
cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 1

Program verification 2016

Lecture 2: Symbolic methods

Instructor: Ashutosh Gupta

TIFR, India

Compile date: 2016-02-08

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 2

Where are we and where are we going?

We have

I defined a simple language

I defined small step operation semantics of the language

I defined logical view of program statements

I defined strongest post and weakest pre

I defined logical strongest post and weakest pre

We will

I Hoare logic

I labelled transition system

I we cover some methods that try/avoid to compute lfp

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 3

Where are we and where are we going?

We have

I defined a simple language

I defined small step operation semantics of the language

I defined logical view of program statements

I defined strongest post and weakest pre

I defined logical strongest post and weakest pre

We will

I Hoare logic

I labelled transition system

I we cover some methods that try/avoid to compute lfp

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 4

Topic 3.1

Hoare logic

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 5

Hoare logic - our first method of verification

I Computing a super set of the reachable states(lfp) that does not
intersect with error states should be suffice for our goal

I Since we do not know how to compute lfp, we will first see a method of
writing pen-paper proofs of program safety

I Such a proof method has following steps
I write (guess) a super set of reachable states
I show it is actually a super set
I show it does not intersect with error states

I First such method was proposed by Tony Hoare
I it is sometimes called axiomatic semantics

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 6

Hoare logic - our first method of verification

I Computing a super set of the reachable states(lfp) that does not
intersect with error states should be suffice for our goal

I Since we do not know how to compute lfp, we will first see a method of
writing pen-paper proofs of program safety

I Such a proof method has following steps
I write (guess) a super set of reachable states
I show it is actually a super set
I show it does not intersect with error states

I First such method was proposed by Tony Hoare
I it is sometimes called axiomatic semantics

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 7

Hoare logic - our first method of verification

I Computing a super set of the reachable states(lfp) that does not
intersect with error states should be suffice for our goal

I Since we do not know how to compute lfp, we will first see a method of
writing pen-paper proofs of program safety

I Such a proof method has following steps
I write (guess) a super set of reachable states
I show it is actually a super set
I show it does not intersect with error states

I First such method was proposed by Tony Hoare
I it is sometimes called axiomatic semantics

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 8

Hoare logic - our first method of verification

I Computing a super set of the reachable states(lfp) that does not
intersect with error states should be suffice for our goal

I Since we do not know how to compute lfp, we will first see a method of
writing pen-paper proofs of program safety

I Such a proof method has following steps
I write (guess) a super set of reachable states
I show it is actually a super set
I show it does not intersect with error states

I First such method was proposed by Tony Hoare
I it is sometimes called axiomatic semantics

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 9

Hoare logic - our first method of verification

I Computing a super set of the reachable states(lfp) that does not
intersect with error states should be suffice for our goal

I Since we do not know how to compute lfp, we will first see a method of
writing pen-paper proofs of program safety

I Such a proof method has following steps
I write (guess) a super set of reachable states
I show it is actually a super set
I show it does not intersect with error states

I First such method was proposed by Tony Hoare
I it is sometimes called axiomatic semantics

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 10

Hoare Triple

Definition 3.1

{P}c{Q}

I P : Σ(V), usually called precondition

I c : P
I Q : Σ(V), usually called postcondition

Definition 3.2
{P}c{Q} is valid if all the executions of c that start from P end in Q, i.e.,

∀v , v ′. v |= P ∧ ((v , c), (v ′, skip)) ∈ T ∗ ⇒ v ′ |= Q.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 11

Hoare Triple

Definition 3.1

{P}c{Q}

I P : Σ(V), usually called precondition

I c : P
I Q : Σ(V), usually called postcondition

Definition 3.2
{P}c{Q} is valid if all the executions of c that start from P end in Q, i.e.,

∀v , v ′. v |= P ∧ ((v , c), (v ′, skip)) ∈ T ∗ ⇒ v ′ |= Q.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 12

Hoare proof obligation/goal
The safety verification problem is slightly differently stated in Hoare logic.

We remove assert statement from the language and no err variable.

Here, a verification problem is proving validity of a Hoare triple.

Example 3.1
Program

assume(>)
r := 1;
i := 1;
while(i < 3)
{
r := r + z;
i := i + 1
}
assert(r = 2z + 1)

→

Hoare triple

{>}
r := 1;
i := 1;
while(i < 3)
{
r := r + z;
i := i + 1
}
{r = 2z + 1}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 13

Hoare proof obligation/goal
The safety verification problem is slightly differently stated in Hoare logic.

We remove assert statement from the language and no err variable.

Here, a verification problem is proving validity of a Hoare triple.

Example 3.1
Program

assume(>)
r := 1;
i := 1;
while(i < 3)
{
r := r + z;
i := i + 1
}
assert(r = 2z + 1)

→

Hoare triple

{>}
r := 1;
i := 1;
while(i < 3)
{
r := r + z;
i := i + 1
}
{r = 2z + 1}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 14

Hoare proof obligation/goal
The safety verification problem is slightly differently stated in Hoare logic.

We remove assert statement from the language and no err variable.

Here, a verification problem is proving validity of a Hoare triple.

Example 3.1
Program

assume(>)
r := 1;
i := 1;
while(i < 3)
{
r := r + z;
i := i + 1
}
assert(r = 2z + 1)

→

Hoare triple

{>}
r := 1;
i := 1;
while(i < 3)
{
r := r + z;
i := i + 1
}
{r = 2z + 1}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 15

Hoare proof obligation/goal
The safety verification problem is slightly differently stated in Hoare logic.

We remove assert statement from the language and no err variable.

Here, a verification problem is proving validity of a Hoare triple.

Example 3.1
Program

assume(>)
r := 1;
i := 1;
while(i < 3)
{
r := r + z;
i := i + 1
}
assert(r = 2z + 1)

→

Hoare triple

{>}
r := 1;
i := 1;
while(i < 3)
{
r := r + z;
i := i + 1
}
{r = 2z + 1}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 16

Hoare proof obligation/goal
The safety verification problem is slightly differently stated in Hoare logic.

We remove assert statement from the language and no err variable.

Here, a verification problem is proving validity of a Hoare triple.

Example 3.1
Program

assume(>)
r := 1;
i := 1;
while(i < 3)
{
r := r + z;
i := i + 1
}
assert(r = 2z + 1)

→

Hoare triple

{>}
r := 1;
i := 1;
while(i < 3)
{
r := r + z;
i := i + 1
}
{r = 2z + 1}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 17

Hoare Proof System

{P}skip{P}
(skip rule)

{P[exp/x]}x := exp{P}
(assign rule)

{∀x .P}x := havoc(){P}
(havoc rule)

{P}assume(F){F ∧ P}
(assume rule)

We may freely choose any of sp and wp for pre/post pairs for data statements.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 18

Hoare Proof System

{P}skip{P}
(skip rule)

{P[exp/x]}x := exp{P}
(assign rule)

{∀x .P}x := havoc(){P}
(havoc rule)

{P}assume(F){F ∧ P}
(assume rule)

We may freely choose any of sp and wp for pre/post pairs for data statements.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 19

Hoare Proof System

{P}skip{P}
(skip rule)

{P[exp/x]}x := exp{P}
(assign rule)

{∀x .P}x := havoc(){P}
(havoc rule)

{P}assume(F){F ∧ P}
(assume rule)

We may freely choose any of sp and wp for pre/post pairs for data statements.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 20

Hoare Proof System

{P}skip{P}
(skip rule)

{P[exp/x]}x := exp{P}
(assign rule)

{∀x .P}x := havoc(){P}
(havoc rule)

{P}assume(F){F ∧ P}
(assume rule)

We may freely choose any of sp and wp for pre/post pairs for data statements.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 21

Hoare Proof System

{P}skip{P}
(skip rule)

{P[exp/x]}x := exp{P}
(assign rule)

{∀x .P}x := havoc(){P}
(havoc rule)

{P}assume(F){F ∧ P}
(assume rule)

We may freely choose any of sp and wp for pre/post pairs for data statements.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 22

Hoare Proof System (contd.)

{P}c1{Q} {Q}c2{R}
{P}c1; c2{R}

(composition rule)

{P}c1{Q} {P}c2{Q}
{P}c1[]c2{Q}

(nondet rule)

{F ∧ P}c1{Q} {¬F ∧ P}c2{Q}
{P}if(F) c1 else c2{Q}

(if rule)

P1 ⇒ P2 {P2}c{Q2} Q2 ⇒ Q1

{P1}c{Q1}
(Consequence rule)

{I ∧ F}c{I}
{I}while(F) c{¬F ∧ I}

(While rule)

Non-mechanical step: invent I such that the while rule holds. I is called
loop-invariant.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 23

Hoare Proof System (contd.)

{P}c1{Q} {Q}c2{R}
{P}c1; c2{R}

(composition rule)

{P}c1{Q} {P}c2{Q}
{P}c1[]c2{Q}

(nondet rule)

{F ∧ P}c1{Q} {¬F ∧ P}c2{Q}
{P}if(F) c1 else c2{Q}

(if rule)

P1 ⇒ P2 {P2}c{Q2} Q2 ⇒ Q1

{P1}c{Q1}
(Consequence rule)

{I ∧ F}c{I}
{I}while(F) c{¬F ∧ I}

(While rule)

Non-mechanical step: invent I such that the while rule holds. I is called
loop-invariant.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 24

Hoare Proof System (contd.)

{P}c1{Q} {Q}c2{R}
{P}c1; c2{R}

(composition rule)

{P}c1{Q} {P}c2{Q}
{P}c1[]c2{Q}

(nondet rule)

{F ∧ P}c1{Q} {¬F ∧ P}c2{Q}
{P}if(F) c1 else c2{Q}

(if rule)

P1 ⇒ P2 {P2}c{Q2} Q2 ⇒ Q1

{P1}c{Q1}
(Consequence rule)

{I ∧ F}c{I}
{I}while(F) c{¬F ∧ I}

(While rule)

Non-mechanical step: invent I such that the while rule holds. I is called
loop-invariant.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 25

Hoare Proof System (contd.)

{P}c1{Q} {Q}c2{R}
{P}c1; c2{R}

(composition rule)

{P}c1{Q} {P}c2{Q}
{P}c1[]c2{Q}

(nondet rule)

{F ∧ P}c1{Q} {¬F ∧ P}c2{Q}
{P}if(F) c1 else c2{Q}

(if rule)

P1 ⇒ P2 {P2}c{Q2} Q2 ⇒ Q1

{P1}c{Q1}
(Consequence rule)

{I ∧ F}c{I}
{I}while(F) c{¬F ∧ I}

(While rule)

Non-mechanical step: invent I such that the while rule holds. I is called
loop-invariant.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 26

Hoare Proof System (contd.)

{P}c1{Q} {Q}c2{R}
{P}c1; c2{R}

(composition rule)

{P}c1{Q} {P}c2{Q}
{P}c1[]c2{Q}

(nondet rule)

{F ∧ P}c1{Q} {¬F ∧ P}c2{Q}
{P}if(F) c1 else c2{Q}

(if rule)

P1 ⇒ P2 {P2}c{Q2} Q2 ⇒ Q1

{P1}c{Q1}
(Consequence rule)

{I ∧ F}c{I}
{I}while(F) c{¬F ∧ I}

(While rule)

Non-mechanical step: invent I such that the while rule holds. I is called
loop-invariant.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 27

Hoare Proof System (contd.)

