Mathematical Logic 2016

Lecture 13: Model existence theorem and its consequences

Instructor: Ashutosh Gupta

TIFR, India

Compile date: 2016-09-24

Where are we and where are we going?

We have seen

- Syntax and semantics of FOL
- Herbrand model and Hinttika theorem

We will see

- Model existence theorem
- Compactness theorem
- Löwenheim-Skolem Theorem

Topic 13.1

Model existence theorem

Fresh symbols are needed

One often needs fresh symbols when instantiating existential quantifiers.

Example 13.1

Consider $\mathbf{S} = (\{a/0, b/0\}, \{P/1\})$. Is the following formula sat?

$$P(a) \wedge P(b) \wedge \exists x. \neg P(x)$$

We need a new constant symbol c that denotes a value s.t. $\neg P(c)$ is true. Note that a and b can not do the job.

Example 13.2

- Consider $S = (\{\}, \{P/1\})$. Is the following formula sat? $\forall x. P(x) \land \exists x. \neg P(x)$
 - 1. Instantiate existential quantifier with a fresh symbol c. $\neg P(c) \land \forall x. P(x) \land \exists x. \neg P(x)$
 - 2. Instantiate universal quantifier with a term c.

$$P(c) \land \neg P(c) \land \forall x. P(x) \land \exists x. \neg P(x)$$

Parameters

We need a supply of fresh symbols.

Let us define a signature extension that supplies the new constant symbols.

Definition 13.1 Let S = (F, R) be a signature. Let par be an infinite countable set of constant symbols disjoint from S. Let $S^{par} = (F \cup par, R)$.

Definition 13.2

A set of formulas S in S^{par} is called unexhausted if there are infinitely many parameters in **par** that do not occur in S.

Consistency property

Definition 13.3 Let S = (F, R) be a signature and C be a collection of sets of sentences in S^{par} . C is a consistency property wrt to **S** if for each $S \in C$ satisfies the following. 1. for each $F \in A_{S^{par}}$, either $F \notin S$ or $\neg F \notin S$ 2. if $\neg \neg F \in S$ then $\{F\} \cup S \in C$ 3. if $\alpha \in S$ then $\{\alpha_1, \alpha_2\} \cup S \in C$ 4. if $\beta \in S$ then $\{\beta_1\} \cup S \in C$ or $\{\beta_2\} \cup S \in C$ 5. if $\gamma \in S$ then $\{\gamma(t)\} \cup S \in C$ for each $t \in \hat{T}_{Spar}$ 6. if $\delta \in S$ then $\{\delta(c)\} \cup S \in C$ for some $c \in par$ 7. $S \cup \{t \approx t\} \in C$ for each $t \in T_{Spar}$ 8. if $t_1 \approx u_1, ..., t_n \approx u_n \in S$ then $S \cup \{f(\vec{t}) \approx f(\vec{u})\} \in C$ for each $f/n \in \mathbf{F}$ 9. if $t_1 \approx u_1, ..., t_n \approx u_n, P(\vec{t}) \in S$ then $S \cup \{P(\vec{u})\} \in C$ for each $P/n \in \mathbf{R} \cup \{\approx /2\}$

Model existence theorem

Theorem 13.1

Let C be a consistency property wrt to **S**, S be a set of **S**-sentences. If $S \in C$ then S is sat.

Recall the proof in propositional case.

- 1. convert ${\mathcal C}$ into finite character
- 2. show limit exists in finite character
- 3. construct a monotonic sequence of elements of ${\mathcal C}$ starting from ${\mathcal S}$
- 4. show its limit is a maximal element of $\ensuremath{\mathcal{C}}$
- 5. show the limit is a Hinittika set

Naturally things are more complicated here.

Recall: subset closed consistency property

Theorem 13.2

Every consistency property C can be extended to a consistency property that is subset closed.

Proof.

Let $\mathcal{C}^+ \triangleq \{S' | S' \subseteq S \text{ and } S \in \mathcal{C}\}$. We show \mathcal{C}^+ is consistency property. Consider $S' \in \mathcal{C}^+$. By definition, there is $S \in \mathcal{C}$ s.t. $S' \subseteq S$.

