
Chapter 7

Proof producing CLP(LI+UIF)

CLP(Q) [52] is a useful building block for verification tools. However, CLP(Q) does not currently produce
proofs, which are needed to compute interpolants, and does not deal with the theory of uninterpreted
functions, which is useful for modelling complex operations when verifying programs. In this chapter, we
present a tool CLP(LI+UIF) that checks unsatisfiability of conjunctive constraints in the theory of linear
arithmetic and uninterpreted functions and also produces a proof tree when unsatisfiability is detected.

The existing simplex based proof producing algorithms [14, 23] use a version of simplex that does not
apply constant propagation. These algorithms construct proofs by relying on an instrumentation of the
input constraints. This instrumentation leads to the creation of many additional variables. In this chapter,
we present an alternative proof producing simplex based algorithm that relies on an instrumentation of an
incremental, constant propagating simplex. Our instrumentation does not require incremental simplex to
introduce additional variables for proof construction and does not prohibit constant propagation.

In following sections, first we will present the algorithm used in CLP(Q) and its extension for supporting
uninterpreted functions. Second, we will discuss the incompatibility of existing algorithms for proof tree
generation with CLP(Q). Third, we will present our instrumentation of the algorithm in CLP(Q).

7.1 CLP(Q)

CLP(Q) [52] is a linear programming tool. Since, We are only interested in the unsatisfiability of conjunctive
constraints, we will only consider phase 1 of simplex. In CLP(Q), this phase is implemented as a version of
incremental simplex.

The incremental simplex takes as input a sequence of linear atoms. At any instant, the input so far is
stored in a so called solved form that represents the input in a normal form. Given the next input from
the input sequence and the current solved form, the incremental simplex computes the next solved form. A
solved form of a conjunctive constraint exists if and only if the conjunctive constraint is satisfiable. Therefore,
failure to compute a solved form indicates that the input considered so far is unsatisfiable. In practice, the
incremental simplex is more efficient than a non-incremental one for satisfiablity checking [53].

The algorithm of theCLP(Q) solver is described in [51] and is an optimized version of algorithm presented
in [70]. We will now reformulate this algorithm in the notation that is convenient to us. The CLP(Q) solver
has the following important optimizations that affect proof tree extraction.

• The CLP(Q) solver avoids introduction of as many slack variables as possible.

• If the input implies that a variable is equal to a constant then the CLP(Q) solver replaces this variable
with the constant.

53



Solved form

In general, a solved form is a variant of the standard simplex tableau [77]. There are various kinds of
solved forms with different properties regarding data structure representation, ability to detect equalities
and disequalities, and efficiency of transforming a conjunctive constraints into the solved form [53]. The
CLP(Q) uses a solved form in which equality detection is most efficient and therefore the treatment of
disequalities is trivial, but the cost of computing the solved form is high. Equality detection is also very
significant for us since congruence checker for uninterpreted functions depends on equality detection.

Formally, the solved form in CLP(Q) is a tuple (X ,Basis ,Def ,Low ,Up,Active,Val) where

• X = {x1, . . . , xn} is a finite ordered set of rational variables,

• Basis ⊆ X is called a basis,

• Def : X → linear terms, Def assigns definitions to variables and we require that for each k ∈ 1..n,

Def (xk) = c +
�

j∈J

cjxj ,

where c ∈ Q, J ⊆ 1..n and ∀j ∈ J. cj ∈ Q \ {0},

• Low : X → Q ∪ {−∞}, Low defines lower bounds on variables,

• Up : X → Q ∪ {+∞}, Up defines upper bounds on variables,

• Active : X → {none, lower, upper},

• Val : X → Q,

• and the conditions listed below are satisfied.

Let k ∈ 1..n. xk is undefined if Def (xk) = xk and is defined otherwise. xk is unbounded if Low(xk) = −∞
and Up(xk) = +∞, otherwise xk is bounded. xk is active if Active(xk) �= none, and is inactive otherwise. A
solved form must satisfy the following conditions:

(1) Def (xk) only contains undefined variables.

(2) If xk ∈ Basis then xk is defined, bounded, inactive, and all variables appearing in Def (xk) are active.

(3) If xk /∈ Basis and xk is defined then xk is unbounded and inactive.

