Mathematical Logic 2016

Lecture 15: Unification

Instructor: Ashutosh Gupta

TIFR, India

Compile date: 2016-10-01

Where are we and where are we going?

We have seen

- syntax and semantics of FOL
- sound and complete proof methods for FOL : tableaux and resolution

We will see computational aspects of FOL proving

Unification

Skipped proof systems

We will skip FOL proof systems

- Hilbert
- Natural deduction

Example : γ -RULE is hard to apply

Not only γ -RULE has inherent non-determinism but also there are magic terms that close the proofs immediately.

Example 15.1

Consider

 $\Sigma = \{ \forall x_1, x_2, x_3, x_4. \ f(x_1, x_3, x_2) \not\approx f(g(x_2), j(x_4), h(x_3, a)) \}$ Let us construct a resolution proof for the above Σ

- 1. $\{\forall x_1, x_2, x_3, x_4, f(x_1, x_3, x_2) \not\approx f(g(x_2), j(x_4), h(x_3, a))\}$
- 2. $\{\forall x_2, x_3, x_4, f(g(h(j(c), a)), x_3, x_2) \not\approx f(g(x_2), j(x_4), h(x_3, a))\}$
- 3. $\{\forall x_3, x_4, f(g(h(j(c), a)), x_3, h(j(c), a)) \not\approx f(g(h(j(c), a)), j(x_4), h(x_3, a))\}$
- 4. $\{\forall x_4. f(g(h(j(c), a)), j(c), h(j(c), a)) \approx f(g(h(j(c), a)), j(x_4), h(j(c), a))\}$
- 5. $\{f(g(h(j(c), a)), j(c), h(j(c), a)) \not\approx f(g(h(j(c), a)), j(c), h(j(c), a))\}$
- 6. $\{f(g(h(j(c), a)), j(c), h(j(c), a)) \approx f(g(h(j(c), a)), j(c), h(j(c), a))\}$

7. {}

We need a mechanism to auto detect substitutions such that terms with variables become equal

Topic 15.1

Unification

Unifier

Definition 15.1

For terms t and u, a substitution σ is a unifier of t and u if $t\sigma = u\sigma$. We say t and u are unifiable if there is a unifier σ of t and u.

Example 15.2

Find a unifier σ of the following terms

• $x_4\sigma = f(x_1)\sigma$ • $x_4\sigma = f(x_1)\sigma$ • $g(x_1)\sigma = f(x_1)\sigma$

More general substitution

Definition 15.2

Let σ_1 and σ_2 be substitutions.

 σ_1 is more general than σ_2 if there is a substitution τ such that $\sigma_2 = \sigma_1 \tau$.

Example 15.3

- $\sigma_1 = \{x \mapsto f(y, z)\}$ is more general than $\sigma_2 = \{x \mapsto f(c, g(z))\}$ because $\sigma_2 = \sigma_1\{y \mapsto c, z \mapsto g(z)\}$
- $\sigma_1 = \{x \mapsto f(y, z)\}$ is more general than $\sigma_2 = \{x \mapsto f(z, z)\}$ because $\sigma_2 = \sigma_1\{y \mapsto z\}$

Exercise 15.1

If σ_1 is more general than σ_2 and σ_2 is more general than σ_3 . Then, σ_1 is more general than σ_3 .

Most general unifier (mgu)

Definition 15.3

Let t and u be terms with variables, and σ be a unifier of t and u.

 σ is most general unifier(mgu) of u and t if it is more general than any other unifier.

Example 15.4

Consider terms f(x, g(y)) and f(g(z), u)Consider the following three unifiers

1.
$$\sigma = \{x \mapsto g(z), u \mapsto g(y), z \mapsto z, y \mapsto y\}$$

2.
$$\sigma = \{x \mapsto g(c), u \mapsto g(d), z \mapsto c, y \mapsto d\}$$

3.
$$\sigma = \{x \mapsto g(z), u \mapsto g(z), z \mapsto z, y \mapsto z\}$$

The first is more general unifier than the bottom two. The second and third are incomparable_(why?)

