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Where are we and where are we going?

We have seen

I FOL proof methods

I Normal forms - FOL clauses

We are looking at the design of modern theorem provers

I ordering constraints on resolution proof system

I completeness under the constraints
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Topic 17.1

Order
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Partial order

Definition 17.1
A partial order � is a transitive and irreflexive relation over a domain D.

Definition 17.2
The reflexive closure � of � is � ∪{(x , x)|x ∈ D}.

Definition 17.3
A partial order � is total if for each x , y ∈ D, either x � y or y � x.

Definition 17.4
A partial order � is well-founded if there is no infinite chain x1, x2, .. s.t.
x1 � x2 � . . . .
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Reduction order

We will use expression for both terms and formulas.

Definition 17.5
A reduction order � over expressions is a well-founded partial order and if
t � s then u(t) � u(s).

Theorem 17.1
Let � be a reduction order then for each u(t), t 6� u(t)

Proof.
Assume t � u(t). Since � is reduction order, u(t) � u(u(t)).
Therefore, There is a infinite chain, t � u(t) � u(u(t)) . . .
Contradiction.

Definition 17.6
A order � has subterm property if for each u(t), u(t) � t

Exercise 17.1
If reduction order � is total then it has subterm property.
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Example : reduction order

Example 17.1

Consider a total well-founded order � over each predicate, function, and
logical symbols.

We extend the order over all expressions as follows s.t. � is reduction order
over expression.

s = f (s1, . . . , sm) � g(t1, . . . , tn) = t iff

1. f � g and s � ti for each i ∈ 1..n

2. f = g, there is a j s.t. (s1, .., sj−1) = (t1, .., tj−1), sj � tj , and s � tk for
k ∈ (j + 1)..n

3. sj � t for some j ∈ 1..m

Exercise 17.2
a. Prove the above order is a reduction order
b. Prove the above order is total
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Topic 17.2

Completeness of ground resolution

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/


cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 8

Resolution proof system for ground clauses

Now we present a proof rule that mixes resolution and factoring in one rule.

Let us suppose A ∨ ... ∨ A ∨ C and ¬A ∨ D are ground clauses.

Resolution
A ∨ ... ∨ A ∨ C ¬A ∨ D

C ∨ D

The order of premises is not a coincidence.The last premise is called the main
premise and others are side premises.

In implementation these distinctions seems to matter.
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Progress using term order

First we will demonstrate the progress towards proving unsatisfiablity due to
resolution over closed clauses using term order.

Later we will use the results to

I restrict application of inferences to reduce redundancies and

I generalize to deal with free variables

Note that closed atoms are almost like propositional variables in propositional
logic
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Admissible order

We need to define order over terms and formulas for our purposes.

Definition 17.7
We consider a total reduction order � over closed formulas admissible if

I A � >
I A � ⊥
I F � G , whenever for each atom B in G there is an atom A in F s.t.

A � B

We will later show that such an ordering exists and easy to evaluate.
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Extension to clauses

Since clauses are multisets, we need to define a multiset extension of �.

Definition 17.8
A finite multiset extension of � over closed formulas is defined as follows.
For closed clauses C and D, C � D if

I C 6= D and

I if D(A) > C (A) then there is a B s.t. B � A and C (B) > D(B),

where C (A) denotes the number of occurrences of A in C .
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Model

Definition 17.9
Consider Σ be a set of closed clauses.
A model m of Σ is a set of atoms s.t. each clause C ∈ Σ is true in m, i.e.,
there is a positive literal A ∈ C s.t. A ∈ m or a negative literal ¬A ∈ C s.t.
A 6∈ m.

Definition 17.10
m is a partial model of Σ if some clauses in Σ are not true in m.

Example 17.2

Consider clauses Σ = {(A1 ∨ ¬A2), (A3 ∨ A2), (¬A4 ∨ ¬A5)}.
m = {A1,A3} is model of Σ.
¬A1 ∨ ¬A3 is false in m.
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Partial model below/at C

Definition 17.11
Let � be an admissible order. For a closed clause C , the partial model below
C , denoted by mC , and increment εC are recursively defined as follows.

I mC = ∪C�DεD
I I If C is in Σ,

I the maximal literal in C is a positive literal A, and
I C is false in mC

then εC = {A}. Otherwise, εC = ∅.

Definition 17.12
the partial model at C is mC = mC ∪ εC .

Definition 17.13
the candidate model of Σ is mΣ = ∪C∈ΣεC .

Definition 17.14
A clause C ∈ Σ is a counterexample if C if false in mΣ.