(4) If xk is active then xk is bounded, undefined, and there is xb ∈ Basis such that xk occurs in Def (xb).

(5) Low(xk) < Up(xk).

(6) If Active(xk) = lower then Low(xk) �= −∞, and if Active(xk) = upper then Up(xk) �= +∞.

(7) If xk is undefined then

Val(xk) =




Low(xk) if Active(xk) = lower,
Up(xk) if Active(xk) = upper,
0 if Active(xk) = none.

(8) If xk is defined and Def (xk) = c +
�

j∈J cjxj then Val(xk) = c +
�

j∈J cjVal(xj).

(9) If xk ∈ Basis then Low(xk) ≤ Val(xk) ≤ Up(xk).

54



Kind Condition Basis Defined Active Bounded Remark

1 xk ∈ Basis � �* ×* �*
If Def (xk) = c +

�
j∈J cjxj then

∀j ∈ J. xj is undefined and active*

2
xk /∈ Basis
xk is defined

× � ×* ×*
If Def (xk) = c +

�
j∈J cjxj then

∀j ∈ J. xj is undefined*

3 xk is active ×* ×* � �* ∃xb ∈ Basis. xk ∈ Smb(Def (xb))*

4
xk is undefined
xk is inactive

×* × ×

Figure 7.1: Solved form implicitly induces above four kinds of variables. * denotes the property is a restriction
imposed by a condition of solved form.

Conditions (1)–(4) impose a syntactic restriction, while (5)–(9) require arithmetic evaluation of solved form.
Def represents a set of linear equations and condition (1) states that these equations are in a triangular
form, which is usually obtained by Gaussian elimination. Conditions (2)–(4) induce four kinds of variables
in the solved form that are presented in Figure 7.1. Note that variables of the fourth kind vacuously satisfy
(2)–(4), since they violate the respective if-conditions.

A solved form is equivalent to the conjunctive constraint.

n�

k=1

( xk = Def (xk) ∧ Low(xk) ≤ xk ≤ Up(xk) ) (7.1)

The conditions (1)–(9) imply that conjunctive constraints in Equation (7.1) are satisfiable. For a given
solved form, we can construct a satisfying assignment Val � in following way. We choose assignments for
variables in order of first kind, third kind, fourth kind, and second kind.

• For each xk variable of first or third kind, let Val �(xk) = Val(xk).

• Let xk be a variable of fourth kind. xk can only appear in the definition of variables of the second
kind. The second kind variables are unbounded, therefore, we can choose any value for Val �(xk) that
is between Low(xk) and Up(xk).

• Let xk be a variable of the second kind such that Def (xk) = c +
�

j∈J cjxj . We have assigned Val �

map for all the undefined variables therefore we can evaluate Def (xk) under assignments of Val �. Let
Val �(xk) = c +

�
j∈J cjVal

�(xj).

Due to conditions (5)–(9), Val � is a satisfying assignment.
A satisfiable conjunctive constraint can always be transformed into an equisatisfiable solved form. The

resulting solved form may contain more variables than the original constraint due to the introduction of
slack variables in the process of transformation. The solved form may not be unique.

Example 3 (Solved form). The constraints shown in Figure 7.2(a) are satisfiable. In figure 7.2(b), we show
a solved form for the constraints. Variables x1, x2, x3, and x4 appear in the original constraints. Variables u,
v, and w are slack variable that are introduced during the transformation to the solved form. x4 and x2 are
variables of the first kind. x3 is variable of the second kind. x1, u, w, and v are variables of the third kind.
There is no fourth kind of variable in this solved form therefore Val is satisfying assignment to the original
constants.

CLP(Q) algorithm

Figures 7.3, 7.4, and 7.5 present incremental simplex in CLP(Q) [51]. This algorithm takes linear atoms as
input sequence. Given an input and the current solved form, CLP(Q) computes the next solved form. If
CLP(Q) fails to compute the next solved form then it throws an exception “Unsatisfiable”.

If the input is an equation then AddEquality is called. If the input is an inequality then
AddInequality is called. We refer to these two procedures as entry procedures.