{P}c1{Q} {Q}c2{R}
{P}c1; c2{R}

(composition rule)

{P}c1{Q} {P}c2{Q}
{P}c1[]c2{Q}

(nondet rule)

{F ∧ P}c1{Q} {¬F ∧ P}c2{Q}
{P}if(F) c1 else c2{Q}

(if rule)

P1 ⇒ P2 {P2}c{Q2} Q2 ⇒ Q1

{P1}c{Q1}
(Consequence rule)

{I ∧ F}c{I}
{I}while(F) c{¬F ∧ I}

(While rule)

Non-mechanical step: invent I such that the while rule holds. I is called
loop-invariant.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 28

Example Hoare proof

Example 3.2

{>}
r := 1;

{r = 1}

i := 1;

{I}

while(i < 3)
{

{I ∧ i < 3}

r := r + z

{P5}

i := i + 1
}
{r = 2z + 1}

Consider loop invariant: I = (i ≤ 3 ∧ r = (i − 1)z + 1)

{>}r := 1{r = 1} {r = 1}i := 1{I}

{r = 1}r := 1; i := 1; {I}

{i < 3 ∧ I}
r := r + z

{i < 3 ∧ r = iz + 1}

{i < 3 ∧ r = iz + 1}
i := i + 1
{I}

{i < 3 ∧ I}r := r + z; i := i + 1{I}

{>}r := 1; i := 1; {I} {i < 3 ∧ I}r := r + z; i := i + 1{I}
{>}r := 1; ..; while(..)..{I ∧ i ≥ 3}

I ∧ i ≥ 3⇒ r = 2z + 1

{>}r := 1; ..; while(..)..{r = 2z + 1}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 29

Example Hoare proof

Example 3.2

{>}
r := 1;

{r = 1}

i := 1;

{I}

while(i < 3)
{

{I ∧ i < 3}

r := r + z

{P5}

i := i + 1
}
{r = 2z + 1}

Consider loop invariant: I = (i ≤ 3 ∧ r = (i − 1)z + 1)

{>}r := 1{r = 1} {r = 1}i := 1{I}

{r = 1}r := 1; i := 1; {I}

{i < 3 ∧ I}
r := r + z

{i < 3 ∧ r = iz + 1}

{i < 3 ∧ r = iz + 1}
i := i + 1
{I}

{i < 3 ∧ I}r := r + z; i := i + 1{I}

{>}r := 1; i := 1; {I} {i < 3 ∧ I}r := r + z; i := i + 1{I}
{>}r := 1; ..; while(..)..{I ∧ i ≥ 3}

I ∧ i ≥ 3⇒ r = 2z + 1

{>}r := 1; ..; while(..)..{r = 2z + 1}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 30

Example Hoare proof

Example 3.2

{>}
r := 1;

{r = 1}

i := 1;
{I}
while(i < 3)
{

{I ∧ i < 3}

r := r + z

{P5}

i := i + 1
}
{r = 2z + 1}

Consider loop invariant: I = (i ≤ 3 ∧ r = (i − 1)z + 1)

{>}r := 1{r = 1} {r = 1}i := 1{I}

{r = 1}r := 1; i := 1; {I}

{i < 3 ∧ I}
r := r + z

{i < 3 ∧ r = iz + 1}

{i < 3 ∧ r = iz + 1}
i := i + 1
{I}

{i < 3 ∧ I}r := r + z; i := i + 1{I}

{>}r := 1; i := 1; {I} {i < 3 ∧ I}r := r + z; i := i + 1{I}

{>}r := 1; ..; while(..)..{I ∧ i ≥ 3} I ∧ i ≥ 3⇒ r = 2z + 1

{>}r := 1; ..; while(..)..{r = 2z + 1}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 31

Example Hoare proof

Example 3.2

{>}
r := 1;

{r = 1}

i := 1;
{I}
while(i < 3)
{
{I ∧ i < 3}
r := r + z

{P5}

i := i + 1
}
{r = 2z + 1}

Consider loop invariant: I = (i ≤ 3 ∧ r = (i − 1)z + 1)

{>}r := 1{r = 1} {r = 1}i := 1{I}

{r = 1}r := 1; i := 1; {I}

{i < 3 ∧ I}
r := r + z

{i < 3 ∧ r = iz + 1}

{i < 3 ∧ r = iz + 1}
i := i + 1
{I}

{i < 3 ∧ I}r := r + z; i := i + 1{I}

{>}r := 1; i := 1; {I} {i < 3 ∧ I}r := r + z; i := i + 1{I}
{>}r := 1; ..; while(..)..{I ∧ i ≥ 3} I ∧ i ≥ 3⇒ r = 2z + 1

{>}r := 1; ..; while(..)..{r = 2z + 1}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 32

Example Hoare proof

Example 3.2

{>}
r := 1;

{r = 1}

i := 1;
{I}
while(i < 3)
{
{I ∧ i < 3}
r := r + z

{P5}

i := i + 1
}
{r = 2z + 1}

Consider loop invariant: I = (i ≤ 3 ∧ r = (i − 1)z + 1)

{>}r := 1{r = 1} {r = 1}i := 1{I}

{r = 1}r := 1; i := 1; {I}

{i < 3 ∧ I}
r := r + z

{i < 3 ∧ r = iz + 1}

{i < 3 ∧ r = iz + 1}
i := i + 1
{I}

{i < 3 ∧ I}r := r + z; i := i + 1{I}

{>}r := 1; i := 1; {I} {i < 3 ∧ I}r := r + z; i := i + 1{I}
{>}r := 1; ..; while(..)..{I ∧ i ≥ 3} I ∧ i ≥ 3⇒ r = 2z + 1

{>}r := 1; ..; while(..)..{r = 2z + 1}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 33

Example Hoare proof

Example 3.2

{>}
r := 1;

{r = 1}

i := 1;
{I}
while(i < 3)
{
{I ∧ i < 3}
r := r + z

{P5}

i := i + 1
}
{r = 2z + 1}

Consider loop invariant: I = (i ≤ 3 ∧ r = (i − 1)z + 1)

{>}r := 1{r = 1} {r = 1}i := 1{I}

{r = 1}r := 1; i := 1; {I}

{i < 3 ∧ I}
r := r + z

{i < 3 ∧ r = iz + 1}

{i < 3 ∧ r = iz + 1}
i := i + 1
{I}

{i < 3 ∧ I}r := r + z; i := i + 1{I}

{>}r := 1; i := 1; {I} {i < 3 ∧ I}r := r + z; i := i + 1{I}
{>}r := 1; ..; while(..)..{I ∧ i ≥ 3} I ∧ i ≥ 3⇒ r = 2z + 1

{>}r := 1; ..; while(..)..{r = 2z + 1}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 34

Example Hoare proof

Example 3.2

{>}
r := 1;
{r = 1}
i := 1;
{I}
while(i < 3)
{
{I ∧ i < 3}
r := r + z

{P5}

i := i + 1
}
{r = 2z + 1}

Consider loop invariant: I = (i ≤ 3 ∧ r = (i − 1)z + 1)

{>}r := 1{r = 1}

{r = 1}i := 1{I}
{r = 1}r := 1; i := 1; {I}

{i < 3 ∧ I}
r := r + z

{i < 3 ∧ r = iz + 1}

{i < 3 ∧ r = iz + 1}
i := i + 1
{I}

{i < 3 ∧ I}r := r + z; i := i + 1{I}

{>}r := 1; i := 1; {I} {i < 3 ∧ I}r := r + z; i := i + 1{I}
{>}r := 1; ..; while(..)..{I ∧ i ≥ 3} I ∧ i ≥ 3⇒ r = 2z + 1

{>}r := 1; ..; while(..)..{r = 2z + 1}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 35

Example Hoare proof

Example 3.2

{>}
r := 1;
{r = 1}
i := 1;
{I}
while(i < 3)
{
{I ∧ i < 3}
r := r + z

{P5}

i := i + 1
}
{r = 2z + 1}

Consider loop invariant: I = (i ≤ 3 ∧ r = (i − 1)z + 1)

{>}r := 1{r = 1} {r = 1}i := 1{I}
{r = 1}r := 1; i := 1; {I}

{i < 3 ∧ I}
r := r + z

{i < 3 ∧ r = iz + 1}

{i < 3 ∧ r = iz + 1}
i := i + 1
{I}

{i < 3 ∧ I}r := r + z; i := i + 1{I}

{>}r := 1; i := 1; {I} {i < 3 ∧ I}r := r + z; i := i + 1{I}
{>}r := 1; ..; while(..)..{I ∧ i ≥ 3} I ∧ i ≥ 3⇒ r = 2z + 1

{>}r := 1; ..; while(..)..{r = 2z + 1}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 36

Example Hoare proof

Example 3.2

{>}
r := 1;
{r = 1}
i := 1;
{I}
while(i < 3)
{
{I ∧ i < 3}
r := r + z

{P5}

i := i + 1
}
{r = 2z + 1}

Consider loop invariant: I = (i ≤ 3 ∧ r = (i − 1)z + 1)

{>}r := 1{r = 1} {r = 1}i := 1{I}
{r = 1}r := 1; i := 1; {I}

{i < 3 ∧ I}
r := r + z

{i < 3 ∧ r = iz + 1}

{i < 3 ∧ r = iz + 1}
i := i + 1
{I}

{i < 3 ∧ I}r := r + z; i := i + 1{I}

{>}r := 1; i := 1; {I} {i < 3 ∧ I}r := r + z; i := i + 1{I}
{>}r := 1; ..; while(..)..{I ∧ i ≥ 3} I ∧ i ≥ 3⇒ r = 2z + 1

{>}r := 1; ..; while(..)..{r = 2z + 1}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 37

Example Hoare proof

Example 3.2

{>}
r := 1;
{r = 1}
i := 1;
{I}
while(i < 3)
{
{I ∧ i < 3}
r := r + z

{P5}
i := i + 1
}
{r = 2z + 1}

Consider loop invariant: I = (i ≤ 3 ∧ r = (i − 1)z + 1)

{>}r := 1{r = 1} {r = 1}i := 1{I}
{r = 1}r := 1; i := 1; {I}

{i < 3 ∧ I}
r := r + z

{i < 3 ∧ r = iz + 1}

{i < 3 ∧ r = iz + 1}
i := i + 1
{I}

{i < 3 ∧ I}r := r + z; i := i + 1{I}

{>}r := 1; i := 1; {I} {i < 3 ∧ I}r := r + z; i := i + 1{I}
{>}r := 1; ..; while(..)..{I ∧ i ≥ 3} I ∧ i ≥ 3⇒ r = 2z + 1

{>}r := 1; ..; while(..)..{r = 2z + 1}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 38

Example Hoare proof

Example 3.2

{>}
r := 1;
{r = 1}
i := 1;
{I}
while(i < 3)
{
{I ∧ i < 3}
r := r + z

{P5}
i := i + 1
}
{r = 2z + 1}

Consider loop invariant: I = (i ≤ 3 ∧ r = (i − 1)z + 1)

{>}r := 1{r = 1} {r = 1}i := 1{I}
{r = 1}r := 1; i := 1; {I}

{i < 3 ∧ I}
r := r + z

{i < 3 ∧ r = iz + 1}

{i < 3 ∧ r = iz + 1}
i := i + 1
{I}

{i < 3 ∧ I}r := r + z; i := i + 1{I}

{>}r := 1; i := 1; {I} {i < 3 ∧ I}r := r + z; i := i + 1{I}
{>}r := 1; ..; while(..)..{I ∧ i ≥ 3} I ∧ i ≥ 3⇒ r = 2z + 1

{>}r := 1; ..; while(..)..{r = 2z + 1}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 39

Topic 3.2

Program as labeled transition system

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 40

A more convenient program model

I Simple language has many cases to write an algorithm

I automata like program models allow more succinct description of
verification methods

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 41

A more convenient program model

I Simple language has many cases to write an algorithm

I automata like program models allow more succinct description of
verification methods

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 42

Program as labeled transition system (LTS)

Definition 3.3
A program P is a tuple (V , L, `0, `e ,E), where

I V is a vector of variables,

I L be set of program locations,

I `0 is initial location,

I `e is error location, and

I E ⊆ L× Σ(V ,V ′)× L is a set of labeled transitions between locations.

Example 3.3 `0

`1

`e

x ′ = 1

x < 0

x ′ = x + 2

V = [x]
L = {`0, `1, `e}
E = {(`0, x

′ = 1, `1),
(`1, x

′ = x + 2, `1),
(`1, x < 0, `e)}

Notation:
If e = (`, ρ(V ,V ′), `′) ∈ E ,
then
e(V ,V ′) , ρ(V ,V ′),
e(loc) , ` and
e(loc ′) , `′

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 43

Program as labeled transition system (LTS)

Definition 3.3
A program P is a tuple (V , L, `0, `e ,E), where

I V is a vector of variables,

I L be set of program locations,

I `0 is initial location,

I `e is error location, and

I E ⊆ L× Σ(V ,V ′)× L is a set of labeled transitions between locations.

