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Where are we and where are we going?

We have seen

I Definition of FO-theories

I an algorithm that decides quantifier free formulas for decidable theories

We will

I start showing that number theory is not axiomatizable and the endeavor
will last 2 lectures

I define representability of relations
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Gödel’s incompleteness theorem

Theorem 21.1
mN can not be axiomatized.

Proof structure.

1. Choose a subtheory of mN s.t. that it can encode the resolution proofs
in any subtheory of mN

2. This allows us to construct a sentence and show that this sentence is
true in mN but there is no axiomatization that can deduce its validity

3. Therefore, no axiomatization of mN
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Topic 21.1

A special subtheory of mN
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A special subtheory of mN

In the next slide, we will see a subtheory of mN.

We will see that this theory will be capable of saying something very strong
about decidable sets.

Our choice of the theory is not minimum. Proofs at other places uses even
fewer axioms.
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The subtheory of number theory

Consider signature S = ({0/0, s/1,+/2, ·/2, e/2}, {< /2}).

Consider a theory TD = Cn(AD), where AD contains the following axioms
1. ∀x . s(x) 6≈ 0

2. ∀x , y . s(x) ≈ s(y)⇒ x ≈ y

3. ∀x , y . x < s(y)⇔ (x < y ∨ x ≈ y)

4. ∀x . x 6< 0

5. ∀x , y . (x < y ∨ x ≈ y ∨ y < x)

6. ∀x . x + 0 ≈ x

7. ∀x , y . x + s(y) ≈ s(x + y)

8. ∀x . x · 0 ≈ 0

9. ∀x , y . x · s(y) ≈ x · y + x

10. ∀x . e(x , 0) ≈ s(0)

11. ∀x , y . e(x , s(y)) ≈ e(x , y) · x

These axioms are weak. Various
natural claims can not be proven.
e.g. ∀x . x 6≈ 0⇒ ∃y . x ≈ s(y)

Clearly, TD ⊆ TN = Th(mN)

Exercise 21.1
Show if n 6= m,
AD ` sm(0) 6≈ sn(0)

We will refer to the axioms by their number.
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Counting up to a fixed number

Theorem 21.2
a. AD ` ∀x . x 6< 0
b. For any k ∈ N, AD ` ∀x . x < sk+1(0)⇔ x ≈ s0(0) ∨ .. ∨ x ≈ sk(0)

Proof.
a. claim is axiom 4

b. We prove by induction over k .
base case:
Due to axiom 3, x < s(0)⇔ (x < 0 ∨ x ≈ 0)
Due to axiom 4, x < s(0)⇔ x ≈ 0

induction step:
Due to induction hypothesis, x < sk(0)⇔ (x ≈ s0(0) ∨ .. ∨ x ≈ sk−1(0))
Due to axiom 3, x < sk+1(0)⇔ (x < sk(0) ∨ x ≈ sk(0))
After substitution, we obtain the result.
x < sk+1(0)⇔ (x ≈ s0(0) ∨ .. ∨ x ≈ sk−1(0) ∨ x ≈ sk(0))
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Evaluating closed terms

Theorem 21.3
For every variable-free term t, there is a unique n ∈ N s.t. AD ` t ≈ sn(0)

Proof.
Since mN |= AD , for m 6= n, AD 6` sn(0) ≈ sm(0). Therefore, uniqueness.

We prove existence of n by induction over structure of t.
base case:
AD ` 0 ≈ 0
induction step:
Due to induction hyp., let AD ` t ≈ sk(0) and AD ` u ≈ s l(0).
case s: Due to congruence, AD ` s(t) ≈ sk+1(0).
case +: Due to congruence, AD ` t + u ≈ sk(0) + s l(0).

After l applications of axiom 7, AD ` t + u ≈ s l(sk(0) + 0).
After applying axiom 6, AD ` t + u ≈ sk+l(0).

Similarly the other construction cases.
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Evaluating quantifier-free(QF) sentences

Theorem 21.4
For every QF sentence F , if |=TN F then AD ` F .