55



x1 − x2 + 2x3 − 2 ≤ 0
x2 − x1 − x3 + 3 ≤ 0

x4 + x3 − 2 ≤ 0
2− x4 ≤ 0
x1 − 10 ≤ 0
2− x2 ≤ 0

(a)

Variable Def Low Up Active Val
x4 3 + u+ v − w 2 +∞ none 3
x2 −4 + x1 − u− 2v 2 +∞ none 6

x3 −1− u− v −∞ +∞ none -1
x1 x1 −∞ 10 upper 10
u u 0 +∞ lower 0
v v 0 +∞ lower 0
w w 0 +∞ lower 0

�
��

�
d
efi
n
ed

�
��

�
ac
ti
v
e

b
as
is

��
��

sl
ac
k

va
ri
ab

le
s

�
��

�
(b)

Figure 7.2: (a) An example input to the CLP(Q) solver. (b) Solved form computed by CLP(Q) for the
input. x4 and x2 are variables of first kind. x3 is variable of second kind. x1, u, w, and v are variables of
third kind.

Global data structures The global maps X ,Def , Low , Up, Active, and Val are components of the solved
form. They are initialized to be empty. So initially the solved form is empty. Note that when we pick a fresh
variable xk at line 11 of AddInequality that means xk is not referred by any of the input constraints, and
xk is not in current X . During the run of CLP(Q), some variables are detected to be equal to a constant.
Such equalities are stored in queue and these equalities are added to the solved form at the end of execution
of the entry procedures (In AddInequality, lines 13–15 and in AddInequality lines 21–23).

Now we will describe procedures of the algorithm.

Procedures Deref and Initialize Both the entry procedures call Deref to de-reference the term of the
input atom. Deref replaces each variable appearing in the input term with its definition in the solved form.
If a variable in not yet part of the solved form then the procedure Initialize is called to add the variable in
the solved form as a non-basis, undefined, inactive, and unbounded variable. Deref eliminates all defined
variables from the input term and returns a term over undefined variables.

Procedure Substitute This procedure takes an undefined variable xm and a term over other undefined
variables as input. Substitute replaces each occurrence of xm in the definitions by the given input term.
These replacements may leads to violation of condition (8). So Substitute also updates Val such that
condition (8) holds at the end of this procedure. As a result, Substitute turns xm into a defined variable.

Procedure Pivot The inputs of this procedure are a basis variable xb, an activation direction act, and
an undefined and active variable xi that appears in the definition of xb. Pivot removes xb from the basis
and adds xi to the basis using Substitute at lines 1–3. xb is now an undefined variable that appears in the
definition of the basis variable xi, so xb has to be made active. Pivot activates xb in the direction act by
calling procedure Activate at line 5. Since xi is added to the basis, xi is made inactive at line 6.

Procedures Activate and AddBasis Activate activates an inactive variable. It also has to update
Val to satisfy condition (7) and (8). The inputs of AddBasis are a defined variable xm and an activation
direction act. This procedure add xm to basis and makes it inactive. Each variable xj appearing in the
definition of xm is activated at lines 4–13. If either of the bounds of xj does not exist then the other bound is
activated at lines 6–9. Otherwise, if cj is positive then xj is activated in the direction act and if cj is negative
then xj is activated in the direction opposite to act at lines 10–13. ⊕ denotes the logical xor operator.

Procedure AddEquality This procedure takes a linear equality t = 0 as input. At line 1, t is de-
referenced using the solved form. If the solved form implies t = 0 then the condition at line 2 is true and
procedure continues at line 13. If the condition at line 4 is true then the conjunction of the solved form and

56



global variables



X = ∅ : set of variables Basis = ∅ : set of variables
Def = ∅ : X → linear terms
Low = ∅ : X → Q ∪ {−∞} Up = ∅ : X → Q ∪ {+∞}
Active = ∅ : X → {none, lower, upper} Val = ∅ : X → Q





: solved form

queue = ∅: set of linear atoms

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

procedure AddEquality
input
t = 0 : linear constraint

begin
c +

�
j∈J cjxj := Deref(t)

if c = 0 ∧ J = ∅ then
skip

elsif c �= 0 ∧ J = ∅ then
throw “Unsatisfiable”

elsif ∃i ∈ J. Low(xi) = −∞∧Up(xi) = +∞ then
Substitute(xi,− 1

ci
(c +

�
j∈J\{i} cjxj))

else
pick i ∈ J
Substitute(xi,− 1

ci
(c +

�
j∈J\{i} cjxj))