Example 3.3 `0

`1

`e

x ′ = 1

x < 0

x ′ = x + 2

V = [x]
L = {`0, `1, `e}
E = {(`0, x

′ = 1, `1),
(`1, x

′ = x + 2, `1),
(`1, x < 0, `e)}

Notation:
If e = (`, ρ(V ,V ′), `′) ∈ E ,
then
e(V ,V ′) , ρ(V ,V ′),
e(loc) , ` and
e(loc ′) , `′

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 44

Program as labeled transition system (LTS)

Definition 3.3
A program P is a tuple (V , L, `0, `e ,E), where

I V is a vector of variables,

I L be set of program locations,

I `0 is initial location,

I `e is error location, and

I E ⊆ L× Σ(V ,V ′)× L is a set of labeled transitions between locations.

Example 3.3 `0

`1

`e

x ′ = 1

x < 0

x ′ = x + 2

V = [x]
L = {`0, `1, `e}
E = {(`0, x

′ = 1, `1),
(`1, x

′ = x + 2, `1),
(`1, x < 0, `e)}

Notation:
If e = (`, ρ(V ,V ′), `′) ∈ E ,
then
e(V ,V ′) , ρ(V ,V ′),
e(loc) , ` and
e(loc ′) , `′

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 45

Guarded command
Definition 3.4 (Guarded command)

A guarded command is a pair of a formula in Σ(V) and a sequence of update
constraints (including havoc) of variables in V .

Note: we may write transition formulas as guarded commands. Havoc encodes inputs.

Example 3.4

Consider V = [x, y]. The formula represented by the guarded command
(x > y, [x := x + 1]) is x > y ∧ x′ = x + 1 ∧ y′ = y.

Example 3.5
`0

`1

`e

(>, [x := 1])

(x < 0, [])

(>, [x := x + 2])

simplified view →

`0

`1

`e

x := 1

x < 0

x := x + 2

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 46

Guarded command
Definition 3.4 (Guarded command)

A guarded command is a pair of a formula in Σ(V) and a sequence of update
constraints (including havoc) of variables in V .

Note: we may write transition formulas as guarded commands. Havoc encodes inputs.

Example 3.4

Consider V = [x, y]. The formula represented by the guarded command
(x > y, [x := x + 1]) is x > y ∧ x′ = x + 1 ∧ y′ = y.

Example 3.5
`0

`1

`e

(>, [x := 1])

(x < 0, [])

(>, [x := x + 2])

simplified view →

`0

`1

`e

x := 1

x < 0

x := x + 2

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 47

Guarded command
Definition 3.4 (Guarded command)

A guarded command is a pair of a formula in Σ(V) and a sequence of update
constraints (including havoc) of variables in V .

Note: we may write transition formulas as guarded commands. Havoc encodes inputs.

Example 3.4

Consider V = [x, y]. The formula represented by the guarded command
(x > y, [x := x + 1]) is x > y ∧ x′ = x + 1 ∧ y′ = y.

Example 3.5
`0

`1

`e

(>, [x := 1])

(x < 0, [])

(>, [x := x + 2])

simplified view →

`0

`1

`e

x := 1

x < 0

x := x + 2

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 48

Guarded command
Definition 3.4 (Guarded command)

A guarded command is a pair of a formula in Σ(V) and a sequence of update
constraints (including havoc) of variables in V .

Note: we may write transition formulas as guarded commands. Havoc encodes inputs.

Example 3.4

Consider V = [x, y]. The formula represented by the guarded command
(x > y, [x := x + 1]) is x > y ∧ x′ = x + 1 ∧ y′ = y.

Example 3.5
`0

`1

`e

(>, [x := 1])

(x < 0, [])

(>, [x := x + 2])

simplified view →

`0

`1

`e

x := 1

x < 0

x := x + 2

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 49

Semantics
Consider program P = (V , L, `0, `e ,E).

Definition 3.5
A state s = (`, v) of a program is program location ` and a valuation v of V .

Let v(x) , value of variable x in v
For state s = (`, v), let s(x) , v(x) and s(loc) , `

Definition 3.6
A path π = e1, . . . , en in P is a sequence of transitions such that, for each
0 < i < n, ei = (`i−1, , `i) and ei+1 = (`i , , `i+1).

Definition 3.7
An execution corresponding to path e1, . . . , en is a sequence of states
(`0, v0), . . . , (`n, vn) such that ∀i ∈ 1..n, ei (vi−1, vi) holds true.
An execution belongs to P if there is a corresponding path in P.

Definition 3.8
P is safe if there is no execution of P from `0 to `e .

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 50

Semantics
Consider program P = (V , L, `0, `e ,E).

Definition 3.5
A state s = (`, v) of a program is program location ` and a valuation v of V .

Let v(x) , value of variable x in v
For state s = (`, v), let s(x) , v(x) and s(loc) , `

Definition 3.6
A path π = e1, . . . , en in P is a sequence of transitions such that, for each
0 < i < n, ei = (`i−1, , `i) and ei+1 = (`i , , `i+1).

Definition 3.7
An execution corresponding to path e1, . . . , en is a sequence of states
(`0, v0), . . . , (`n, vn) such that ∀i ∈ 1..n, ei (vi−1, vi) holds true.
An execution belongs to P if there is a corresponding path in P.

Definition 3.8
P is safe if there is no execution of P from `0 to `e .

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 51

Semantics
Consider program P = (V , L, `0, `e ,E).

Definition 3.5
A state s = (`, v) of a program is program location ` and a valuation v of V .

Let v(x) , value of variable x in v
For state s = (`, v), let s(x) , v(x) and s(loc) , `

Definition 3.6
A path π = e1, . . . , en in P is a sequence of transitions such that, for each
0 < i < n, ei = (`i−1, , `i) and ei+1 = (`i , , `i+1).

Definition 3.7
An execution corresponding to path e1, . . . , en is a sequence of states
(`0, v0), . . . , (`n, vn) such that ∀i ∈ 1..n, ei (vi−1, vi) holds true.
An execution belongs to P if there is a corresponding path in P.

Definition 3.8
P is safe if there is no execution of P from `0 to `e .

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 52

Semantics
Consider program P = (V , L, `0, `e ,E).

Definition 3.5
A state s = (`, v) of a program is program location ` and a valuation v of V .

Let v(x) , value of variable x in v
For state s = (`, v), let s(x) , v(x) and s(loc) , `

Definition 3.6
A path π = e1, . . . , en in P is a sequence of transitions such that, for each
0 < i < n, ei = (`i−1, , `i) and ei+1 = (`i , , `i+1).

Definition 3.7
An execution corresponding to path e1, . . . , en is a sequence of states
(`0, v0), . . . , (`n, vn) such that ∀i ∈ 1..n, ei (vi−1, vi) holds true.
An execution belongs to P if there is a corresponding path in P.

Definition 3.8
P is safe if there is no execution of P from `0 to `e .

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 53

Semantics
Consider program P = (V , L, `0, `e ,E).

Definition 3.5
A state s = (`, v) of a program is program location ` and a valuation v of V .

Let v(x) , value of variable x in v
For state s = (`, v), let s(x) , v(x) and s(loc) , `

Definition 3.6
A path π = e1, . . . , en in P is a sequence of transitions such that, for each
0 < i < n, ei = (`i−1, , `i) and ei+1 = (`i , , `i+1).

Definition 3.7
An execution corresponding to path e1, . . . , en is a sequence of states
(`0, v0), . . . , (`n, vn) such that ∀i ∈ 1..n, ei (vi−1, vi) holds true.
An execution belongs to P if there is a corresponding path in P.

Definition 3.8
P is safe if there is no execution of P from `0 to `e .

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 54

Path constraints
Vi , variable vector obtained by adding subscript i after each variable in V .

Definition 3.9
For a path πe1, . . . , en, path constraints is

∧
i∈1..n ei (Vi−1,Vi).

A path is feasible if corresponding path constraints is satisfiable.

Let PathCons(π) returns path constraints of π.

Theorem 3.1
A path is feasible then there is an execution that corresponds to the path.

Example 3.6

`0

`1

`e

x := 1

x < 0

x := x + 2

Consider path
(`0, x := 1, `1), (`1, x := x + 2, `1), (`1, x < 0, `e)

Path constraint for the path is
F = (x1 = 1 ∧ x2 = x1 + 2 ∧ x2 < 0)

Since F is unsat, there is no execution along the path

Path constraints are also
known as “SSA formulas”

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 55

Path constraints
Vi , variable vector obtained by adding subscript i after each variable in V .

Definition 3.9
For a path πe1, . . . , en, path constraints is

∧
i∈1..n ei (Vi−1,Vi).

A path is feasible if corresponding path constraints is satisfiable.

Let PathCons(π) returns path constraints of π.

Theorem 3.1
A path is feasible then there is an execution that corresponds to the path.

Example 3.6

`0

`1

`e

x := 1

x < 0

x := x + 2

Consider path
(`0, x := 1, `1), (`1, x := x + 2, `1), (`1, x < 0, `e)

Path constraint for the path is
F = (x1 = 1 ∧ x2 = x1 + 2 ∧ x2 < 0)

Since F is unsat, there is no execution along the path

Path constraints are also
known as “SSA formulas”

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 56

Path constraints
Vi , variable vector obtained by adding subscript i after each variable in V .

Definition 3.9
For a path πe1, . . . , en, path constraints is

∧
i∈1..n ei (Vi−1,Vi).

A path is feasible if corresponding path constraints is satisfiable.

Let PathCons(π) returns path constraints of π.

Theorem 3.1
A path is feasible then there is an execution that corresponds to the path.

Example 3.6

`0

`1

`e

x := 1

x < 0

x := x + 2

Consider path
(`0, x := 1, `1), (`1, x := x + 2, `1), (`1, x < 0, `e)

Path constraint for the path is
F = (x1 = 1 ∧ x2 = x1 + 2 ∧ x2 < 0)

Since F is unsat, there is no execution along the path

Path constraints are also
known as “SSA formulas”

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 57

Path constraints
Vi , variable vector obtained by adding subscript i after each variable in V .

Definition 3.9
For a path πe1, . . . , en, path constraints is

∧
i∈1..n ei (Vi−1,Vi).

A path is feasible if corresponding path constraints is satisfiable.

Let PathCons(π) returns path constraints of π.

Theorem 3.1
A path is feasible then there is an execution that corresponds to the path.

Example 3.6

`0

`1

`e

x := 1

x < 0

x := x + 2

Consider path
(`0, x := 1, `1), (`1, x := x + 2, `1), (`1, x < 0, `e)

Path constraint for the path is
F = (x1 = 1 ∧ x2 = x1 + 2 ∧ x2 < 0)

Since F is unsat, there is no execution along the path

Path constraints are also
known as “SSA formulas”

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 58

Path constraints
Vi , variable vector obtained by adding subscript i after each variable in V .

Definition 3.9
For a path πe1, . . . , en, path constraints is

∧
i∈1..n ei (Vi−1,Vi).

A path is feasible if corresponding path constraints is satisfiable.

Let PathCons(π) returns path constraints of π.

Theorem 3.1
A path is feasible then there is an execution that corresponds to the path.

Example 3.6

`0

`1

`e

x := 1

x < 0

x := x + 2

Consider path
(`0, x := 1, `1), (`1, x := x + 2, `1), (`1, x < 0, `e)

Path constraint for the path is
F = (x1 = 1 ∧ x2 = x1 + 2 ∧ x2 < 0)

Since F is unsat, there is no execution along the path

Path constraints are also
known as “SSA formulas”

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 59

Path constraints
Vi , variable vector obtained by adding subscript i after each variable in V .

Definition 3.9
For a path πe1, . . . , en, path constraints is

∧
i∈1..n ei (Vi−1,Vi).