- 1. Therefore, S' does not contain contradictory literals.
- 2. If $\neg \neg F \in S'$. Therefore, $\neg \neg F \in S$. Therefore, $\{F\} \cup S \in C$. Therefore, $\{F\} \cup S' \in C^+$.
- 3. (trivially extends to all 9 cases)

Recall: finite character

Definition 13.4

A consistency property C has finite character if $S \in C$ iff every finite subset of S is in C.

Theorem 13.3 if C is of finite character then C is subset closed.

Theorem 13.4

Let consistency property C is of finite character. If S_1, S_2, \ldots is sequence of members of C such that $S_1 \subseteq S_2 \subseteq \ldots$. Then, $\bigcup_i S_i \in C$.

Proofs of the above theorems were given in lecture 6.

Extendable to finite character(not true!!)

Theorem 13.5 (Wrong theorem)

A subset closed consistency property ${\mathcal C}$ is extendable to one of finite character.

(counter case).

 $C^+ \triangleq \{S' | \text{all finite subsets of } S' \text{are in } C\}$ is consistency property. Let $S' \in C^+$.

6. case $\delta \in S'$: Consider finite set $T \subseteq S' \cup \{\delta(c)\}$ for some $c \in par$. Therefore, $(T - \{\delta(c)\}) \subseteq S'$. Therefore, $\{\delta\} \cup (T - \{\delta(c)\}) \subseteq S'$. Therefore, $\{\delta\} \cup (T - \{\delta(c)\}) \in C$. Since C is consistency property, $\{\delta\} \cup (T - \{\delta(c)\}) \cup \{\delta(c')\} \in C$. **X**Therefore, $\{\delta\} \cup T \cup \{\delta(c)\} \in C$. Since C is subset closed, $T \in C$. Therefore, $S' \cup \{\delta(c)\} \in C^+$.

Commentary: We need to show that every finite subset of $S' \cup \{\delta(c)\}$ is in C

10

Expanded consistency property

Definition 13.5

Let S = (F, R) be a signature. Let C be a collection of sets of sentences in signature S^{par} . C is a expanded consistency property wrt to S if for each $S \in C$ satisfies the following.

1. for each $F \in A_{\mathbf{S}^{par}}$, either $F \notin S$ or $\neg F \notin S$

2. if
$$\neg \neg F \in S$$
 then $\{F\} \cup S \in C$

3. if
$$\alpha \in S$$
 then $\{\alpha_1, \alpha_2\} \cup S \in C$

- 4. if $\beta \in S$ then $\{\beta_1\} \cup S \in C$ or $\{\beta_2\} \cup S \in C$
- 5. if $\gamma \in S$ then $\{\gamma(t)\} \cup S \in C$ for each $t \in \hat{T}_{\mathsf{S}^{\mathsf{par}}}$
- 6. if $\delta \in S$ then $\{\delta(c)\} \cup S \in C$ for each $c \in par$ and not occurring in S
- 7. $S \cup \{t \approx t\} \in \mathcal{C}$ for each $t \in \hat{T}_{\mathsf{S}^{\mathsf{par}}}$
- 8. if $t_1 \approx u_1, ..., t_n \approx u_n \in S$ then $S \cup \{f(t_1, ..., t_n) \approx f(u_1, ..., u_n)\} \in C$ for each $f/n \in \mathbf{F}$
- 9. if $t_1 \approx u_1, ..., t_n \approx u_n$, $P(t_1, ..., t_n) \in H$ then $S \cup \{P(u_1, ..., u_n)\} \in C$ for each $P/n \in \mathbf{R} \cup \{ \approx /2 \}$

Converting to extended consistency property

Definition 13.6

A parameter substitution π is **par** \rightarrow **par**. For a formula F, $F\pi$ is a formula obtained by replacing c by $\pi(c)$ in F for each $c \in \text{par}$. The substitution naturally extends to a set of formulas.

Theorem 13.6

For subset-closed consistency property C, let $C^+ \triangleq \{S | \text{there is } \pi \text{ s.t. } S\pi \in C\}$.

- 1. \mathcal{C}^+ extends $\mathcal C$ and subset closed
- 2. \mathcal{C}^+ is expanded consistency property

Proof.