AddBasis(xi, lower)
RepairBasis()

if s = 0 ∈ queue then
queue := queue \ {s = 0}
AddEquality(s = 0)

end

1

2

3

procedure Initialize
input
xi : uninitialized variable

begin
X := X ∪ {xi}
(Def (xi),Active(xi),Val(xi)) := (xi, none, 0)
(Low(xi),Up(xi)) := (−∞,+∞)
end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

procedure AddInequality
input
t ≤ 0 : linear constraint

begin
c +

�
j∈J cjxj := Deref(t)

if c ≤ 0 ∧ J = ∅ then
skip

elsif c > 0 ∧ J = ∅ then
throw “Unsatisfiable”

elsif t = a + aixi then
UpdateBound(a + aixi ≤ 0)

elsif J = {j} then
UpdateBound(c + cjxj ≤ 0)

else
pick fresh xk (∗ slack variable ∗)
Initialize(xk)
Low(xk) := 0
if ∃i ∈ J.Low(xi) = −∞∧Up(xi) = +∞ then
Substitute(xi,− 1

ci
(c+

�
j∈J\{i} cjxj+xk))

else
Def (xk) := −(c +

�
j∈J cjxj)

Val(xk) := −(c +
�

j∈J cjVal(xj))
AddBasis(xk, lower)
RepairVar(xk)

if s = 0 ∈ queue then
queue := queue \ {s = 0}
AddEquality(s = 0)

end

1

2

3

4

5

6

procedure Deref
input
c+

�
j∈J cjxj : linear term

begin
t := c
for each j ∈ J do

if Def (xj) = ⊥ then
Initialize(xj)

t := t+ cjDef (xj)
return t

end

1

2

3

4

5

procedure Substitute
input
xm : undefined variable
c +

�
j∈J cjxj : linear term

begin
d := c +

�
j∈J cjVal(xj)− Val(xm)

for each xk ∈ X :
a +

�
i∈I aixi = Def (xk) ∧m ∈ I do

Val(xk) := Val(xk) + amd
Def (xk) := a+

�
i∈I\{m} aixi+

am(c +
�

j∈J cjxj)
end

1

2

3

4

5

6

procedure Pivot
input
xb : basis variable
act : activation direction
xi : undefined and active variable
begin
c +

�
j∈J cjxj := Def (xb)

t := − 1
ci
(c +

�
j∈J\{i} cjxj − xb)

Substitute(xi, t)
Basis := (Basis \ {xb}) ∪ {xi}
Activate(xb, act)
Active(xi) := none

end

Figure 7.3: Algorithm in CLP(Q) page 1

57



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

procedure UpdateBound
input
c + cjxj ≤ 0 : single variable linear inequality

begin
if cj > 0 then

Status := UpdateUpper(xj ,−c/cj)
act := lower

else
Status := UpdateLower(xj ,−c/cj)
act := upper

if Status = updated ∧Def (xj) �= xj then
if xj /∈ Basis then
a +

�
i∈I aixi := Def (xj)

if ∃k ∈ I Low(xk) = −∞∧ Up(xk) = +∞ then
Substitute(xk,− 1

ak
(a +

�
i∈J\{k} aixi − xj))

else
AddBasis(xj , act)

if xj ∈ Basis then
RepairVar(xj)

end

1

2

3

4

5

6

7

8

9

10

11

12

procedure UpdateLower
input
xj : variable
lb : Q

begin
if Up(xj) < lb then
throw “Unsatisfiable”

elsif Up(xj) = lb then
EnQueue( xj = lb )

else Low(xj) < lb then
if Active(xj) = lower then

:= PushUp(xj)
Low(xj) := lb
if Active(xj) = lower then
Activate(xj , lower)

return updated

return noChange

end

1

2

3

4

5

6

7

8

9

10

11

12

procedure UpdateUpper
input
xj : variable
ub : Q

begin
if Low(xj) > ub then
throw “Unsatisfiable”

elsif Low(xj) = ub then
EnQueue( xj = ub )

else Up(xj) > ub then
if Active(xj) = upper then

:= PushLow(xj)
Up(xj) := ub
if Active(xj) = upper then
Activate(xj , upper)