A path is feasible if corresponding path constraints is satisfiable.

Let PathCons(π) returns path constraints of π.

Theorem 3.1
A path is feasible then there is an execution that corresponds to the path.

Example 3.6

`0

`1

`e

x := 1

x < 0

x := x + 2

Consider path
(`0, x := 1, `1), (`1, x := x + 2, `1), (`1, x < 0, `e)

Path constraint for the path is
F = (x1 = 1 ∧ x2 = x1 + 2 ∧ x2 < 0)

Since F is unsat, there is no execution along the path

Path constraints are also
known as “SSA formulas”

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 60

Path constraints
Vi , variable vector obtained by adding subscript i after each variable in V .

Definition 3.9
For a path πe1, . . . , en, path constraints is

∧
i∈1..n ei (Vi−1,Vi).

A path is feasible if corresponding path constraints is satisfiable.

Let PathCons(π) returns path constraints of π.

Theorem 3.1
A path is feasible then there is an execution that corresponds to the path.

Example 3.6

`0

`1

`e

x := 1

x < 0

x := x + 2

Consider path
(`0, x := 1, `1), (`1, x := x + 2, `1), (`1, x < 0, `e)

Path constraint for the path is
F = (x1 = 1 ∧ x2 = x1 + 2 ∧ x2 < 0)

Since F is unsat, there is no execution along the path

Path constraints are also
known as “SSA formulas”

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 61

Path constraints
Vi , variable vector obtained by adding subscript i after each variable in V .

Definition 3.9
For a path πe1, . . . , en, path constraints is

∧
i∈1..n ei (Vi−1,Vi).

A path is feasible if corresponding path constraints is satisfiable.

Let PathCons(π) returns path constraints of π.

Theorem 3.1
A path is feasible then there is an execution that corresponds to the path.

Example 3.6

`0

`1

`e

x := 1

x < 0

x := x + 2

Consider path
(`0, x := 1, `1), (`1, x := x + 2, `1), (`1, x < 0, `e)

Path constraint for the path is
F = (x1 = 1 ∧ x2 = x1 + 2 ∧ x2 < 0)

Since F is unsat, there is no execution along the path

Path constraints are also
known as “SSA formulas”

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 62

From simple language to labelled transition system
Theorem 3.2
Show simple programming language is isomorphic to the labelled transition
system.

Example 3.7

L0: i = 0;

L1: while(x < 10) {

L2: if x > 0 then

L3: i := i + 1

else

L4: skip

}

L5: assert(i >= 0)

`0

i := 0

`1 `2
x < 10

`3

`4

x > 0

x ≤ 0

i := i + 1

`5

x ≥ 10

`e

i < 0

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 63

From simple language to labelled transition system
Theorem 3.2
Show simple programming language is isomorphic to the labelled transition
system.

Example 3.7

L0: i = 0;

L1: while(x < 10) {

L2: if x > 0 then

L3: i := i + 1

else

L4: skip

}

L5: assert(i >= 0)

`0

i := 0

`1 `2
x < 10

`3

`4

x > 0

x ≤ 0

i := i + 1

`5

x ≥ 10

`e

i < 0

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 64

From simple language to labelled transition system
Theorem 3.2
Show simple programming language is isomorphic to the labelled transition
system.

Example 3.7

L0: i = 0;

L1: while(x < 10) {

L2: if x > 0 then

L3: i := i + 1

else

L4: skip

}

L5: assert(i >= 0)

`0

i := 0

`1

`2
x < 10

`3

`4

x > 0

x ≤ 0

i := i + 1

`5

x ≥ 10

`e

i < 0

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 65

From simple language to labelled transition system
Theorem 3.2
Show simple programming language is isomorphic to the labelled transition
system.

Example 3.7

L0: i = 0;

L1: while(x < 10) {

L2: if x > 0 then

L3: i := i + 1

else

L4: skip

}

L5: assert(i >= 0)

`0

i := 0

`1 `2
x < 10

`3

`4

x > 0

x ≤ 0

i := i + 1

`5

x ≥ 10

`e

i < 0

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 66

From simple language to labelled transition system
Theorem 3.2
Show simple programming language is isomorphic to the labelled transition
system.

Example 3.7

L0: i = 0;

L1: while(x < 10) {

L2: if x > 0 then

L3: i := i + 1

else

L4: skip

}

L5: assert(i >= 0)

`0

i := 0

`1 `2
x < 10

`3

`4

x > 0

x ≤ 0

i := i + 1

`5

x ≥ 10

`e

i < 0

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 67

From simple language to labelled transition system
Theorem 3.2
Show simple programming language is isomorphic to the labelled transition
system.

Example 3.7

L0: i = 0;

L1: while(x < 10) {

L2: if x > 0 then

L3: i := i + 1

else

L4: skip

}

L5: assert(i >= 0)

`0

i := 0

`1 `2
x < 10

`3

`4

x > 0

x ≤ 0

i := i + 1

`5

x ≥ 10

`e

i < 0

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 68

From simple language to labelled transition system
Theorem 3.2
Show simple programming language is isomorphic to the labelled transition
system.

Example 3.7

L0: i = 0;

L1: while(x < 10) {

L2: if x > 0 then

L3: i := i + 1

else

L4: skip

}

L5: assert(i >= 0)

`0

i := 0

`1 `2
x < 10

`3

`4

x > 0

x ≤ 0

i := i + 1

`5

x ≥ 10

`e

i < 0

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 69

From simple language to labelled transition system
Theorem 3.2
Show simple programming language is isomorphic to the labelled transition
system.

Example 3.7

L0: i = 0;

L1: while(x < 10) {

L2: if x > 0 then

L3: i := i + 1

else

L4: skip

}

L5: assert(i >= 0)

`0

i := 0

`1 `2
x < 10

`3

`4

x > 0

x ≤ 0

i := i + 1

`5

x ≥ 10

`e

i < 0

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 70

Cut-points

Definition 3.10
For a program P = (V , L, `0, `e ,E), CutPoints(P) is the a minimal subset
of L such that every path of P containing a loop passes through one of the
location in CutPoints(P).

CutPoints(P) in LTS loop heads in simple language

Example 3.8

Consider the following program P.

`0

i := 0

`1 `2
x < 10

`3

`4

x > 0

x ≤ 0

x := x + 1

`5

x ≥ 10

`e

i < 0

CutPoints(P) = {`1}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 71

Cut-points

Definition 3.10
For a program P = (V , L, `0, `e ,E), CutPoints(P) is the a minimal subset
of L such that every path of P containing a loop passes through one of the
location in CutPoints(P).

CutPoints(P) in LTS loop heads in simple language

Example 3.8

Consider the following program P.

`0

i := 0

`1 `2
x < 10

`3

`4

x > 0

x ≤ 0

x := x + 1

`5

x ≥ 10

`e

i < 0

CutPoints(P) = {`1}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 72

Reminder: symbolic strongest post

sp : Σ(V)× Σ(V ,V ′)→ Σ(V)

We define symbolic post over labels of P as follows.

sp(F , ρ) , (∃V : F (V) ∧ ρ(V ,V ′))[V /V ′]

We assume that ρ and F are in a theory that admits quantifier elimination

Using polymorphism, we also define sp((`,F), (`, ρ, `′) ∈ E) , (`′, sp(F , ρ)).

For path π = e1, .., en of P, sp((`,F), π) , sp(sp((`,F), e1), e2..en).

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 73

Reminder: symbolic strongest post

sp : Σ(V)× Σ(V ,V ′)→ Σ(V)

We define symbolic post over labels of P as follows.

sp(F , ρ) , (∃V : F (V) ∧ ρ(V ,V ′))[V /V ′]

We assume that ρ and F are in a theory that admits quantifier elimination

Using polymorphism, we also define sp((`,F), (`, ρ, `′) ∈ E) , (`′, sp(F , ρ)).

For path π = e1, .., en of P, sp((`,F), π) , sp(sp((`,F), e1), e2..en).

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 74

Reminder: symbolic strongest post

sp : Σ(V)× Σ(V ,V ′)→ Σ(V)

We define symbolic post over labels of P as follows.

sp(F , ρ) , (∃V : F (V) ∧ ρ(V ,V ′))[V /V ′]

We assume that ρ and F are in a theory that admits quantifier elimination

Using polymorphism, we also define sp((`,F), (`, ρ, `′) ∈ E) , (`′, sp(F , ρ)).

For path π = e1, .., en of P, sp((`,F), π) , sp(sp((`,F), e1), e2..en).

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 75

Topic 3.3

Loop invariants

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 76

Invariants

Definition 3.11
For P, a map I : L→ Σ(V) is called invariant map if, for each ` ∈ L, all
reachable states at ` satisfy I(`).

Definition 3.12
For P, a map I : L→ Σ(V) is called inductive if, for each (`, ρ, `′) ∈ E ,

sp(I(`), ρ)⇒ I(`′).

Definition 3.13
For P, a map I : L→ Σ(V) is called safe if I(`0) = > and I(`e) = ⊥

Theorem 3.3
For P, if I is inductive and safe then I is an invariant and P is safe.

Invariant checking: is I a safe inductive invariant map?

Exercise 3.1
What is the algorithm for invariant checking?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 77

Invariants

Definition 3.11
For P, a map I : L→ Σ(V) is called invariant map if, for each ` ∈ L, all
reachable states at ` satisfy I(`).

Definition 3.12
For P, a map I : L→ Σ(V) is called inductive if, for each (`, ρ, `′) ∈ E ,

sp(I(`), ρ)⇒ I(`′).

Definition 3.13
For P, a map I : L→ Σ(V) is called safe if I(`0) = > and I(`e) = ⊥

Theorem 3.3
For P, if I is inductive and safe then I is an invariant and P is safe.

Invariant checking: is I a safe inductive invariant map?

Exercise 3.1
What is the algorithm for invariant checking?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 78

Invariants

Definition 3.11
For P, a map I : L→ Σ(V) is called invariant map if, for each ` ∈ L, all
reachable states at ` satisfy I(`).

Definition 3.12
For P, a map I : L→ Σ(V) is called inductive if, for each (`, ρ, `′) ∈ E ,

sp(I(`), ρ)⇒ I(`′).

Definition 3.13
For P, a map I : L→ Σ(V) is called safe if I(`0) = > and I(`e) = ⊥

Theorem 3.3
For P, if I is inductive and safe then I is an invariant and P is safe.

Invariant checking: is I a safe inductive invariant map?

Exercise 3.1
What is the algorithm for invariant checking?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 79

Invariants

Definition 3.11
For P, a map I : L→ Σ(V) is called invariant map if, for each ` ∈ L, all
reachable states at ` satisfy I(`).

Definition 3.12
For P, a map I : L→ Σ(V) is called inductive if, for each (`, ρ, `′) ∈ E ,

sp(I(`), ρ)⇒ I(`′).

Definition 3.13
For P, a map I : L→ Σ(V) is called safe if I(`0) = > and I(`e) = ⊥

Theorem 3.3
For P, if I is inductive and safe then I is an invariant and P is safe.

Invariant checking: is I a safe inductive invariant map?

Exercise 3.1
What is the algorithm for invariant checking?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 80

Invariants

Definition 3.11
For P, a map I : L→ Σ(V) is called invariant map if, for each ` ∈ L, all
reachable states at ` satisfy I(`).

Definition 3.12
For P, a map I : L→ Σ(V) is called inductive if, for each (`, ρ, `′) ∈ E ,

sp(I(`), ρ)⇒ I(`′).

Definition 3.13
For P, a map I : L→ Σ(V) is called safe if I(`0) = > and I(`e) = ⊥

Theorem 3.3
For P, if I is inductive and safe then I is an invariant and P is safe.

Invariant checking: is I a safe inductive invariant map?

Exercise 3.1
What is the algorithm for invariant checking?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 81

Cut-point invariant maps
Let P be a program and C = CutPoints(P)∪{`0, `e}.

Definition 3.14
A map I : C → Σ(V) is called cut-point invariant map if, for each ` ∈ C , all
reachable states at ` satisfy I(`).