Proof.
base case:
Assume |=TN t1 ≈ t2.
Therefore for some n, |=TN t1 ≈ sn(0) and |=TN t2 ≈ sn(0).
Therefore due to previous theorem, AD ` t1 ≈ sn(0) and AD ` t2 ≈ sn(0).
Therefore, AD ` t1 ≈ t2.

Similarly, if |=TN t1 6≈ t2 then AD ` t1 6≈ t2 (why?).
Again similar argument for < and 6<.

induction step:
Since F is QF, the induction trivially follows the boolean structure

Exercise 21.2
Show for every QF sentence F , either AD ` F or AD ` ¬F
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Notation:
vector notation for tuple of variables/values/terms

I Let ~x := x1, .., xn
I Let ~a := a1, .., an
I Let s~a(0) := sa1(0), .., san(0)
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Existential formula

Definition 21.1
An existential formula is of the following form.

∃~x .F (~x)

where F is QF formula.
An existential sentence is an existential formula without free variables.

Theorem 21.5
Let ∃~x .F (~x) be an existential sentence. If TN |= ∃~x .F (~x) then AD ` ∃~x .F (~x).

Proof.
Since TN |= ∃~x .F (~x), there are terms s

~k(0) s.t. TN |= F (s
~k(0))(why?).

Due to the previous theorem, AD ` F (s
~k(0)).

Therefore, AD ` ∃~x .F (~x).

Unlike the last theorem, the claim is not closed under negation
For universal formulas, the above theorem does not hold

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/


cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 12

What have we been proving?

We are showing

classes of formulas whose truth value

can be established

by systematic(non-deterministic) applications of axioms of AD .

“systematic application of axioms” is another phrase for decision procedure.

Now, we will generalize the concept of the ability to establish truth.
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Topic 21.2

Representability
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Definability in number theory

Definition 21.2
A relation R ⊆ Nn, is defined by a formula F (~x) in mN if

~a ∈ R iff |=TN F (s~a(0))

Exercise 21.3
Show the following relations are definable in number theory

I divisibility relation

I set of prime numbers

I set of pairs of consecutive primes

Exercise 21.4
a. Prove there are undefinable relations.
b. Give a relation that is not definable in number theory
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Representability

Definition 21.3
A formula F represents a relation R ⊆ Nn in theory T (with signature
containing s and 0) if for each ~a ∈ Nn

if ~a ∈ R then F (s~a(0)) ∈ T
if ~a 6∈ R then ¬F (s~a(0)) ∈ T

Theorem 21.6
F represents R in TN iff F defines R in mN

Theorem 21.7
F represents R in TD iff

if ~a ∈ R then AD ` F (s~a(0))
if ~a 6∈ R then AD ` ¬F (s~a(0))

Proof.
The above holds due to the completeness of FOL and the definition of
axiomatizable theories.

Note that the definition is
about some theory T , not TD .

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Definability vs. Representability

Definability in number theory

says that

a S-formula can describe a
relation.

Representability in AD

says that

AD can deduce the membership of the
relation.

We need to a bit more concertize the concept of deducible.
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Numeralwise determined

Definition 21.4
Let F (~x) be a formula with only free variables ~x and |~x | = n.
F (~x) is numeralwise determined by AD iff for every ~a ∈ Nn either

AD ` F (s~a(0)) or AD ` ¬F (s~a(0)).

Theorem 21.8
A formula F (~x) represents a relation R in TD iff
F (~x) is numeralwise determined by TD and F (~x) defines R in mN.

Proof.
Forward direction:
Since F (~x) represents R, F (~x) is numeralwise determined by TD .
Since TD ⊆ TN, F (~x) defines R in mN.
Backward direction:
assume ~a ∈ R.
Therefore, |=mN F (s~a(0)).
Since mN |= AD , AD 6` ¬F (s~a(0)).
Therefore, AD ` F (s~a(0)).

assume ~a 6∈ R.
Therefore, |=mN ¬F (s~a(0)).
Therefore, AD 6` F (s~a(0)).
Therefore, AD ` ¬F (s~a(0)).
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Numeralwise determined

“Numeralwise determined by AD” is a property of a formula.