return updated

return noChange

end

1

2

3

4

5

6

7

8

9

10

11

12

13

procedure AddBasis
input
xm : variable entering in basis
act : preferred activation

begin
Basis := Basis ∪ {xm}
Active(xm) := none

c +
�

j∈J cjxj := Def (xm)
for each j ∈ J : Active(xj) = none

do
if Low(xj) = −∞ then

Activate(xj , upper)
elsif Up(xj) = +∞ then

Activate(xj , lower)
elsif act = upper⊕cj > 0 then

Activate(xj , lower)
else

Activate(xj , upper)
end

1

2

3

4

5

6

7

8

procedure Activate
input
xm : variable
act : activation direction
begin
Active(xm) := act
match act with
| lower -> new := Low(xm)
| upper -> new := Up(xm)
d := new − Val(xm)
for each xk ∈ X :
c+

�
i∈I cixi = Def (xk)∧m ∈ I do

Val(xk) := Val(xk) + cmd
end

1

procedure EnQueue
input
xk = c : variable equality

begin
queue := queue ∪ {xk − c = 0}

end

Figure 7.4: Algorithm in CLP(Q) page 2

58



1

2

3

procedure RepairBasis
begin
LocalBasis := Basis
for each xb ∈ LocalBasis ∧ xb ∈ Basis do

RepairVar(xb)
end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

procedure RepairUp
input
xb : basis variable

begin
if Val(xb) < Up(xb) then return
c +

�
i∈I cixi := Def (xb)

if ∃i ∈ I. ci > 0 ∧ Active(xi) = upper then
Status := PushLow(xi)

elsif ∃i ∈ I. ci < 0 ∧ Active(xi) = lower then
Status := PushUp(xi)

else
Status := optimum
if Val(xb) = Up(xb) then
EnQueue( xb = Up(xb) )

else
throw “Unsatisfiable”

match Status with
| applied -> RepairUp(xb)
| nobound(xi) -> Pivot(xb, upper, xi)

end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

procedure PushLow
input
xi : undefined and active variable

begin
(lb, k) := (Low(xi)− Up(xi), i)
for each xb ∈ Basis : (∗ Pick xb in order ∗)
Def (xb) = c +

�
j∈J cjxj ∧ i ∈ J do

if ci > 0 ∧ Low(xb)−Val(xb)
ci

> lb then

(lb, k, act) := (Low(xb)−Val(xb)
ci

, b, lower)

if ci < 0 ∧ Up(xb)−Val(xb)
ci

> lb then

(lb, k, act) := (Up(xb)−Val(xb)
ci

, b, upper)
done
if k = i ∧ Low(xi) = −∞ then

return nobound(xi)
elsif k = i then

Activate(xi, lower)
else

Pivot(xk, act, xi)
return applied

end

1

2

procedure RepairVar
input
xb : basis variable

begin
if Val(xb) ≥ Up(xb) then RepairUp(xb)
if Val(xb) ≤ Low(xb) then RepairLow(xb)

end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

procedure RepairLow
input
xb : basis variable

begin
if Val(xb) > Low(xb) then return
c +

�
i∈I cixi := Def (xb)

if ∃i ∈ I. ci > 0 ∧ Active(xi) = lower then
Status := PushUp(xi)

elsif ∃i ∈ I. ci < 0 ∧ Active(xi) = upper then
Status := PushLow(xi)

else
Status := optimum
if Val(xb) = Low(xb) then
EnQueue( xb = Low(xb) )

else
throw “Unsatisfiable”

match Status with
| applied -> RepairLow(xb)
| nobound(xi) -> Pivot(xb, lower, xi)

end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

procedure PushUp
input
xi : undefined and active variable

begin
(ub, k) := (Up(xi)− Low(xi), i)
for each xb ∈ Basis : (∗ Pick xb in order ∗)
Def (xb) = c +