Is mgu unique? Does mgu always exist?

Uniqueness of mgu

Definition 15.4 A substitution σ is a renaming if σ : Vars \rightarrow Vars and σ is one-to-one Theorem 15.1

If σ_1 and σ_2 are mgus of u and t. Then there is a renaming τ s.t. $\sigma_1 \tau = \sigma_2$.

Proof.

Since σ_1 is mgu, therefore there is a substitution $\hat{\sigma}_1$ s.t. $\sigma_2 = \sigma_1 \hat{\sigma}_1$. Since σ_2 is mgu, therefore there is a substitution $\hat{\sigma}_2$ s.t. $\sigma_1 = \sigma_2 \hat{\sigma}_2$. Therefore $\sigma_1 = \sigma_1 \hat{\sigma}_1 \hat{\sigma}_2$.

Wlog, for each $y \in$ **Vars**, if for each $x \in$ **Vars**, $y \notin FV(x\sigma_1)$ then we assume $y\hat{\sigma_1} = y$

Uniqueness of mgu (contd.)

Proof(contd.)

claim: for each $y \in \mathbf{Vars}$, $y\hat{\sigma_1} \in \mathbf{Vars}$ Consider a variable x s.t. $y \in FV(x\sigma_1)$. Suppose $y\hat{\sigma_1} = f(..)$. $x\sigma_1\hat{\sigma_1}$ will be longer than $x\sigma_1$. Therefore, $x\sigma_1\hat{\sigma_1}\hat{\sigma_2}$ will be longer than $x\sigma_1$. Contradiction. Suppose $y\hat{\sigma_1} = c$. $\hat{\sigma_2}$ will not be able to rename c back to y in $x\sigma_1$. Therefore $y\hat{\sigma_1} \in \mathbf{Vars}$ is variable.

claim: for each
$$y_1 \neq y_2 \in \mathbf{Vars}$$
, $y_1 \hat{\sigma}_1 \neq y_2 \hat{\sigma}_1$
Assume $y_1 \hat{\sigma}_1 = y_2 \hat{\sigma}_1$.
 $\hat{\sigma}_2$ will not be able to rename the variables back to distinct variables.(why?)

Disagreement pair

Definition 15.5

For terms t and u, d_1 and d_2 are disagreement pair if

- 1. d_1 and d_2 are subterms of t and u respectively,
- 2. the path to d_1 in t is same as and the path to d_2 in u, and
- 3. roots of d_1 and d_2 are different.

Example 15.5

Consider terms t = f(g(c), h(x, d)) and u = f(g(y), d)(Node labels are pairs of function symbols and argument nu

Robinsion's algorithm for computing mgu

Algorithm 15.1: $MGU(t, u \in T_S)$

```
\sigma := \lambda x.x
while t\sigma \neq u\sigma do
    choose disagreement pair d_1, d_2 in t\sigma and u\sigma;
    if both d_1 and d_2 are non-variables then return FAIL;
    if d_1 \in Vars then
        x := d_1; s := d_2;
                                         If MGU is sound and always terminates then
    else
                                         mgus for unifiable terms always exists.
    x := d_2; s := d_1;
    if x \in FV(s) then return FAIL;
   \sigma := \sigma[\mathbf{x} \mapsto \mathbf{s}]
```

return σ

Exercise 15.2

Run the above algorithm with the following inputs.

- $MGU(f(x_1, x_3, x_2), f(g(x_2), j(x_4), h(x_3, a)))$
- MGU(f(g(x), x), f(y, g(y)))

Termination of MGU

- Theorem 15.2 MGU always terminates.
- Proof.
- Total number of variables in $t\sigma$ and $u\sigma$ decreases in every iteration.(why?)
- Since initially there were finite variables in t and u, MGU terminates.