Part 1 can be easily proved.

Exercise 13.1

Show if $F\pi$ is sat then F is sat.

Commentary: The definition allows π to be many-one. This may lead to mapping of many constants to the same constants.

Converting to extended consistency property(contd.)

Proof for part 2.

For part 2 we can easily check that conditions 2-5 and 7-8 holds. Consider $S \in \mathcal{C}^+$.

1. Choose closed atom F. Assume $\{F, \neg F\} \in S$. There is a π s.t. $S\pi \in \mathcal{C}$. Since $\{F\pi, (\neg F)\pi\} \subset S\pi, \{F\pi, \neg (F\pi)\} \subset S\pi$. Contradiction. 6 case $\delta \in S$. Choose $c \in par$ s.t. c does not occur in S. Since there is a π s.t. $S\pi \in C$, there is a $c' \in par$ s.t. $S\pi \cup \{\delta\pi(c')\} \in \mathcal{C}.$ Therefore, $S\pi \cup \{\delta(c)(\pi[c \mapsto c'])\} \in C$. Therefore, $(S \cup \{\delta(c)\})(\pi[c \mapsto c']) \in C$. Therefore, $(S \cup \{\delta(c)\}) \in \mathcal{C}^+$.

Extension to finite character

Theorem 13.7

A subset-closed expanded consistency property \mathcal{C} is extendable to one of finite character.

Proof.

 $\mathcal{C}^+ \triangleq \{S' | \text{all finite subsets of } S' \text{are in } \mathcal{C}\} \text{ is an expanded consistency property.}$ Let $S' \in \mathcal{C}^+$

6. case δ ∈ S': Consider finite set T ⊆ S' ∪ {δ(c)} for some fresh c ∈ par wrt S'. Therefore, (T - {δ(c)}) ⊆ S'. Therefore, {δ} ∪ (T - {δ(c)}) ⊆ S'. Therefore, {δ} ∪ (T - {δ(c)}) ∈ C. Since c does not occur in {δ} ∪ (T - {δ(c)}) and C is expanded consistency property, {δ} ∪ (T - {δ(c)}) ∪ {δ(c)} ∈ C. Therefore, {δ} ∪ T ∪ {δ(c)} ∈ C. Since C is subset closed, T ∈ C. Therefore, S' ∪ {δ(c)} ∈ C⁺.
Other cases are similarly proven.

Exercise 13.2 Prove case 8.

Model existence theorem

Theorem 13.8

Let C be a consistency property wrt to **S**. If $S \in C$ then S is sat.

Proof.

Wlog, we assume C is of finite character and expanded (why?).

Let $F_1, F_2, ...$ be an enumeration of all the sentences of S^{par} in an order(why?).

Let us define a sequence S_1, S_2, \ldots as follows.

$$S_1 = S \qquad S_{n+1} = \begin{cases} S_n \cup \{F_n, \delta(c)\} & S_n \cup \{F_n\} \in \mathcal{C} \text{ and } F_n = \delta \\ S_n \cup \{F_n\} & S_n \cup \{F_n\} \in \mathcal{C} \text{ and } F_n \neq \delta \\ S_n & \text{otherwise} \end{cases}$$

where *c* is a fresh parameter wrt $S_n \cup \{F_n\}$.

Since S_n are in C and C is of finite character, $\bigcup_n S_n \in C$. Let $M \triangleq \bigcup_n S_n$.

Exercise 13.3

Why we need the special case for δ ? Mathematical Logic 2016

Model existence theorem(contd.)

Proof.

Claim: *M* is maximal in *C*. (same argument as in propositional logic) Assume $M' \in C$ s.t. $M \subset M'$. There is F_n such that $F_n \in M'$ and $F_n \notin M$. By def. of M, $S_n \cup \{F_n\} \notin C$. Since $S_n \cup \{F_n\} \subseteq M'$ and *C* is subset closed, $S_n \cup \{F_n\} \in C$. Contradiction.

Claim: *M* is a Hinttika set. If $\alpha \in M$ then $\{\alpha_1, \alpha_2\} \cup M \in C$. Since *M* is maximal, $\{\alpha_1, \alpha_2\} \subseteq M$. Other conditions hold similarly, except δ case.