�
j∈J cjxj ∧ i ∈ J do

if ci > 0 ∧ Up(xb)−Val(xb)
ci

< ub then

(ub, k, act) := (Up(xb)−Val(xb)
ci

, b, upper)

if ci < 0 ∧ Low(xb)−Val(xb)
ci

< ub then

(ub, k, act) := (Low(xb)−Val(xb)
ci

, b, lower)
done
if k = i ∧Up(xi) = +∞ then

return nobound(xi)
elsif k = i then

Activate(xi, upper)
else

Pivot(xk, act, xi)
return applied

end

Figure 7.5: Algorithm in CLP(Q) page 3

59



t = 0 is unsatisfiable, and we throw an exception “Unsatisfiable”. If the de-referenced term contains an
undefined and unbounded variable then this variable is substituted by the rest of de-referenced term in the
solved form at line 7 and we get a solved form. Otherwise, we pick a variable appearing in the de-referenced
term and the variable is substituted by the rest of de-referenced term in the solved form. Since, the variable
is bounded and defined, we add the variable in basis at line 11. Note that we pass lower as the activation
direction in the second argument of AddBasis, which is an arbitrary choice. These modifications of the
solved form may leads to violation of condition (9), which is fixed by calling RepairBasis. The code after
line 13 is already discussed in description of the global data structures.

Procedure AddInequality This procedure takes a linear inequality t ≤ 0 as input. At line 1, t is
de-referenced using the solved form. If the solved form implies t ≤ 0 then the condition at line 2 is true
and procedure continues at line 21. If the condition at line 4 is true then the conjunction of the solved
form and t ≤ 0 is unsatisfiable, and we throw an exception “Unsatisfiable”. If either the input term
or de-referenced term contains a single variable then UpdateBound is called at line 7 or 9, respectively.
Otherwise, we introduce a slack variable xk and initialize the lower bound of xk with 0 at lines 11–13. Now
we need to add an equality between xk and the negation of the de-referenced term in the solved form. If the
de-referenced term contains an undefined and unbounded variable then this variable is substituted by the
rest of de-referenced term added with xk in the solved form at line 15 and we get a solved form. Otherwise,
AddInequality sets definition of xk to negation of the de-referenced term and add xk to the basis at line
17 and 19. Only xk can violate condition (9). So RepairVar is called to fix the violation at line 20. The
code after line 21 is already discussed in description of the global data structures.

Procedures RepairBasis andRepairVar RepairBasis iteratively changes the basis by pivot operations
until condition (9) is satisfied. RepairBasis keeps a local copy of the current basis and then iterate over
the variables that will remain in the basis after the call to RepairVar in each iteration. RepairVar takes
a basis variable xb as input, checks if Val(xb) violates any of its bounds, and calls accordingly RepairUp or
RepairLow, accordingly.

Procedures RepairUp, RepairLow, PushLow, and PushUp We only discuss RepairUp and
PushLow. The descriptions of RepairLow and PushUp are similar, respectively.

RepairUp takes a basis variable xb as input. RepairUp recursively attempts to decrease Val(xb) such
that Val(xb) < Up(xb) or moves xb out of the basis. The condition (8) defines Val(xb) in terms of values
of variables appearing in Def (xb). The condition at line 3 holds if a variable xi appears in Def (xb) with a
positive coefficient and is activated with the direction upper. We can decrease Val(xb) by decreasing Val(xi).
Since Val(xi) is taking the maximum allowed value, it can be decreased. At line 4, procedure PushLow
is called to decrease value of Val(xi). The code at line 5 and 6 is symmetric therefore we will not discuss
it. If both conditions at line 3 and 5 fail then we can not decrease Val(xi) any further, and the execution
continues at line 8. If Val(xb) is equal to Up(xb) then we have detected an equality and this equality is
pushed into queue. Otherwise, the solved form is unsatisfiable and exception “Unsatisfiable” is thrown.
The return value of the call to PushLow at line 4 is stored in Status. Status equals to applied indicates
that a progress in decreasing Val(xb) has been made. Then, we decrease Val(xb) further. Status equals to
nobound(xi) indicates that xi can be decreased without any bound and by doing a pivot operation between
xb and xi we can satisfy the conditions of the solved form.

In procedure PushLow at line 1, k is set equal to i and lb records the maximum change in value of
Val(xi) allowed by Low(xi). Then at lines 2–8, PushLow iterates over the basis variables and finds a basis
variable xk that may impose maximum bound on smallest value of lb, i.e., change in value of Val(xi). There
are three possible cases at lines 9–14. The first and second case occur when no bounding basis variable exists
and k remains equal to i at line 9. The first case occurs if there is no lower bound of xi. In this case, a
value nobound(xi) is returned indicating that Val(xi) can be decreased without any bound at line 10. The
second case occurs if there is a lower bound on xi. In this case, the activation direction of xi is changed
from upper to lower at line 12. This change leads to a decrease of Val(xb). The third case occurs if xk is a

60



basis variable. xk is leaves the basis and xi enters the basis at line 14. After the second and third cases, the
execution continues at line 15 where applied is returned indicating to the caller that Val(xb) is decreased
by some amount.