Soundness of ${\rm MGU}$

Theorem 15.3

MGU(t, u) returns unifier σ iff t and u are unifiable. Furthermore, σ is a mgu.

Proof.

Since MGU must terminate, if t and u are not unifiable then MGU must return FAIL.

Let us suppose t and u are unifiable and τ is a unifier of t and u. claim: $\tau = \sigma \tau$ is the loop invariant of MGU.

base case:

Initially, σ is identity. Therefore, the invariant holds initially.

induction step:

We assume $\tau = \sigma \tau$ holds at the loop head.

Soundness of MGU(contd.)

Proof(contd.)

We show that the invariant holds after the loop body and FAIL is not returned. **claim:** no FAIL at the first **if** $t\sigma$ and $u\sigma$ are unifiable because $t\sigma\tau = t\tau = u\tau = u\sigma\tau_{(why?)}$.

One of d_1 and d_2 is a variable, otherwise $t\sigma$ and $u\sigma$ are not unifiable.

claim: no FAIL at the last **if** Since $t\sigma\tau = u\sigma\tau$, $x\tau = s\tau$. If x occurs in s then no unifier can make them equal_(why?).

claim:
$$\sigma[x \mapsto s]\tau = \tau$$

 $x\sigma[x \mapsto s]\tau = s\tau = x\tau$.
Let $y \neq x$ then $y\sigma[x \mapsto s]\tau = y\sigma\tau = y\tau$.
Therefore, $\sigma[x \mapsto s]\tau = \tau$.

Due to the invariant $\tau = \sigma \tau$, σ is mgu at the termination.

Multiple unification

Definition 15.6

Let $t_1, ..., t_n$ be terms with variables. A substitution σ is a unifier of $t_1, ..., t_n$ if $t_1\sigma = ... = t_n\sigma$. We say $t_1, ..., t_n$ are unifiable if there is a unifier σ of them.

Exercise 15.3

Write an algorithm for computing multiple unifiers using the binary MGU.

Concurrent unification

Definition 15.7

Let $t_1, ..., t_n$ and $u_1, ..., u_n$ be terms with variables. A substitution σ is a concurrent unifier of $t_1, ..., t_n$ and $u_1, ..., u_n$ if

 $t_1\sigma = u_1\sigma, \quad .., \quad t_n\sigma = u_n\sigma.$

We say $t_1, ..., t_n$ and $u_1, ..., u_n$ are concurrently unifiable if there is a unifier σ for them.

Exercise 15.4

Write an algorithm for concurrent unifiers using the binary MGU.

Topic 15.2

Unification in proving

Unification in proving

Example 15.6 Consider again $\Sigma = \{ \forall x_1, x_2, x_3, x_4. f(x_1, x_3, x_2) \not\approx f(g(x_2), j(x_4), h(x_3, a)) \}$

Given the above, one may ask

Are $f(x_1, x_3, x_2)$ and $f(g(x_2), j(x_4), h(x_3, a))$ unifiable?

Exercise 15.5

Run the unification algorithm on the above terms

Answer:

- $x_1 \mapsto g(h(j(x_4), a))$
- $x_2 \mapsto h(j(x_4), a)$
- $x_3 \mapsto j(x_4)$

The above instantiations are not magic anymore!

We will integrate unification and resolution proof system.

Changing $\gamma\text{-Rule}$

Unification gives the mechanism for finding the magic terms for $\gamma\text{-Rule}.$

Instead of instantiating γ for a closed term t, we may instantiate γ as $\gamma(x)$ for a fresh variable x. Later, find the appropriate closed term for x for closing the proofs.

Example 15.7

Consider once again

 $\Sigma = \{ \forall x_1, x_2, x_3, x_4. \ f(x_1, x_3, x_2) \not\approx f(g(x_2), j(x_4), h(x_3, a)) \}$

Drop quantifier and introduce fresh variables z, u, v, and w. $f(z, u, v) \approx f(g(v), j(w), h(u, a))$

Apply unification.

