∃x .G (x) 3
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Sentence

Definition 11.8
A variable x ∈ Vars is bounded in formula F if x occurs in F and x is not free.
In ∀x .G (∃x .G ), we say the quantifier ∀x ( ∃x )has scope G and bounds x.

Definition 11.9
A formula F is a sentence if it has no free variable.

Exercise 11.2
Is the following formula a sentence?

I H(x) 7

I ∀x .H(x) 3

I x = y ⇒ ∃x .G (x) 7

I ∀x .∃y . x = y ⇒ ∃x .G (x) 3
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Topic 11.2

FOL - semantics
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Semantics : models

Definition 11.10
For signature S = (F,R), a S-model m is a

(Dm; {fm : Dn
m → Dm|f /n ∈ F}, {Pm ⊆ Dn

m|P/n ∈ R}),

where Dm is a nonempty set. Let S-Mods denotes the set of all S-models.

Some terminology

I Dm is called domain of m.

I fm assigns meaning to f under model m.

I Similarly, Pm assigns meaning to P under model m.

Example 11.4 (Running example)

Consider S = ({∪/2}, {∈ /2}).
m = (N;∪m = max ,∈m= {(i , j)|i < j}) is a S-model.
Commentary: Models are also known as interpretation/structure.
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Semantics: assignments

Definition 11.11
An assignment is a map ν : Vars→ Dm
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Semantics: term value

Definition 11.12
For a model m and assignment ν, we define mν : TS → Dm as follows.

mν(x) , ν(x) x ∈ Vars

mν(f (t1, . . . , tn)) , fm(mν(t1), . . . ,mν(tn))

Definition 11.13
Let t be a closed term. m(t) , mν(t) for any ν.

Example 11.5

Consider assignment ν = {x 7→ 2, y 7→ 3} and term ∪(x , y).
mν(∪(x , y)) = max(2, 3) = 3

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Semantics: satisfaction relation

Definition 11.14
We define the satisfaction relation |= among models, assignments, and
formulas as follows

m, ν |= >
m, ν |= P(t1, . . . , tn) if (mν(t1), . . . ,mν(tn)) ∈ Pm

m, ν |= t1 ≈ t2 if mν(t1) = mν(tn)

m, ν |= ¬F if m, ν 6|= F

m, ν |= F1 ∨ F2 if m, ν |= F1 or m, ν |= F2

skipping other boolean connectives

m, ν |= ∃x .F if there is u ∈ Dm : m, ν[x 7→ u] |= F

m, ν |= ∀x .F if for each u ∈ Dm : m, ν[x 7→ u] |= F

Exercise 11.3
Consider sentence F = ∃x .∀y . ¬y ∈ x (what does it say to you!)

Use m and ν from previous example. Does m, ν |= F ?
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Satisfiable, true, valid, and unsatisfiable

We say

I F is satisfiable if there are m and ν such that m, ν |= F

I Otherwise, F is called unsatisfiable

I F is true in m (m |= F ) if for all ν we have m, ν |= F

I F is valid (|= F ) if for all ν and m we have m, ν |= F

If F is a sentence, ν has no influence in the satisfaction relation.(why?)

For sentence F , we say

I F is true in m if m |= F

I Otherwise, F is false in m.
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Example: satisfiability

Example 11.6

Consider S = ({s/1,+/2}, {}) and formula ∃z .s(x) + y ≈ s(z)

Consider model m = (N; succ ,+N) and assignment ν = {x 7→ 3, y 7→ 2}

mν(s(x) + y)= mν(s(x)) +N mν(y) = succ(mν(x)) +N 2 = succ(3) + 2 = 6

mν[z 7→5](s(x) + y) = mν(s(x) + y) = 6 //Since z does not occur in the term

mν[z 7→5](s(z)) = 6

Therefore, m, ν[z 7→ 5] |= s(x) + y ≈ s(z).

m, ν |= ∃z .s(x) + y ≈ s(z).
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Extended satisfiability

We extend the usage of |=.

Definition 11.15
Let Σ be a (possibly infinite) set of formulas.
m, ν |= Σ if m, ν |= F for each F ∈ Σ.

Definition 11.16
Let M be a (possibly infinite) set of models.
M |= F if for each m ∈ M, m |= F .
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Implication and equisatisfiablity

Definition 11.17
Let Σ be a (possibly infinite) set of formulas.
Σ |= F if for each model m and assignment ν if m, ν |= Σ then m, ν |= F .

Σ |= F is read Σ implies F . If {G} |= F then we may write G |= F .

Definition 11.18
Let F ≡ G if G |= F and F |= G .

The above are semantic definitions.
Later, we will see the connection between logical connective ⇒ and semantic
implication |=.
We also need to prove that ≡ are closely related to ⇔.

The above definitions may appear to be abuse of notation.
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Topic 11.3

Examples
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Example: non-standard models

Example 11.7

Consider S = ({0/0, s/1,+/2}, {}) and formula ∃z .s(x) + y ≈ s(z)

Unexpected model: Let m = ({a, b}∗; ε, append a, concat).

I The domain of m is the set of all strings over alphabet {a, b}.
I append a: appends a in the input and

I concat: joins two strings.

Let ν = {x 7→ ab, y 7→ ba}.
Since m, ν[z 7→ abab] |= s(x) + y ≈ s(z),

m, ν |= ∃z .s(x) + y ≈ s(z).