Exercise 17.3
If εC 6= ∅ then C is true in mΣ
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Example: partial model

Example 17.3

Consider order over atoms B2 � A2 � B1 � A1 � B0 � A0.
Consider the following clauses, listed according to �

C mC εC
A0 ∨ B0 ∅ {B0}
A1 ∨ B0 {B0} ∅
A1 ∨ ¬B0 {B0} {A1}
B1 ∨ A2 ∨ ¬B0 {B0,A1} {A2}
B1 ∨ ¬A2 ∨ B0 {B0,A1,A2} ∅
¬B1 ∨ B2 {B0,A1,A2} ∅

mΣ = {B0,A1,A2}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/


cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 15

Monotonicity of truthness

Theorem 17.2
Let C and D be clauses such that D � C . If C is true in mD or mD then C
is true in mΣ and also in mD′

and mD′ , where D ′ � D.

Proof.
We observe that mD ⊆ mD ⊆ mD′ ⊆ mD′ ⊆ mΣ. If there is A ∈ C that
A ∈ mD or mD then A is in mΣ, and also in mD′

and mD′ .

Otherwise, there is a ¬A ∈ C such that A 6∈ mD . Note C � ¬A.
claim: No clause introduces A.
Assume εD′′ = {A}.
Therefore, A is a maximal literal in D ′′.
Due to the subterm property ¬A � A.
Therefore, ¬A � D ′′. Therefore, D � C � ¬A � D ′′.
Therefore, A ∈ mD .Contradiction.

Exercise 17.4
Prove if maximal literal of C is positive then C is true in mΣ.
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Monotonicity of falseness

Theorem 17.3
Let D and D ′ be clauses s.t. D � D ′ and either D ′ ∈ Σ or the maximal atom
in D is strictly greater than the maximal atom in D ′.
If D ′ is false in mD , then it is also false in mΣ, mC and mC for each C � D.

Proof.
Assuming facts before ’then’.

Let A ∈ D ′.
claim: no C ′ � D will make D ′ true
Assume C ′ � D s.t. εC ′ = {A}.
Since A is maximal in C ′, A must be maximal in D ′.
Due to the previous theorem and D ′ is false in mD , D ′ must be false mD′

.
Therefore, εD′ = ∅.
Therefore, D ′ is not in Σ.
Since A is strictly smaller than maximal atom in D, D � C ′.
Contradiction.
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Ensuring truth

Theorem 17.4
Let D and C be clauses, and D ∈ Σ.
If C is true in mD′

for each D � D ′ then C is true in mD .

Proof.
case: If for some A ∈ C , there is a D ′ s.t. D � D ′ and εD′ = {A}.
C is true in mD .

case: If for each A ∈ C and D � D ′, εD′ 6= {A}.
Assume for each ¬A ∈ C , there is a D ′ s.t. D � D ′ and εD′ = {A}.
Consider the maximal negative literal ¬A′ ∈ C .
There must be a D � D ′′ s.t. εD′′ = {A}.
Therefore, C is false mD′′

. Contradiction.
Therefore there is a ¬A ∈ C that does not occur in mD .
Therefore, C is true in mD .

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/


cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 18

Smaller counterexample due to resolution

Theorem 17.5
Let C ∈ Σ be non empty minimal counterexample. Then, there is a binary
resolution step between C and another clause D in Σ such that the
conclusion clause is false in mΣ and smaller than C .

Proof.
Due to previous theorems, εC = ∅.
Due to monotonicity of truthness and C is false in mΣ, C is false in mC .
Therefore, the maximal element of C is a negative literal ¬A.
Let C ′ ∨ ¬A = C . Therefore, C � C ′ and C ′ is false in mΣ.

Since A occurs in mΣ, there is a clause D = D ′ ∨ A ∨ .. ∨ A ∈ Σ s.t. εD = A.
Therefore, A is maximal literal in D, A 6∈ D ′, and D ′ is false in mD .
Therefore, C � D ′. Due to monotonicity of falseness, D ′ is false in mΣ.

By resolution between C ′ ∨ ¬A and D ′ ∨ A ∨ .. ∨ A, we obtain C ′ ∨ D ′.
Therefore, C � C ′ ∨ D ′ and C ′ ∨ D ′ is false in mΣ.
Exercise 17.5
Show ¬A need not be the maximal in C .
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Resolution with factoring is complete

Theorem 17.6
If Σ is saturated with respect to resolution with factoring and does not
contain empty clause then mΣ is a model of Σ.