Definition 3.15
A map I : C → Σ(V) is called inductive if, for each `, `′ ∈ C and
π ∈ LoopFreePaths(P, `, `′), sp(I(`), π)⇒ I(`′).

Definition 3.16
A map I : C → Σ(V) is called safe if I(`0) = > and I(`e) = ⊥

Theorem 3.4
If I is inductive and safe then I is an cut-point invariant map and P is safe.

Proof.
Every path from `0 to `e can be segmented into loop free paths between
cut-points. Therefore, no such path is feasible.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 82

Cut-point invariant maps
Let P be a program and C = CutPoints(P)∪{`0, `e}.

Definition 3.14
A map I : C → Σ(V) is called cut-point invariant map if, for each ` ∈ C , all
reachable states at ` satisfy I(`).

Definition 3.15
A map I : C → Σ(V) is called inductive if, for each `, `′ ∈ C and
π ∈ LoopFreePaths(P, `, `′), sp(I(`), π)⇒ I(`′).

Definition 3.16
A map I : C → Σ(V) is called safe if I(`0) = > and I(`e) = ⊥

Theorem 3.4
If I is inductive and safe then I is an cut-point invariant map and P is safe.

Proof.
Every path from `0 to `e can be segmented into loop free paths between
cut-points. Therefore, no such path is feasible.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 83

Cut-point invariant maps
Let P be a program and C = CutPoints(P)∪{`0, `e}.

Definition 3.14
A map I : C → Σ(V) is called cut-point invariant map if, for each ` ∈ C , all
reachable states at ` satisfy I(`).

Definition 3.15
A map I : C → Σ(V) is called inductive if, for each `, `′ ∈ C and
π ∈ LoopFreePaths(P, `, `′), sp(I(`), π)⇒ I(`′).

Definition 3.16
A map I : C → Σ(V) is called safe if I(`0) = > and I(`e) = ⊥

Theorem 3.4
If I is inductive and safe then I is an cut-point invariant map and P is safe.

Proof.
Every path from `0 to `e can be segmented into loop free paths between
cut-points. Therefore, no such path is feasible.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 84

Cut-point invariant maps
Let P be a program and C = CutPoints(P)∪{`0, `e}.

Definition 3.14
A map I : C → Σ(V) is called cut-point invariant map if, for each ` ∈ C , all
reachable states at ` satisfy I(`).

Definition 3.15
A map I : C → Σ(V) is called inductive if, for each `, `′ ∈ C and
π ∈ LoopFreePaths(P, `, `′), sp(I(`), π)⇒ I(`′).

Definition 3.16
A map I : C → Σ(V) is called safe if I(`0) = > and I(`e) = ⊥

Theorem 3.4
If I is inductive and safe then I is an cut-point invariant map and P is safe.

Proof.
Every path from `0 to `e can be segmented into loop free paths between
cut-points. Therefore, no such path is feasible.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 85

Cut-point invariant maps
Let P be a program and C = CutPoints(P)∪{`0, `e}.

Definition 3.14
A map I : C → Σ(V) is called cut-point invariant map if, for each ` ∈ C , all
reachable states at ` satisfy I(`).

Definition 3.15
A map I : C → Σ(V) is called inductive if, for each `, `′ ∈ C and
π ∈ LoopFreePaths(P, `, `′), sp(I(`), π)⇒ I(`′).

Definition 3.16
A map I : C → Σ(V) is called safe if I(`0) = > and I(`e) = ⊥

Theorem 3.4
If I is inductive and safe then I is an cut-point invariant map and P is safe.

Proof.
Every path from `0 to `e can be segmented into loop free paths between
cut-points. Therefore, no such path is feasible.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 86

Cut-point invariant maps
Let P be a program and C = CutPoints(P)∪{`0, `e}.

Definition 3.14
A map I : C → Σ(V) is called cut-point invariant map if, for each ` ∈ C , all
reachable states at ` satisfy I(`).

Definition 3.15
A map I : C → Σ(V) is called inductive if, for each `, `′ ∈ C and
π ∈ LoopFreePaths(P, `, `′), sp(I(`), π)⇒ I(`′).

Definition 3.16
A map I : C → Σ(V) is called safe if I(`0) = > and I(`e) = ⊥

Theorem 3.4
If I is inductive and safe then I is an cut-point invariant map and P is safe.

Proof.
Every path from `0 to `e can be segmented into loop free paths between
cut-points. Therefore, no such path is feasible.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 87

Annotated verification: VCC demo

http://rise4fun.com/Vcc

Exercise 3.2
Complete the following program such that Vcc proves it correct

#include <vcc.h>

int main()

{

int x, y;

_(assume x > y +3 && x < 3000)

while(0 < y) _(invariant) {

x = x + 1;

y = y -1;

}

_(assert x >= y)

return 0;

}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/
http://rise4fun.com/Vcc

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 88

Annotated verification: VCC demo

http://rise4fun.com/Vcc

Exercise 3.2
Complete the following program such that Vcc proves it correct

#include <vcc.h>

int main()

{

int x, y;

_(assume x > y +3 && x < 3000)

while(0 < y) _(invariant) {

x = x + 1;

y = y -1;

}

_(assert x >= y)

return 0;

}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/
http://rise4fun.com/Vcc

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 89

Annotated verification

I There are many tools like VCC that require user to write invariants at
the loop heads and function boundaries

I Rest of the verification is done as discussed in earlier slides

I User needs to do a lot of work, not a very desirable method

What if we want to compute the invariants automatically?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 90

Annotated verification

I There are many tools like VCC that require user to write invariants at
the loop heads and function boundaries

I Rest of the verification is done as discussed in earlier slides

I User needs to do a lot of work, not a very desirable method

What if we want to compute the invariants automatically?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 91

Annotated verification

I There are many tools like VCC that require user to write invariants at
the loop heads and function boundaries

I Rest of the verification is done as discussed in earlier slides

I User needs to do a lot of work, not a very desirable method

What if we want to compute the invariants automatically?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 92

Topic 3.4

Concrete model checking - enumerate reachable states

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 93

Isn’t enumeration impossible?

I Explore the transition graph explicitly, light weight machinery

I If edge labels are guarded commands then finding next values are trivial

I After resolving non-determinism, concrete model checking reduces to
program execution

I May be only finitely many states are reachable

I May be impossible to cover all states explicitly, but it may cover a
portion of interest

I Useful for learning design principles of computing reachable states

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 94

Isn’t enumeration impossible?

I Explore the transition graph explicitly, light weight machinery

I If edge labels are guarded commands then finding next values are trivial

I After resolving non-determinism, concrete model checking reduces to
program execution

I May be only finitely many states are reachable

I May be impossible to cover all states explicitly, but it may cover a
portion of interest

I Useful for learning design principles of computing reachable states

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 95

Isn’t enumeration impossible?

I Explore the transition graph explicitly, light weight machinery

I If edge labels are guarded commands then finding next values are trivial

I After resolving non-determinism, concrete model checking reduces to
program execution

I May be only finitely many states are reachable

I May be impossible to cover all states explicitly, but it may cover a
portion of interest

I Useful for learning design principles of computing reachable states

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 96

Isn’t enumeration impossible?

I Explore the transition graph explicitly, light weight machinery

I If edge labels are guarded commands then finding next values are trivial

I After resolving non-determinism, concrete model checking reduces to
program execution

I May be only finitely many states are reachable

I May be impossible to cover all states explicitly, but it may cover a
portion of interest

I Useful for learning design principles of computing reachable states

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 97

Isn’t enumeration impossible?

I Explore the transition graph explicitly, light weight machinery

I If edge labels are guarded commands then finding next values are trivial

I After resolving non-determinism, concrete model checking reduces to
program execution

I May be only finitely many states are reachable

I May be impossible to cover all states explicitly, but it may cover a
portion of interest

I Useful for learning design principles of computing reachable states

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 98

Isn’t enumeration impossible?

I Explore the transition graph explicitly, light weight machinery

I If edge labels are guarded commands then finding next values are trivial

I After resolving non-determinism, concrete model checking reduces to
program execution

I May be only finitely many states are reachable

I May be impossible to cover all states explicitly, but it may cover a
portion of interest

I Useful for learning design principles of computing reachable states

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 99

Concrete model checking
Algorithm 3.1: Concrete model checking

Input: P = (V , L, `0, `e ,E)
Output: Safe if P is safe, Unsafe otherwise

1 reach := ∅;
2 worklist := {(`0, v)|v ∈ Z|V |};
3 while worklist 6= ∅ do
4 choose (`, v) ∈ worklist;
5 worklist := worklist \ {(`, v)};
6 if (`, v) /∈ reach then
7 reach := reach ∪ {(`, v)};
8 foreach (`,F (V ,V ′), `′) ∈ E do
9 worklist := worklist ∪ {(`′, v ′)|F (v , v ′)};

10 if (`e ,) ∈ reach then
11 return Unsafe
12 else
13 return Safe

the choice defines the
nature of exploration

Exercise 3.3
Suggest improvements in the algorithm

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 100

Concrete model checking
Algorithm 3.1: Concrete model checking

Input: P = (V , L, `0, `e ,E)
Output: Safe if P is safe, Unsafe otherwise

1 reach := ∅;
2 worklist := {(`0, v)|v ∈ Z|V |};

3 while worklist 6= ∅ do
4 choose (`, v) ∈ worklist;
5 worklist := worklist \ {(`, v)};
6 if (`, v) /∈ reach then
7 reach := reach ∪ {(`, v)};
8 foreach (`,F (V ,V ′), `′) ∈ E do
9 worklist := worklist ∪ {(`′, v ′)|F (v , v ′)};

10 if (`e ,) ∈ reach then
11 return Unsafe
12 else
13 return Safe

the choice defines the
nature of exploration

Exercise 3.3
Suggest improvements in the algorithm

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 101

Concrete model checking
Algorithm 3.1: Concrete model checking

Input: P = (V , L, `0, `e ,E)
Output: Safe if P is safe, Unsafe otherwise

1 reach := ∅;
2 worklist := {(`0, v)|v ∈ Z|V |};
3 while worklist 6= ∅ do
4 choose (`, v) ∈ worklist;
5 worklist := worklist \ {(`, v)};

6 if (`, v) /∈ reach then
7 reach := reach ∪ {(`, v)};
8 foreach (`,F (V ,V ′), `′) ∈ E do
9 worklist := worklist ∪ {(`′, v ′)|F (v , v ′)};

10 if (`e ,) ∈ reach then
11 return Unsafe
12 else
13 return Safe

the choice defines the
nature of exploration

Exercise 3.3
Suggest improvements in the algorithm

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 102

Concrete model checking
Algorithm 3.1: Concrete model checking

Input: P = (V , L, `0, `e ,E)
Output: Safe if P is safe, Unsafe otherwise

1 reach := ∅;
2 worklist := {(`0, v)|v ∈ Z|V |};
3 while worklist 6= ∅ do
4 choose (`, v) ∈ worklist;
5 worklist := worklist \ {(`, v)};
6 if (`, v) /∈ reach then
7 reach := reach ∪ {(`, v)};
8 foreach (`,F (V ,V ′), `′) ∈ E do
9 worklist := worklist ∪ {(`′, v ′)|F (v , v ′)};

10 if (`e ,) ∈ reach then
11 return Unsafe
12 else
13 return Safe

the choice defines the
nature of exploration

Exercise 3.3
Suggest improvements in the algorithm

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 103

Concrete model checking
Algorithm 3.1: Concrete model checking

Input: P = (V , L, `0, `e ,E)
Output: Safe if P is safe, Unsafe otherwise

1 reach := ∅;
2 worklist := {(`0, v)|v ∈ Z|V |};
3 while worklist 6= ∅ do
4 choose (`, v) ∈ worklist;
5 worklist := worklist \ {(`, v)};
6 if (`, v) /∈ reach then
7 reach := reach ∪ {(`, v)};
8 foreach (`,F (V ,V ′), `′) ∈ E do
9 worklist := worklist ∪ {(`′, v ′)|F (v , v ′)};