Exercise 11.4

I Show m, ν[y 7→ bb] 6|= ∃z .s(x) + y ≈ s(z)

I Give an assignment ν s.t. m, ν |= x 6≈ 0⇒ ∃y . x ≈ s(y).
Show m 6|= ∀x . x 6≈ 0⇒ ∃y . x ≈ s(y).
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Example: graph models

Example 11.8

Consider S = ({}, {E/2}) and m = ({a, b}; {(a, a), (a, b)}).
m may be viewed as the following graph.

a b

m, {x → a} |= E (x , x) ∧ ∃y .(E (x , y) ∧ ¬E (y , y))

Exercise 11.5
Give another model and assignment that satisfies the above formula
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Example : counting

Example 11.9

Consider S = ({}, {E/2})
The following sentence is false in all the models with one element domain

∀x .¬E (x , x) ∧ ∃x∃y .E (x , y)

Exercise 11.6
a. Give a sentence that is true only in a model that has more than two
elements in its domains
b. Give a sentence that is true only in infinite models
c. Does the negation of the sentence in b satisfies only finite models.
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Importance of ≈

Some of the formalisms do not include ≈ in their basic introduction of FOL,
because ≈ makes the proofs hairy. They treat ≈ separately.

≈ also makes the automation of FOL complicated, which we will soon.

Exercise 11.7
Give a sentence that is true only in models with less than or equal to two
element domains
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Topic 11.4

Some properties of models
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Homomorphisms of models

Definition 11.19
Consider S = (F,R). Let m and m′ be S-models.
A function h : Dm → Dm′ is a homomorphism of m into m′ if the following
holds.

I for each f /n ∈ F, for each (d1, .., dn) ∈ Dn
m

h(fm(d1, .., dn)) = fm′(h(d1), .., h(dn))

I for each P/n ∈ R, for each (d1, .., dn) ∈ Dn
m

(d1, .., dn) ∈ Pm iff (h(d1), .., h(dn)) ∈ Pm′

Definition 11.20
A homomorphism h of m into m′ is called isomorphism if h is one-to-one.
m and m′ are called isomorphic if an h exists that is also onto.
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Example : homomorphism

Example 11.10

Consider S = ({+/2}, {}).

Consider m = (N,+N) and m = (B,⊕B),

h(n) = n mod 2 is a homomorphism of m into m′.
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Homomorphism theorem for terms and ≈-less QF formulas

Theorem 11.1
Let h be a homomorphism of m into m′. Let ν be an assignment.

1. For each term t, h(mν(t)) = m′(ν◦h)(t)

2. If formula F is QF and has no symbol “≈”

mν |= F iff m′(ν◦h) |= F

Proof.
Simple structural induction.

Exercise 11.8
For a QF formula F that may have symbol “≈”, show

if mν |= F then m′(ν◦h) |= F

Why the reverse direction does not work?
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Homomorphism theorem with ≈

Theorem 11.2
Let h be a homomorphism of m into m′. Let ν be an assignment. If h is
isomorphism then the reverse implication also holds for formulas with “≈”

Proof.
Let us suppose m′(ν◦h) |= s ≈ t.
Therefore, m′(ν◦h)(s) = m′(ν◦h)(t).
Therefore, h(mν(s)) = h(mν(t)).
Due to the one-to-one condition of h, mν(s) = mν(t).
Therefore, mν |= s ≈ t.

Exercise 11.9
For a formula F without symbol “≈”, show

if m′(ν◦h) |= F then mν |= F .

Why the reverse direction does not work?
Commentary: Note that that implication direction his switch from the previous exercise.
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Homomorphism theorem with quantifiers

Theorem 11.3
Let h be a isomorphism of m into m′. Let ν be an assignment.
If h is also onto then the reverse direction also holds for the quantified
formulas

Proof.
Let us assume, mν |= ∀x .F .
Choose d ′ ∈ Dm′ .
Since h is onto, there is a d such that d = h(d ′).
Therefore, mν[x 7→d ] |= F .
Therefore, m′ν[x 7→d ′] |= F .
Therefore, m′(ν◦h) |= ∀x . F .

Theorem 11.4
If m and m′ are isomorphic then for all sentences F ,

m |= F iff m′ |= F .
Commentary: The reverse direction of the above theorem is not true.
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Topic 11.5

Problems
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FOL to PL

Exercise 11.10
Give the restrictions on FOL such that it becomes a propositional logic. Give
an example of FOL model of a non-trivial propositional formula.
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Valid formulas

Exercise 11.11
Prove/Disprove the following formulas are valid.

I ∀x .P(x)⇒ P(c)

I ∀x .(P(x)⇒ P(c))

I ∃x .(P(x)⇒ ∀x .P(x))

I ∃y∀x .R(x , y)⇒ ∀x∃y .R(x , y)

I ∀x∃y .R(x , y)⇒ ∃y∀x .R(x , y)
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Distributively

Exercise 11.12
Show the validity of the following formulas.

1. ¬∀x . P(x)⇔ ∃x . ¬P(x)

2. (∀x . (P(x) ∧ Q(x)))⇔ ∀x . P(x) ∧ ∀x . Q(x)

3. (∃x . (P(x) ∨ Q(x)))⇔ ∃x . P(x) ∨ ∃x . Q(x)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/


cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 40

End of Lecture 11
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