“Representability in AD” is a property of a relation.

The first is a means to achieve the later.

The last theorem says, if we have the first property along with definability in
mN then we have achieved later.

Let us see which class of formulas are numeralwise determined.
We will drop ”by Ad” in the following slides.
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A class of numeralwise determined

Theorem 21.9
a. atomic formulas are numeralwise determined.
b. if F and G are numeralwise determined then ¬F , F ◦ G are numeralwise
determined, where ◦ is binary boolean operator

Proof.
a. we have seen how to evaluate the variable-free formulas.
b. trivial

Exercise 21.5
Complete the above argument.
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Bounded quantification is numeralwise determined

Theorem 21.10
If F is numeralwise determined then so are the following formulas

∀x(x < y ⇒ F (x , y ,~z))
∃x(x < y ∧ F (x , y ,~z))

Proof.
Consider ∃x(x < y ∧ F (x , y ,~z)), where |~z | = n. Choose (c,~a) ∈ Nn+1.

We need to show that either

AD ` ∃x(x < sc(0) ∧ F (x , sc(0), s~a(0)))
or

AD ` ¬∃x(x < sc(0) ∧ F (x , sc(0), s~a(0))).

Pushing negation inside the later case we obtain
AD ` ∀x(x < sc(0)⇒ ¬F (x , sc(0), s~a(0))).

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Bounded quantification is numeralwise determined(contd.)

Proof(contd.)

Let us suppose there is a 0 ≤ a0 < c s.t. AD ` F (sa0(0), sc(0), s~a(0)).

Therefore, AD ` sa0(0) < sc(0)

AD ` sa0(0) < sc(0) ∧ F (sa0(0), sc(0), s~a(0))

Therefore, the first possibility occurs

AD ` ∃x(x < sc(0) ∧ F (x , sc(0), s~a(0)))

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Bounded quantification is numeralwise determined(contd.)

Proof(contd.)

Now suppose for each 0 ≤ a0 < c s.t. AD ` ¬F (sa0(0), sc(0), s~a(0)).

Since we know

AD ` ¬∀x .(x < sa0(0)⇒ x ≈ s0(0) ∨ .. ∨ x ≈ sa0(0))

Therefore, we can show the following

AD ` ∀x(x < sc(0)⇒ ¬F (x , sc(0), s~a(0)))

The other formula is shown numeralwise determined similarly.

Exercise 21.6
Write a resolution proof that proves the last formula given the top two.

Exercise 21.7
Consider F (v1) = s(0) < v1 ∧ ∀x . (x < v1 ⇒ ∀y(y < v1 ⇒ x · y ≈ v1)).
Numeralwise determine F (s(s(s(0)))) and F (s(s(s(s(0))))).

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Some closure properties of representable relations

Theorem 21.11
The class of representable relations is closed under union, intersection, and
negation.

Proof.
trivially due to theorem 21.9

Theorem 21.12
If R ⊆ Nn+1 is representable then the following relations are also
representable

{(~a, b)|for each c < b, (~a, c) ∈ R}

and
{(~a, b)|there is c < b, (~a, c) ∈ R}.

Proof.
Trivially follows from theorem 21.10.
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Topic 21.3

Representable functions
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Function as relation and function as function

Definition 21.5
A function f : Nn → N may be viewed as a relation.

(~a, b) ∈ f iff f (a) = b

In the lhs, f is referred as relation.

A formula may represent a function (viewed as a relation).

However, we need further definitions since the above definition is not
conducive for function composition, etc.
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Representable function

Definition 21.6
Let f : Nn → N be a function.
A formula F (~x) with |~x = n + 1| functionally represents f if for every ~a ∈ Nn,

AD ` ∀y . (F (s~a(0), y)⇔ y ≈ s f (~a)(0))

Theorem 21.13
If F (~x) functionally represents f then F (~x) represents f as relation

Proof.
Since F (~x) functionally represents f , we have for each ~a ∈ Nn

AD ` ∀y . (F (s~a(0), y)⇔ y ≈ s f (~a)(0)).