10 if (`e ,) ∈ reach then
11 return Unsafe
12 else
13 return Safe

the choice defines the
nature of exploration

Exercise 3.3
Suggest improvements in the algorithm

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 104

Concrete model checking
Algorithm 3.1: Concrete model checking

Input: P = (V , L, `0, `e ,E)
Output: Safe if P is safe, Unsafe otherwise

1 reach := ∅;
2 worklist := {(`0, v)|v ∈ Z|V |};
3 while worklist 6= ∅ do
4 choose (`, v) ∈ worklist;
5 worklist := worklist \ {(`, v)};
6 if (`, v) /∈ reach then
7 reach := reach ∪ {(`, v)};
8 foreach (`,F (V ,V ′), `′) ∈ E do
9 worklist := worklist ∪ {(`′, v ′)|F (v , v ′)};

10 if (`e ,) ∈ reach then
11 return Unsafe
12 else
13 return Safe

the choice defines the
nature of exploration

Exercise 3.3
Suggest improvements in the algorithm

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 105

Concrete model checking
Algorithm 3.1: Concrete model checking

Input: P = (V , L, `0, `e ,E)
Output: Safe if P is safe, Unsafe otherwise

1 reach := ∅;
2 worklist := {(`0, v)|v ∈ Z|V |};
3 while worklist 6= ∅ do
4 choose (`, v) ∈ worklist;
5 worklist := worklist \ {(`, v)};
6 if (`, v) /∈ reach then
7 reach := reach ∪ {(`, v)};
8 foreach (`,F (V ,V ′), `′) ∈ E do
9 worklist := worklist ∪ {(`′, v ′)|F (v , v ′)};

10 if (`e ,) ∈ reach then
11 return Unsafe
12 else
13 return Safe

the choice defines the
nature of exploration

Exercise 3.3
Suggest improvements in the algorithm

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 106

Example: concrete model checking

Example 3.9

Consider the following example

`0

`1

`e

0 < x < 9, i := x

x ≤ 4 ∧ i 6= x

x > 4, x := x− 1,
i := i− 1

Let V = [x, i]

Initialization:
reach = ∅, worklist = {(`0, v)|v ∈ Z2}

Choose a state:
Lets choose (`0, [8, 0])

Update worklist:
worklist := worklist \ {(`0, [8, 8])}

Add successors in worklist if state not visited:
worklist := worklist∪{(`1, [8, 8])}
reach := reach∪{(`0, [8, 0])}

... go back to choosing a new state from worklist

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 107

Example: concrete model checking

Example 3.9

Consider the following example

`0

`1

`e

0 < x < 9, i := x

x ≤ 4 ∧ i 6= x

x > 4, x := x− 1,
i := i− 1

Let V = [x, i]

Initialization:
reach = ∅, worklist = {(`0, v)|v ∈ Z2}

Choose a state:
Lets choose (`0, [8, 0])

Update worklist:
worklist := worklist \ {(`0, [8, 8])}

Add successors in worklist if state not visited:
worklist := worklist∪{(`1, [8, 8])}
reach := reach∪{(`0, [8, 0])}

... go back to choosing a new state from worklist

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 108

Example: concrete model checking

Example 3.9

Consider the following example

`0

`1

`e

0 < x < 9, i := x

x ≤ 4 ∧ i 6= x

x > 4, x := x− 1,
i := i− 1

Let V = [x, i]

Initialization:
reach = ∅, worklist = {(`0, v)|v ∈ Z2}

Choose a state:
Lets choose (`0, [8, 0])

Update worklist:
worklist := worklist \ {(`0, [8, 8])}

Add successors in worklist if state not visited:
worklist := worklist∪{(`1, [8, 8])}
reach := reach∪{(`0, [8, 0])}

... go back to choosing a new state from worklist

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 109

Example: concrete model checking

Example 3.9

Consider the following example

`0

`1

`e

0 < x < 9, i := x

x ≤ 4 ∧ i 6= x

x > 4, x := x− 1,
i := i− 1

Let V = [x, i]

Initialization:
reach = ∅, worklist = {(`0, v)|v ∈ Z2}

Choose a state:
Lets choose (`0, [8, 0])

Update worklist:
worklist := worklist \ {(`0, [8, 8])}

Add successors in worklist if state not visited:
worklist := worklist∪{(`1, [8, 8])}
reach := reach∪{(`0, [8, 0])}

... go back to choosing a new state from worklist

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 110

Example: concrete model checking

Example 3.9

Consider the following example

`0

`1

`e

0 < x < 9, i := x

x ≤ 4 ∧ i 6= x

x > 4, x := x− 1,
i := i− 1

Let V = [x, i]

Initialization:
reach = ∅, worklist = {(`0, v)|v ∈ Z2}

Choose a state:
Lets choose (`0, [8, 0])

Update worklist:
worklist := worklist \ {(`0, [8, 8])}

Add successors in worklist if state not visited:
worklist := worklist∪{(`1, [8, 8])}
reach := reach∪{(`0, [8, 0])}

... go back to choosing a new state from worklist

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 111

Example: concrete model checking

Example 3.9

Consider the following example

`0

`1

`e

0 < x < 9, i := x

x ≤ 4 ∧ i 6= x

x > 4, x := x− 1,
i := i− 1

Let V = [x, i]

Initialization:
reach = ∅, worklist = {(`0, v)|v ∈ Z2}

Choose a state:
Lets choose (`0, [8, 0])

Update worklist:
worklist := worklist \ {(`0, [8, 8])}

Add successors in worklist if state not visited:
worklist := worklist∪{(`1, [8, 8])}
reach := reach∪{(`0, [8, 0])}

... go back to choosing a new state from worklist

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 112

Example: concrete model checking

Example 3.9

Consider the following example

`0

`1

`e

0 < x < 9, i := x

x ≤ 4 ∧ i 6= x

x > 4, x := x− 1,
i := i− 1

Let V = [x, i]

Initialization:
reach = ∅, worklist = {(`0, v)|v ∈ Z2}

Choose a state:
Lets choose (`0, [8, 0])

Update worklist:
worklist := worklist \ {(`0, [8, 8])}

Add successors in worklist if state not visited:
worklist := worklist∪{(`1, [8, 8])}
reach := reach∪{(`0, [8, 0])}

... go back to choosing a new state from worklist

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 113

Search strategies

I DFS

I BFS

I A∗

I worklist is a priority queue,
I weights are assigned to states based on estimate on possibility of reaching

error

Exercise 3.4
Describe A∗ search strategy

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 114

Search strategies

I DFS

I BFS
I A∗

I worklist is a priority queue,
I weights are assigned to states based on estimate on possibility of reaching

error

Exercise 3.4
Describe A∗ search strategy

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 115

Search strategies

I DFS

I BFS
I A∗

I worklist is a priority queue,
I weights are assigned to states based on estimate on possibility of reaching

error

Exercise 3.4
Describe A∗ search strategy

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 116

Optimizations: exploiting structure

I Symmetry reduction

I Assume guarantee

I Partial order reduction (for concurrent systems)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 117

Optimizations: reducing space

I hashed states - reach set contains hash of states (not sound)

I Stateless exploration - no reach set (redundant)

Trade-off among time, space, and soundness

Exercise 3.5
Write concrete model checking using hash tables

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 118

Optimizations: reducing space

I hashed states - reach set contains hash of states (not sound)

I Stateless exploration - no reach set (redundant)

Trade-off among time, space, and soundness

Exercise 3.5
Write concrete model checking using hash tables

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 119

Proof and counterexample

Definition 3.17
A proof of a program is an object that allows one to check safety of the
program using a low complexity (preferably linear) algorithm
in the size of the object.

Example 3.10

In our concrete model checking algorithm, reach set is the proof. The
checker needs to find that no more states can be reached from reach.

Definition 3.18
A counterexample of a program is an execution that ends at `e .

A verification method may produce three possible outcomes for a program

I proof

I counterexample

I unknown or non-termination

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 120

Proof and counterexample

Definition 3.17
A proof of a program is an object that allows one to check safety of the
program using a low complexity (preferably linear) algorithm
in the size of the object.

Example 3.10

In our concrete model checking algorithm, reach set is the proof. The
checker needs to find that no more states can be reached from reach.

Definition 3.18
A counterexample of a program is an execution that ends at `e .

A verification method may produce three possible outcomes for a program

I proof

I counterexample

I unknown or non-termination

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 121

Proof and counterexample

Definition 3.17
A proof of a program is an object that allows one to check safety of the
program using a low complexity (preferably linear) algorithm
in the size of the object.

Example 3.10

In our concrete model checking algorithm, reach set is the proof. The
checker needs to find that no more states can be reached from reach.

Definition 3.18
A counterexample of a program is an execution that ends at `e .

A verification method may produce three possible outcomes for a program

I proof

I counterexample

I unknown or non-termination

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 122

Proof and counterexample

Definition 3.17
A proof of a program is an object that allows one to check safety of the
program using a low complexity (preferably linear) algorithm
in the size of the object.

Example 3.10

In our concrete model checking algorithm, reach set is the proof. The
checker needs to find that no more states can be reached from reach.

Definition 3.18
A counterexample of a program is an execution that ends at `e .

A verification method may produce three possible outcomes for a program

I proof

I counterexample

I unknown or non-termination

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 123

Enabling counterexample generation
Algorithm 3.2: Concrete model checking

Input: P = (V , L, `0, `e ,E)
Output: Safe if P is safe, Unsafe otherwise

1 reach := ∅;

parents := λx .NaN ;

2 worklist := {(`0, v)|v ∈ Z|V |};
3 while worklist 6= ∅ do
4 choose (`, v) ∈ worklist;
5 worklist := worklist \ {(`, v)};
6 if (`, v) /∈ reach then
7 reach := reach ∪ {(`, v)};
8 foreach v ′ s.t. F (v , v ′) is sat ∧(`,F (V ,V ′), `′) ∈ E do
9 worklist := worklist ∪ {(`′, v ′)};

parents((`′, v ′)) := (`, v);

10 if (`e , v) ∈ reach then
11 return Unsafe

(traverseToInit(parents, (`e , v)))

12 else
13 return Safe

Exercise 3.6
add data structure to
report counterexample

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 124

Enabling counterexample generation
Algorithm 3.2: Concrete model checking

Input: P = (V , L, `0, `e ,E)
Output: Safe if P is safe, Unsafe otherwise

1 reach := ∅; parents := λx .NaN ;

2 worklist := {(`0, v)|v ∈ Z|V |};
3 while worklist 6= ∅ do
4 choose (`, v) ∈ worklist;
5 worklist := worklist \ {(`, v)};
6 if (`, v) /∈ reach then
7 reach := reach ∪ {(`, v)};
8 foreach v ′ s.t. F (v , v ′) is sat ∧(`,F (V ,V ′), `′) ∈ E do
9 worklist := worklist ∪ {(`′, v ′)}; parents((`′, v ′)) := (`, v);

10 if (`e , v) ∈ reach then
11 return Unsafe(traverseToInit(parents, (`e , v)))
12 else
13 return Safe

Exercise 3.6
add data structure to
report counterexample

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 125

Topic 3.5

Symbolic methods

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 126

Why symbolic?

To avoid, state explosion problem

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 127

Symbolic methods

Now, we cover some methods that try/avoid to compute lfp

I Symbolic model checking

I Constraint based invariant generation

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 128

Symbolic state

Definition 3.19
A symbolic state s of P = (V , L, `0, `e ,E) is a pair (`,F), where

I ` ∈ L

I F is a formula over variables V in a given theory

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 129

Symbolic model checking
Algorithm 3.3: Symbolic model checking

Input: P = (V , L, `0, `e ,E)
Output: Safe if P is safe, Unsafe otherwise

1 reach : L→ Σ(V) := λx .⊥;
2 worklist := {(`0,>)};
3 while worklist 6= ∅ do
4 choose (`,F) ∈ worklist;
5 worklist := worklist \ {(`,F)};
6 if ¬(F ⇒ reach(`)) is sat then
7 reach := reach[` 7→ reach(`) ∨ F];
8 foreach (`, ρ(V ,V ′), `′) ∈ E do
9 worklist := worklist ∪ {(`′, sp(F , ρ))};

10 if reach(`e) 6= ⊥ then
11 return Unsafe
12 else
13 return Safe

Note: We need efficient implementations of various

logical operators!