δ complication

Instantiation with free variables complicates the matter for the δ rule.

Since we have introduced a fresh variable instead of a term in γ rule, δ does not know which fresh symbol to choose.

Example 15.8Consider the following satisfiable formula. $\forall x. \exists y. x \not\approx y.$ $\exists y. x \not\approx y$ $\exists y. x \not\approx y$ $(just drop \forall and keep the variable name same)$ $x \not\approx c$ $c \not\approx c$ (after applying delta rule) $c \not\approx c$ $(just drop \forall and keep the variable name same)$ $(just drop \forall and keep t$

Therefore we need dependent parameters, which are called skolem functions.

Skolem functions

We will need a supply of fresh symbols that may have non-zero arity.

Example 15.9

Consider the following satisfiable formula.

 $\begin{array}{l} \forall x. \exists y. \ x \not\approx y \\ \exists y. \ x \not\approx y \\ x \not\approx f(x) \end{array}$ Introduce term that is dependent on x. No unification can unify x and f(x)

Let us define an extension of signature that ensures a supply of new function symbols.

Definition 15.8

Let S = (F, R) be a signature. Let **sko** be a infinite countable set of function symbols disjoint from S. Let $S^{sko} = (F \cup sko, R)$.

We will present a proof system with unification and Skolem functions in the next lecture. Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 22

Topic 15.3

Algorithms for unification

Robinson is exponential

Robinson algorithm has worst case exponential run time.

Example 15.10 Consider unification of the following terms $f(x_1, g(x_1, x_1), x_1, ...)$ $f(g(y_1, y_1), y_2, g(y_2, y_2), ...)$

The mgu:

- $x_1 \mapsto g(y_1, y_1)$
- $y_2 \mapsto g(g(y_1, y_1), g(y_1, y_1))$
- (size of term keeps doubling)

After discovery of a substitution $x \mapsto s$, Robinson checks if $x \in FV(s)$. Therefore, Robinson has worst case exponential time.

Martelli-Montanari algorithm

This algorithm is lazy in terms of applying occurs check

Algorithm 15.2: MM-MGU($t, u \in T_S$) $\sigma := \lambda x.x; M = \{t \approx u\};$ while change in M or σ do if $f(t_1,...,t_n) \approx f(u_1,...,u_n) \in M$ then $| M := M \cup \{t_1 \approx u_1, ..., t_n \approx u_n\} - \{f(t_1, ..., t_n) \approx f(u_1, ..., u_n)\};$ if $f(t_1,...t_n) \approx g(u_1,...u_n) \in M$ then return FAIL; if $x \approx x \in M$ then $M := M - \{x \approx x\}$; if $x \approx t' \in M$ or $t' \approx x \in M$ then **if** $x \in FV(t')$ then return *FAIL*; $\sigma := \sigma[x \mapsto t']; M := M\sigma$

return σ

https://pdfs.semanticscholar.org/3cc3/ 338b59855659ca77fb5392e2864239c0aa75.pdf

Topic 15.4

Problems

MGU

Exercise 15.6

Find mgu of the following terms

- 1. $f(g(x_1), h(x_2), x_4)$ and $f(g(k(x_2, x_3)), x_3, h(x_1))$
- 2. f(x, y, z) and f(y, z, x)

Exercise 15.7

Let σ_1 and σ_2 be the MGUs in the above unifications. Give unifiers σ'_1 and σ'_2 for the problems respectively such that they are not MGUs. Also give τ_1 and τ_2 such that

1.
$$\sigma'_1 = \sigma_1 \tau_1$$

2. $\sigma'_2 = \sigma_2 \tau_2$

Maximum and minimal mgus

Exercise 15.8

a. Give two maximum general substitutions *and two minimal general* substitutions.

b. Show that maximum general substitutions are equivalent under renaming.

End of Lecture 15