For any b ∈ N, AD ` (F (s~a(0), sb(0))⇔ sb(0) ≈ s f (~a)(0))

If (~a, b) ∈ f , then rhs of ⇔ is trivially true. Therefore, AD ` F (s~a(0), sb(0)).

If (~a, b) 6∈ f , then the rhs is false by AD . Therefore, AD ` ¬F (s~a(0), sb(0)).
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Converse of function representability

Theorem 21.14
If F (~x , y) represents f as a relation, there is F ′(~x , y) that functionally
represents f .

Proof.
Let F ′(~x , y) = F (~x , y) ∧ ∀z . (z < y ⇒ ¬F (~x , z)).
For each ~a ∈ Nn, we show AD ` ∀y . (F ′(s~a(0), y)⇔ y ≈ s f (~a)(0)).

Since F (~x , y) represents f for each b < f (~a), AD ` ¬F (s~a(0), sb(0)).
Since AD ` ∀x . (x < s f (~a)(0)⇒ x ≈ s0(0) ∨ .. ∨ x ≈ s f (~a)−1(0)),

AD ` ∀z . (z < s f (~a)(0)⇒ ¬F (s~a(0), z)) (*)

Therefore the following holds,

AD ` F (s~a(0), s f (~a)(0)) ∧ ∀z . (z < s f (~a)(0)⇒ ¬F (s~a(0), z)),

which is the backward implication in the desired formula.
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Converse of function representability (contd.)

Proof(contd.)

Now we consider forward direction of the implication.
Lets assume lhs F ′(s~a(0), y) = F (s~a(0), y) ∧ ∀z . (z < y ⇒ ¬F (s~a(0), z)).

Due to equation (*), AD ,F
′(s~a(0), y) ` ¬(y < s f (~a)(0)).

Instantiate z by s f (~a)(0), we obtain AD ,F
′(s~a(0), y) ` ¬(s f (~a)(0) < y).

Due to axiom 5, AD ,F
′(s~a(0), y) ` y ≈ s f (~a)(0).

Therefore, AD ` ∀y . F ′(s~a(0), y)⇒ y ≈ s f (~a)(0).

Exercise 21.8
Why F could not represent f functionally and we need to construct F ′?
Commentary: Note that y appeared as a free variable in the left hand side of `.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/


cbna Mathematical Logic 2016 Instructor: Ashutosh Gupta TIFR, India 29

Representing composition of functions

Theorem 21.15
If g : Nn → N and hi : N` → N are functionally representable then the
following composition is also functionally representable.

f (~a) = g(h1(~a), .., hn(~a))

Proof.
Let G (~x , y) functionally represent g and Hi (~z , y) functionally represent hi .

We show F (~z , y) , ∀x1. (H1(~z , x1)⇒ ..(∀xn. Hn(~z , xn)⇒ G (~x , y))..)
functionally represents f , i.e., for every ~a,

AD ` ∀y . (F (s~a(0), y)⇔ y ≈ sg(h1(~a),..,hn(~a))(0)).

So, we have ∀y . (H1(s~a(0), y)⇔ y ≈ sh1(~a)(0))

...

∀y . (Hn(s~a(0), y)⇔ y ≈ shn(~a)(0))

∀y . (G (sh1(~a)(0), .., shn(~a)(0), y)⇔ y ≈ sg(h1(~a),..,hn(~a)))(0))
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Representing composition of functions(contd.)

Proof(contd.)

forward direction:
We assume AD ` ∀x1..xn. (H1(s~a(0), x1)⇒ ..(Hn(s~a(0), xn)⇒ G (~x , y))..).

Since we can instantiate x1 to xn with any term, let xi = shi (~a)(0).