Exercise 3.7
Give a condition for definite termination?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 130

Symbolic model checking
Algorithm 3.3: Symbolic model checking

Input: P = (V , L, `0, `e ,E)
Output: Safe if P is safe, Unsafe otherwise

1 reach : L→ Σ(V) := λx .⊥;
2 worklist := {(`0,>)};

3 while worklist 6= ∅ do
4 choose (`,F) ∈ worklist;
5 worklist := worklist \ {(`,F)};
6 if ¬(F ⇒ reach(`)) is sat then
7 reach := reach[` 7→ reach(`) ∨ F];
8 foreach (`, ρ(V ,V ′), `′) ∈ E do
9 worklist := worklist ∪ {(`′, sp(F , ρ))};

10 if reach(`e) 6= ⊥ then
11 return Unsafe
12 else
13 return Safe

Note: We need efficient implementations of various

logical operators!

Exercise 3.7
Give a condition for definite termination?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 131

Symbolic model checking
Algorithm 3.3: Symbolic model checking

Input: P = (V , L, `0, `e ,E)
Output: Safe if P is safe, Unsafe otherwise

1 reach : L→ Σ(V) := λx .⊥;
2 worklist := {(`0,>)};
3 while worklist 6= ∅ do
4 choose (`,F) ∈ worklist;
5 worklist := worklist \ {(`,F)};

6 if ¬(F ⇒ reach(`)) is sat then
7 reach := reach[` 7→ reach(`) ∨ F];
8 foreach (`, ρ(V ,V ′), `′) ∈ E do
9 worklist := worklist ∪ {(`′, sp(F , ρ))};

10 if reach(`e) 6= ⊥ then
11 return Unsafe
12 else
13 return Safe

Note: We need efficient implementations of various

logical operators!

Exercise 3.7
Give a condition for definite termination?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 132

Symbolic model checking
Algorithm 3.3: Symbolic model checking

Input: P = (V , L, `0, `e ,E)
Output: Safe if P is safe, Unsafe otherwise

1 reach : L→ Σ(V) := λx .⊥;
2 worklist := {(`0,>)};
3 while worklist 6= ∅ do
4 choose (`,F) ∈ worklist;
5 worklist := worklist \ {(`,F)};
6 if ¬(F ⇒ reach(`)) is sat then
7 reach := reach[` 7→ reach(`) ∨ F];

8 foreach (`, ρ(V ,V ′), `′) ∈ E do
9 worklist := worklist ∪ {(`′, sp(F , ρ))};

10 if reach(`e) 6= ⊥ then
11 return Unsafe
12 else
13 return Safe

Note: We need efficient implementations of various

logical operators!

Exercise 3.7
Give a condition for definite termination?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 133

Symbolic model checking
Algorithm 3.3: Symbolic model checking

Input: P = (V , L, `0, `e ,E)
Output: Safe if P is safe, Unsafe otherwise

1 reach : L→ Σ(V) := λx .⊥;
2 worklist := {(`0,>)};
3 while worklist 6= ∅ do
4 choose (`,F) ∈ worklist;
5 worklist := worklist \ {(`,F)};
6 if ¬(F ⇒ reach(`)) is sat then
7 reach := reach[` 7→ reach(`) ∨ F];
8 foreach (`, ρ(V ,V ′), `′) ∈ E do
9 worklist := worklist ∪ {(`′, sp(F , ρ))};

10 if reach(`e) 6= ⊥ then
11 return Unsafe
12 else
13 return Safe

Note: We need efficient implementations of various

logical operators!

Exercise 3.7
Give a condition for definite termination?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 134

Symbolic model checking
Algorithm 3.3: Symbolic model checking

Input: P = (V , L, `0, `e ,E)
Output: Safe if P is safe, Unsafe otherwise

1 reach : L→ Σ(V) := λx .⊥;
2 worklist := {(`0,>)};
3 while worklist 6= ∅ do
4 choose (`,F) ∈ worklist;
5 worklist := worklist \ {(`,F)};
6 if ¬(F ⇒ reach(`)) is sat then
7 reach := reach[` 7→ reach(`) ∨ F];
8 foreach (`, ρ(V ,V ′), `′) ∈ E do
9 worklist := worklist ∪ {(`′, sp(F , ρ))};

10 if reach(`e) 6= ⊥ then
11 return Unsafe
12 else
13 return Safe

Note: We need efficient implementations of various

logical operators!

Exercise 3.7
Give a condition for definite termination?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 135

Symbolic model checking
Algorithm 3.3: Symbolic model checking

Input: P = (V , L, `0, `e ,E)
Output: Safe if P is safe, Unsafe otherwise

1 reach : L→ Σ(V) := λx .⊥;
2 worklist := {(`0,>)};
3 while worklist 6= ∅ do
4 choose (`,F) ∈ worklist;
5 worklist := worklist \ {(`,F)};
6 if ¬(F ⇒ reach(`)) is sat then
7 reach := reach[` 7→ reach(`) ∨ F];
8 foreach (`, ρ(V ,V ′), `′) ∈ E do
9 worklist := worklist ∪ {(`′, sp(F , ρ))};

10 if reach(`e) 6= ⊥ then
11 return Unsafe
12 else
13 return Safe

Note: We need efficient implementations of various

logical operators!

Exercise 3.7
Give a condition for definite termination?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 136

Example: symbolic model checking

Example 3.11

Consider the following
example

`0

`1

`e

0 < x < 9, i := x

x > 4,
x := x− 1,
i := i− 1

x ≤ 4 ∧ i 6= x

Let V = [x, i]

Init: reach = λx .⊥, worklist = {(`0,>)}
Choose a state: (`0,>) (only choice)
Update worklist: worklist := ∅
Add successors in worklist:
Since ¬(> ⇒ reach(`0)) is sat,

worklist := worklist∪{(`1, 0 < x = i < 9)}
reach(`0) := reach(`0) ∨ > := >

Again choose a state: {(`1, 0 < x = i < 9)}
Update worklist: worklist := ∅
Add successors in worklist:
Since ¬(0 < x = i < 9⇒ reach(`1)) is sat,

worklist := worklist∪{(`1, 3 < x = i < 9), (`e ,⊥)}
reach(`1) := reach(`1) ∨ 0 < x = i < 9
reach(`e) := reach(`e) ∨ ⊥

Exercise 3.8
complete the run of the algorithm

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 137

Example: symbolic model checking

Example 3.11

Consider the following
example

`0

`1

`e

0 < x < 9, i := x

x > 4,
x := x− 1,
i := i− 1

x ≤ 4 ∧ i 6= x

Let V = [x, i]

Init: reach = λx .⊥, worklist = {(`0,>)}
Choose a state: (`0,>) (only choice)
Update worklist: worklist := ∅
Add successors in worklist:
Since ¬(> ⇒ reach(`0)) is sat,

worklist := worklist∪{(`1, 0 < x = i < 9)}
reach(`0) := reach(`0) ∨ > := >

Again choose a state: {(`1, 0 < x = i < 9)}
Update worklist: worklist := ∅
Add successors in worklist:
Since ¬(0 < x = i < 9⇒ reach(`1)) is sat,

worklist := worklist∪{(`1, 3 < x = i < 9), (`e ,⊥)}
reach(`1) := reach(`1) ∨ 0 < x = i < 9
reach(`e) := reach(`e) ∨ ⊥

Exercise 3.8
complete the run of the algorithm

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 138

Example: symbolic model checking

Example 3.11

Consider the following
example

`0

`1

`e

0 < x < 9, i := x

x > 4,
x := x− 1,
i := i− 1

x ≤ 4 ∧ i 6= x

Let V = [x, i]

Init: reach = λx .⊥, worklist = {(`0,>)}

Choose a state: (`0,>) (only choice)
Update worklist: worklist := ∅
Add successors in worklist:
Since ¬(> ⇒ reach(`0)) is sat,

worklist := worklist∪{(`1, 0 < x = i < 9)}
reach(`0) := reach(`0) ∨ > := >

Again choose a state: {(`1, 0 < x = i < 9)}
Update worklist: worklist := ∅
Add successors in worklist:
Since ¬(0 < x = i < 9⇒ reach(`1)) is sat,

worklist := worklist∪{(`1, 3 < x = i < 9), (`e ,⊥)}
reach(`1) := reach(`1) ∨ 0 < x = i < 9
reach(`e) := reach(`e) ∨ ⊥

Exercise 3.8
complete the run of the algorithm

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 139

Example: symbolic model checking

Example 3.11

Consider the following
example

`0

`1

`e

0 < x < 9, i := x

x > 4,
x := x− 1,
i := i− 1

x ≤ 4 ∧ i 6= x

Let V = [x, i]

Init: reach = λx .⊥, worklist = {(`0,>)}
Choose a state: (`0,>) (only choice)

Update worklist: worklist := ∅
Add successors in worklist:
Since ¬(> ⇒ reach(`0)) is sat,

worklist := worklist∪{(`1, 0 < x = i < 9)}
reach(`0) := reach(`0) ∨ > := >

Again choose a state: {(`1, 0 < x = i < 9)}
Update worklist: worklist := ∅
Add successors in worklist:
Since ¬(0 < x = i < 9⇒ reach(`1)) is sat,

worklist := worklist∪{(`1, 3 < x = i < 9), (`e ,⊥)}
reach(`1) := reach(`1) ∨ 0 < x = i < 9
reach(`e) := reach(`e) ∨ ⊥

Exercise 3.8
complete the run of the algorithm

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 140

Example: symbolic model checking

Example 3.11

Consider the following
example

`0

`1

`e

0 < x < 9, i := x

x > 4,
x := x− 1,
i := i− 1

x ≤ 4 ∧ i 6= x

Let V = [x, i]

Init: reach = λx .⊥, worklist = {(`0,>)}
Choose a state: (`0,>) (only choice)
Update worklist: worklist := ∅

Add successors in worklist:
Since ¬(> ⇒ reach(`0)) is sat,

worklist := worklist∪{(`1, 0 < x = i < 9)}
reach(`0) := reach(`0) ∨ > := >

Again choose a state: {(`1, 0 < x = i < 9)}
Update worklist: worklist := ∅
Add successors in worklist:
Since ¬(0 < x = i < 9⇒ reach(`1)) is sat,

worklist := worklist∪{(`1, 3 < x = i < 9), (`e ,⊥)}
reach(`1) := reach(`1) ∨ 0 < x = i < 9
reach(`e) := reach(`e) ∨ ⊥

Exercise 3.8
complete the run of the algorithm

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 141

Example: symbolic model checking

Example 3.11

Consider the following
example

`0

`1

`e

0 < x < 9, i := x

x > 4,
x := x− 1,
i := i− 1

x ≤ 4 ∧ i 6= x

Let V = [x, i]

Init: reach = λx .⊥, worklist = {(`0,>)}
Choose a state: (`0,>) (only choice)
Update worklist: worklist := ∅
Add successors in worklist:

Since ¬(> ⇒ reach(`0)) is sat,
worklist := worklist∪{(`1, 0 < x = i < 9)}
reach(`0) := reach(`0) ∨ > := >

Again choose a state: {(`1, 0 < x = i < 9)}
Update worklist: worklist := ∅
Add successors in worklist:
Since ¬(0 < x = i < 9⇒ reach(`1)) is sat,

worklist := worklist∪{(`1, 3 < x = i < 9), (`e ,⊥)}
reach(`1) := reach(`1) ∨ 0 < x = i < 9
reach(`e) := reach(`e) ∨ ⊥

Exercise 3.8
complete the run of the algorithm

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 142

Example: symbolic model checking

Example 3.11

Consider the following
example

`0

`1

`e

0 < x < 9, i := x

x > 4,
x := x− 1,
i := i− 1

x ≤ 4 ∧ i 6= x

Let V = [x, i]