Since M is a Hinttika set, M is sat. Since $S \subseteq M$, S is sat.

Topic 13.2

Consequences of model existence theorem

Compactness

Theorem 13.9

Let S = (F, R) be a signature and S be a set of S-sentences. If each finite subset of S is sat then S is sat.

Proof.

Let $C \triangleq \{S' \subset S^{par}$ -sentences| all finite subsets of S' are sat and S' is unexhausted $\}$.

Claim: C is a consistency property.

Let $S' \in \mathcal{C}$. We need to satisfy the nine conditions.

1. If $\{F, \neg F\} \subseteq S'$, then $\{F, \neg F\}$ is sat. contradiction. First cond. holds.

3. Let
$$\alpha \in S'$$
. Consider a finite $T \subseteq \{\alpha_1, \alpha_2\} \cup S'$.
There is a finite $T' \subseteq S'$ s.t. $T \subseteq \{\alpha, \alpha_1, \alpha_2\} \cup T'$.
Since $T' \cup \{\alpha\} \subseteq S', T' \cup \{\alpha\}$ is sat.
Therefore, $T' \cup \{\alpha, \alpha_1, \alpha_2\}$ is sat.
Therefore, T is sat.
Therefore, every finite subset of $\{\alpha_1, \alpha_2\} \cup S'$ is sat.
Therefore, $\{\alpha_1, \alpha_2\} \cup S' \in C$

Compactness (contd.)

Exercise 13.4 *Prove the* δ *case.*

Proof(contd.)

6. Let $\delta \in S'$. Consider a finite $T \subseteq \{\delta(c)\} \cup S'$ for fresh $c \in par$ (why possible?). There is a finite $T' \subseteq S'$ s.t. $T \subseteq \{\delta, \delta(c)\} \cup T'$. Since $T' \cup \{\delta\} \subseteq S', T' \cup \{\delta\}$ is sat. Therefore, $T' \cup \{\delta, \delta(c)\}$ is sat. Therefore, T is sat. Therefore, every finite subset of $\{\delta(c)\} \cup S'$ is sat. Therefore, $\{\delta(c)\} \cup S' \in C$

7. similarly other cases are proven.

Due to model existence theorem, S is sat.

Exercise 13.5

If $\Sigma \models F$ then there is a finite subset S of Σ such that $S \models F$

Instructor: Ashutosh Gupta

Impossibility of encoding finite models

Theorem 13.10

Let S = (F, R) be a signature and S be a set of S-sentences. If S is sat in arbitrary large finite models then S is true in an infinite model. Proof.

Let E/2 be a predicate symbol that is not in **S**. Let $\mathbf{S}' \triangleq (\mathbf{F}, \mathbf{R} \cup \{E/2\})$. As we have seen, let F_i be a **S**'-sentence only using predicate E that is false in models with domain smaller than i and sometimes true in larger models.

Let
$$S' \triangleq S \cup \{F_1, F_2, F_3, \dots\}$$
. By construction, S' is false in any finite model.

claim: S' is sat.

Let *L* be a finite subset of *S'* and *k* be the largest number s.t. $F_k \in L$. Since *S* is sat in arbitrary large finite models and *S* does not mention *E*, *L* is sat in a model larger than $k_{(why?)}$. Due to compactness, *S'* is sat.

Therefore, S' is true in an infinite model.

Löwenheim-Skolem Theorem

Theorem 13.11 Let S = (F, R) be a countable signature and S be a set of S-sentences. If S is sat then S is true in a countable model.

Proof. Let $C \triangleq \{S' \subset S^{par}$ -sentences |S'| is sat and unexhausted $\}$.

We can show \mathcal{C} is a consistency property.

Since $S \in C$, there is a Herbrand model of S wrt **S**^{par}, which is countable.

Remark:

For each satisfiable set of first order sentences, we have a countable model therefore real numbers can not be axiomatized using formulas in FOL.

Actually the story is more complicated. Check out "skolem's paradox" !

Topic 13.3

Problems

Finite paths

Exercise 13.6

A graph is connected if there is a finite path between any two nodes of the graph. Using compactness theorem, prove no first order formula can express connectedness of a graph.

End of Lecture 13