Proof.
If mΣ is not a model then there must be a counterexample.
Therefore, resolution should be able to produce even smaller counterexample.
Since Σ is saturated with respect to resolution, Σ must contain empty
clause.
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Topic 17.3

Ordered Resolution
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Selection function

Due to the previous theorems, we only need to apply resolution when
progress towards smaller clauses happens.

A few observations due to the previous theorem

I The positive literal that participates in a resolution needs to be the
maximal in the clause

I The negative literal may be chosen non-deterministically

I The produced clause is always smaller

The non-determinism gives rise to the following concept.

Definition 17.15
A selection function S chooses a subset of negative literals form a given
clause
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Ordered Resolution

For a given selection function S and an order �, the following is a ordering
aware proof system.

Resolution
A1 ∨ ... ∨ A1 ∨ D1 .. An ∨ ... ∨ An ∨ Dn ¬A1 ∨ .. ∨ ¬An ∨ C

D1 ∨ .. ∨ Dn ∨ C

1. Either S(¬A1 ∨ .. ∨ ¬An ∨ C ) = ¬A1 ∨ .. ∨ ¬An, or
else S(¬A1 ∨ .. ∨ ¬An ∨ C ) = ∅ , then n = 1, and A1 is maximal with
respect to C ,

2. each atom Ai is strictly maximal with respect to Di , and

3. S(Ai ∨ ... ∨ Ai ∨ Di ) = ∅ for each i ∈ 1..n

Exercise 17.6
Show the conclusion is always smaller than the main premise.
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Partial model redefined

Definition 17.16
Let � be an admissible order. For a closed clause C , the partial model below
C , denoted by mC , and increment εC are recursively defined as follows.

I mC = ∪C�DεD
I I If C is in Σ,

I the maximal literal in C is a positive literal A, and
I C is false in mC

I nothing is selected in C

then εC = {A}. Otherwise, εC = ∅.

The other definitions for candidate model etc. do not change.

Exercise 17.7
a. Monotonicity of truthness still holds
b. Suggest a modification in monotonicity of falseness
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Ordered resolution is complete

Theorem 17.7
Let C ∈ Σ be non empty minimal counterexample. Then, there is a ordering
aware resolution step between C and clauses D1, ..,Dn in Σ such that the
conclusion clause is false in mΣ.

Proof.
Due to previous theorems, εC = ∅.
Due to monotonicity of truthness and C is false in mΣ, C is false in mC .

Therefore, either

max in C is a negative literal
Let n = 1 and choose a negative

literal s.t. C = C ′ ∨ ¬A1.

or S(C ) 6= ∅.
Let S(C ) = ¬A1 ∨ ..∨¬An and
C ′ = C − S(C ).

Therefore, C � C ′ and C ′ is false in mΣ.
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Ordered resolution is complete(contd.)

Proof(contd.)

Since Ai occurs in mΣ, there is Di = D ′i ∨ Ai ∨ .. ∨ Ai ∈ Σ s.t. εDi
= Ai .

Therefore, Ai is maximal literal in Di , D ′ is false in mD , and S(Di ) = ∅.
Since Ai does not occur in D ′i , max literal in D ′i is smaller than Ai .
Due to monotonicity of falseness, D ′i is false in mΣ.
And, also implies C � D ′i .

Therefore, C � D ′1 ∨ .. ∨ D ′n ∨ C ′, which is false in mΣ.

The following resolution satisfied the conditions of ordered resolution.

A1 ∨ ... ∨ A1 ∨ D ′1 .. An ∨ ... ∨ An ∨ D ′n ¬A1 ∨ .. ∨ ¬An ∨ C ′

D ′1 ∨ .. ∨ D ′n ∨ C ′
.
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Topic 17.4

Problems
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Exercise 17.8
Consider the following axioms of equality.

1. ∀x .x ≈ x

2. ∀x , y .x ≈ y ⇒ y ≈ x

3. ∀x , y , z . x ≈ y ∧ y ≈ z ⇒ x ≈ z

4. for each f /n ∈ F
∀x1, .., xn, y1, .., yn. x1 ≈ y1 ∧ .. ∧ xn ≈ yn ⇒ f (x1, .., xn) ≈ f (y1, .., yn)

5. for each P/n ∈ R
∀x1, .., xn, y1, .., yn. x1 ≈ y1 ∧ .. ∧ xn ≈ ynP(x1, .., xn)⇒ P(y1, .., yn)

Show that Paramodulation and Relexivity rules derive consequences
that can be derived using the above axioms and without the rules.
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End of Lecture 17
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