Procedures UpdateBound, UpdateLower, and UpdateUpper The procedure UpdateBound takes
an inequality that contains only one variable as input and updates bounds of this variable. Depending on
the variable coefficient in the input inequality, upper or lower bound is updated by calling UpdateUpper
or UpdateLower, respectively.

We will discuss UpdateUpper. The description of UpdateLower is symmetric. UpdateUpper takes
a variable xj and a new upper bound ub for xj as input. If ub is strictly lower than the lower bound of xj then
UpdateUpper throws an exception “Unsatisfiable” at line 2. If ub is equal to the lower bound of xj then
we have detected that xj to be constant and the corresponding constant equality is stored in queue at line 4.
If Up(xj) > ub > Low(xj) then we update Up(xj). Due to conditions (7)–(9), updating an active bound is a
difficult case. If Active(xj) = upper then PushLow is called at line 7. If PushLow moves xj into the basis
or changes its activation direction then the difficulty is eliminated. Otherwise, PushLow makes no changes
in solved form and solved form imposes no limit in decrease of upper bound. In both case, we update Up(xj)
at line 8 without violating conditions (7)–(9) for any other variable. If Active(xj) is still equal to upper

at line 9 then we update Val by calling Activate to satisfy condition (9). UpdateUpper returns value
updated only upper bound is changed otherwise noChange is returned to the caller, i.e., UpdateBound.

In UpdateBound at line 7, if a bound of xj is updated and xj is a defined variable then lines 8–13 are
executed to maintain condition (2) and (3). At line 14, if xj is in the basis then we check and repair any
violation of condition (9).

CLP(LI+UIF) using CLP(Q)

Figure 7.6 presents the CLP(LI+UIF) as an extension of CLP(Q). CLP(LI+UIF) solver extends CLP(Q)
solver with a congruence checker for uninterpreted functions. The CLP(LI+UIF) contains an additional
data structure TermDef that is a function from pairs of uninterpreted function symbols and lists of linear
terms to a variable. TermDef is used to purify input atoms to produce linear atoms, and to check if a
congruence axiom can be applied on input constraints and to produce new equalities. CLP(LI+UIF)
takes TLI+UIF atoms as the input sequence. Given an input, the current solved form, the current TermDef ,
CLP(LI+UIF) computes the next solved form and TermDef . If CLP(LI+UIF) fails to compute the next
solved form and TermDef then it throws an exception “Unsatisfiable”. CLP(LI+UIF) adds the following
three procedures.

Procedure AddConstraint At line 1, Purify is called to remove uninterpreted functions from the
input term and to produce a linear term. Next, the purified atom is added to CLP(Q) solver using its
entry procedures at lines 2–4. If the call to an entry procedure of CLP(Q) does not throw an exception
“Unsatisfiable” then CongChk is called at line 5 to check if congruence rules can be applied between any
two of the terms stored in TermDef .

Procedure Purify This procedure takes a term in TLI+UIF. Purify recursively traverses the input term
in the bottom up order. During the traversal, Purify replaces each subterm whose top function symbol
is uninterpreted with a variable. If the subterm is already seen before then the variable corresponding to
the subterm is retrieved from TermDef at line 12. Otherwise, a fresh variable is chosen to replace for the
subterm, and TermDef is updated accordingly at lines 9 and 10.

Procedure CongChk This procedure recursively executes until no new equality is detected from the
solved form and TermDef . At lines 1–5, the new equalities are detected by the following if-condition. Let
two variables xj and xk be in the range of TermDef . Assuming that in TermDef , xj and xk are mapped by
the same function symbol f and lists of subterms s1, . . . , sm and t1, . . . , tm, respectively. For all i ∈ 1..m, if
the solved form implies si = ti, which is checked by call to Deref, then due to the congruence rule, xj = xk.

61