We obtain, AD ` (H1(s~a(0), sh1(~a)(0))⇒ ..(Hn(s~a(0), shn(~a)(0))⇒
G (sh1(~a)(0), .., shn(~a)(0), y))..).

Since lhs’s are true (why?), we obtain AD ` G (sh1(~a)(0), .., shn(~a)(0), y).

Due to assumptions, we obtain y ≈ sg(h1(~a),..,hn(~a)))(0).
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Representing composition of functions(contd.)

Proof(contd.)

backward direction:
We need to show

AD ` ∀x1..xn. (H1(s~a(0), x1)⇒ ..(Hn(s~a(0), xn)⇒ G (~x , sg(h1(~a),..,hn(~a))(0))))..)

If any of xi 6≈ shi (~a)(0), then the lhs chain is false (why?).
Therefore, matrix of the formula is trivially provable.

If all of xi ≈ shi (~a)(0) then we need to prove
AD ` G (sh1(~a)(0), .., shn(~a)(0), sg(h1(~a),..,hn(~a))(0)).
Again, it is provable due to assumptions.
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Topic 21.4

More representable function and relations
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Representing least zero

Theorem 21.16
Let g : Nn+1 → N be a representable function.
Then the following function f is also representable.

f (~a) = min{b|g(~a, b) = 0} = µb(g(~a, b) = 0)︸ ︷︷ ︸
new notation

Proof.
Let G (~x , y , z) represents g (relationally).

Consider the formula F (~x , y).

F (~x , y) , G (~x , y , 0) ∧ (∀z . (z < y)⇒ (¬G (~x , z , 0)))

Since F (~x , y) is numerically determined and F defines f in mN, F represents
f .
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Characteristic functions

Theorem 21.17
If a relation R is representable iff its characteristic function KR is
representable.

KR(~a) =

{
1 ~a ∈ R

0 ~a 6∈ R

Proof.
Forward direction:
Let F (~x) represents R. Then the F ′(~x , y) represents KR , which defined as
follows.

F ′(~x , y) , (F (~x) ∧ y ≈ s(0)) ∨ (¬F (~x) ∧ y ≈ 0)

Backward direction:
Let F (~x , y) represents KR . Then, F (~x , s(0)) represents R.
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Notation: extended least-zero functions

Theorem 21.18
Let R ⊆ Nn+1 be a representable relation s.t. for every ~a there is b s.t.
(~a, b) ∈ R. Then, the following function is representable.

f (~a) = min{b|(~a, b) ∈ R} = µb((~a, b) ∈ R)︸ ︷︷ ︸
new notation

Proof.

f (~a) = µb(KR̄(~a, b) = 0)
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Composition relation

Theorem 21.19
If R is a representable relation and f1, .., fn are representable functions, then

R ′ = {~a|(f1(~a), .., fn(~a)) ∈ R}.

is representable.

Proof.
Since R is representable, KR is representable.
Therefore, the following composition is representable.

KR′ = KR(f1(~a), .., fn(~a))

Therefore, R ′ is representable.

Exercise 21.9
Suppose R is representable.
Show {(x , y)|(y , x , x) ∈ R} is representable.
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Non-strict bounded quantification

Theorem 21.20
If R ⊆ Nn is representable then the following relations are also representable

R∀ = {(~a, b)|for each c ≤ b, (~a, c) ∈ R}

and
R∃ = {(~a, b)|there is c ≤ b, (~a, c) ∈ R}.

Proof.
Let R ′∀ = {(~a, b)|for each c < b, (~a, c) ∈ R}, which is representable due to
the bounded quantification theorem.

Since R∀ = {(~a, b)|(~a, s(b)) ∈ R ′∀}, due to previous theorem R∀ is
representable.

Similarly, R∃ is representable.
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What representable means?

Are you confused/bored by now?

Review the content before the next lecture and try to grasp the following ideas

I representable = numeralwise determined + number theory definable

I representability means decidability

I The relations we have shown to be representable have clear sequence of
instructions for applying deductions

I In other words, numeralwise determined == executable

Next, we use the power of representable relations
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End of Lecture 21
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