Init: reach = λx .⊥, worklist = {(`0,>)}
Choose a state: (`0,>) (only choice)
Update worklist: worklist := ∅
Add successors in worklist:
Since ¬(> ⇒ reach(`0)) is sat,

worklist := worklist∪{(`1, 0 < x = i < 9)}
reach(`0) := reach(`0) ∨ > := >

Again choose a state: {(`1, 0 < x = i < 9)}
Update worklist: worklist := ∅
Add successors in worklist:
Since ¬(0 < x = i < 9⇒ reach(`1)) is sat,

worklist := worklist∪{(`1, 3 < x = i < 9), (`e ,⊥)}
reach(`1) := reach(`1) ∨ 0 < x = i < 9
reach(`e) := reach(`e) ∨ ⊥

Exercise 3.8
complete the run of the algorithm

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 143

Example: symbolic model checking

Example 3.11

Consider the following
example

`0

`1

`e

0 < x < 9, i := x

x > 4,
x := x− 1,
i := i− 1

x ≤ 4 ∧ i 6= x

Let V = [x, i]

Init: reach = λx .⊥, worklist = {(`0,>)}
Choose a state: (`0,>) (only choice)
Update worklist: worklist := ∅
Add successors in worklist:
Since ¬(> ⇒ reach(`0)) is sat,

worklist := worklist∪{(`1, 0 < x = i < 9)}

reach(`0) := reach(`0) ∨ > := >
Again choose a state: {(`1, 0 < x = i < 9)}
Update worklist: worklist := ∅
Add successors in worklist:
Since ¬(0 < x = i < 9⇒ reach(`1)) is sat,

worklist := worklist∪{(`1, 3 < x = i < 9), (`e ,⊥)}
reach(`1) := reach(`1) ∨ 0 < x = i < 9
reach(`e) := reach(`e) ∨ ⊥

Exercise 3.8
complete the run of the algorithm

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 144

Example: symbolic model checking

Example 3.11

Consider the following
example

`0

`1

`e

0 < x < 9, i := x

x > 4,
x := x− 1,
i := i− 1

x ≤ 4 ∧ i 6= x

Let V = [x, i]

Init: reach = λx .⊥, worklist = {(`0,>)}
Choose a state: (`0,>) (only choice)
Update worklist: worklist := ∅
Add successors in worklist:
Since ¬(> ⇒ reach(`0)) is sat,

worklist := worklist∪{(`1, 0 < x = i < 9)}
reach(`0) := reach(`0) ∨ > := >

Again choose a state: {(`1, 0 < x = i < 9)}
Update worklist: worklist := ∅
Add successors in worklist:
Since ¬(0 < x = i < 9⇒ reach(`1)) is sat,

worklist := worklist∪{(`1, 3 < x = i < 9), (`e ,⊥)}
reach(`1) := reach(`1) ∨ 0 < x = i < 9
reach(`e) := reach(`e) ∨ ⊥

Exercise 3.8
complete the run of the algorithm

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 145

Example: symbolic model checking

Example 3.11

Consider the following
example

`0

`1

`e

0 < x < 9, i := x

x > 4,
x := x− 1,
i := i− 1

x ≤ 4 ∧ i 6= x

Let V = [x, i]

Init: reach = λx .⊥, worklist = {(`0,>)}
Choose a state: (`0,>) (only choice)
Update worklist: worklist := ∅
Add successors in worklist:
Since ¬(> ⇒ reach(`0)) is sat,

worklist := worklist∪{(`1, 0 < x = i < 9)}
reach(`0) := reach(`0) ∨ > := >

Again choose a state: {(`1, 0 < x = i < 9)}

Update worklist: worklist := ∅
Add successors in worklist:
Since ¬(0 < x = i < 9⇒ reach(`1)) is sat,

worklist := worklist∪{(`1, 3 < x = i < 9), (`e ,⊥)}
reach(`1) := reach(`1) ∨ 0 < x = i < 9
reach(`e) := reach(`e) ∨ ⊥

Exercise 3.8
complete the run of the algorithm

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 146

Example: symbolic model checking

Example 3.11

Consider the following
example

`0

`1

`e

0 < x < 9, i := x

x > 4,
x := x− 1,
i := i− 1

x ≤ 4 ∧ i 6= x

Let V = [x, i]

Init: reach = λx .⊥, worklist = {(`0,>)}
Choose a state: (`0,>) (only choice)
Update worklist: worklist := ∅
Add successors in worklist:
Since ¬(> ⇒ reach(`0)) is sat,

worklist := worklist∪{(`1, 0 < x = i < 9)}
reach(`0) := reach(`0) ∨ > := >

Again choose a state: {(`1, 0 < x = i < 9)}
Update worklist: worklist := ∅
Add successors in worklist:

Since ¬(0 < x = i < 9⇒ reach(`1)) is sat,
worklist := worklist∪{(`1, 3 < x = i < 9), (`e ,⊥)}
reach(`1) := reach(`1) ∨ 0 < x = i < 9
reach(`e) := reach(`e) ∨ ⊥

Exercise 3.8
complete the run of the algorithm

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 147

Example: symbolic model checking

Example 3.11

Consider the following
example

`0

`1

`e

0 < x < 9, i := x

x > 4,
x := x− 1,
i := i− 1

x ≤ 4 ∧ i 6= x

Let V = [x, i]

Init: reach = λx .⊥, worklist = {(`0,>)}
Choose a state: (`0,>) (only choice)
Update worklist: worklist := ∅
Add successors in worklist:
Since ¬(> ⇒ reach(`0)) is sat,

worklist := worklist∪{(`1, 0 < x = i < 9)}
reach(`0) := reach(`0) ∨ > := >

Again choose a state: {(`1, 0 < x = i < 9)}
Update worklist: worklist := ∅
Add successors in worklist:
Since ¬(0 < x = i < 9⇒ reach(`1)) is sat,

worklist := worklist∪{(`1, 3 < x = i < 9), (`e ,⊥)}
reach(`1) := reach(`1) ∨ 0 < x = i < 9
reach(`e) := reach(`e) ∨ ⊥

Exercise 3.8
complete the run of the algorithm

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 148

Example: symbolic model checking

Example 3.11

Consider the following
example

`0

`1

`e

0 < x < 9, i := x

x > 4,
x := x− 1,
i := i− 1

x ≤ 4 ∧ i 6= x

Let V = [x, i]

Init: reach = λx .⊥, worklist = {(`0,>)}
Choose a state: (`0,>) (only choice)
Update worklist: worklist := ∅
Add successors in worklist:
Since ¬(> ⇒ reach(`0)) is sat,

worklist := worklist∪{(`1, 0 < x = i < 9)}
reach(`0) := reach(`0) ∨ > := >

Again choose a state: {(`1, 0 < x = i < 9)}
Update worklist: worklist := ∅
Add successors in worklist:
Since ¬(0 < x = i < 9⇒ reach(`1)) is sat,

worklist := worklist∪{(`1, 3 < x = i < 9), (`e ,⊥)}

reach(`1) := reach(`1) ∨ 0 < x = i < 9
reach(`e) := reach(`e) ∨ ⊥

Exercise 3.8
complete the run of the algorithm

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 149

Example: symbolic model checking

Example 3.11

Consider the following
example

`0

`1

`e

0 < x < 9, i := x

x > 4,
x := x− 1,
i := i− 1

x ≤ 4 ∧ i 6= x

Let V = [x, i]

Init: reach = λx .⊥, worklist = {(`0,>)}
Choose a state: (`0,>) (only choice)
Update worklist: worklist := ∅
Add successors in worklist:
Since ¬(> ⇒ reach(`0)) is sat,

worklist := worklist∪{(`1, 0 < x = i < 9)}
reach(`0) := reach(`0) ∨ > := >

Again choose a state: {(`1, 0 < x = i < 9)}
Update worklist: worklist := ∅
Add successors in worklist:
Since ¬(0 < x = i < 9⇒ reach(`1)) is sat,

worklist := worklist∪{(`1, 3 < x = i < 9), (`e ,⊥)}
reach(`1) := reach(`1) ∨ 0 < x = i < 9
reach(`e) := reach(`e) ∨ ⊥

Exercise 3.8
complete the run of the algorithm

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 150

Example: symbolic model checking

Example 3.11

Consider the following
example

`0

`1

`e

0 < x < 9, i := x

x > 4,
x := x− 1,
i := i− 1

x ≤ 4 ∧ i 6= x

Let V = [x, i]

Init: reach = λx .⊥, worklist = {(`0,>)}
Choose a state: (`0,>) (only choice)
Update worklist: worklist := ∅
Add successors in worklist:
Since ¬(> ⇒ reach(`0)) is sat,

worklist := worklist∪{(`1, 0 < x = i < 9)}
reach(`0) := reach(`0) ∨ > := >

Again choose a state: {(`1, 0 < x = i < 9)}
Update worklist: worklist := ∅
Add successors in worklist:
Since ¬(0 < x = i < 9⇒ reach(`1)) is sat,

worklist := worklist∪{(`1, 3 < x = i < 9), (`e ,⊥)}
reach(`1) := reach(`1) ∨ 0 < x = i < 9
reach(`e) := reach(`e) ∨ ⊥

Exercise 3.8
complete the run of the algorithm

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 151

Proof generation

If the symbolic model checker terminates with the answer Safe, then it must
also report a proof of the safety, which is the reach map.

It has implicitly computed a Hoare style proof of P = (V , L, `0, `e ,E).

(`, ρ(V ,V ′), `′) ∈ E {reach(`)}ρ(V ,V ′){reach(`′)}

If an LTS program has been obtained from a simple language program then
one may generate a Hoare style proof system.

Exercise 3.9
Describe the construction for the above translation

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 152

Proof generation

If the symbolic model checker terminates with the answer Safe, then it must
also report a proof of the safety, which is the reach map.

It has implicitly computed a Hoare style proof of P = (V , L, `0, `e ,E).

(`, ρ(V ,V ′), `′) ∈ E {reach(`)}ρ(V ,V ′){reach(`′)}

If an LTS program has been obtained from a simple language program then
one may generate a Hoare style proof system.

Exercise 3.9
Describe the construction for the above translation

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 153

Proof generation

If the symbolic model checker terminates with the answer Safe, then it must
also report a proof of the safety, which is the reach map.

It has implicitly computed a Hoare style proof of P = (V , L, `0, `e ,E).

(`, ρ(V ,V ′), `′) ∈ E {reach(`)}ρ(V ,V ′){reach(`′)}

If an LTS program has been obtained from a simple language program then
one may generate a Hoare style proof system.

Exercise 3.9
Describe the construction for the above translation

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 154

Proof generation

If the symbolic model checker terminates with the answer Safe, then it must
also report a proof of the safety, which is the reach map.

It has implicitly computed a Hoare style proof of P = (V , L, `0, `e ,E).

(`, ρ(V ,V ′), `′) ∈ E {reach(`)}ρ(V ,V ′){reach(`′)}

If an LTS program has been obtained from a simple language program then
one may generate a Hoare style proof system.

Exercise 3.9
Describe the construction for the above translation

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 155

Topic 3.6

Constraint based invariant generation

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 156

Invariant generation using constraint solving

Invariant generation: find a safe inductive invariant map I

I This is our first method that computes the fixed point automatically
without resorting to some kind of enumeration

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 157

Invariant generation using constraint solving

Invariant generation: find a safe inductive invariant map I

I This is our first method that computes the fixed point automatically
without resorting to some kind of enumeration

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 158

Templates

Let L = {l0, . . . , ln, le},
Let V = {x1, . . . , xm}

We assume the following templates for each invariant in the invariant map.

I(l0) = 0 ≤ 0

∀i ∈ 1..n. I(li) = (pi1x1 + . . . pimxm ≤ pi0)

I(le) = 0 ≤ −1

pij are called parameters to the templates and they define a set of candidate
invariants.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 159

Templates

Let L = {l0, . . . , ln, le},
Let V = {x1, . . . , xm}

We assume the following templates for each invariant in the invariant map.

I(l0) = 0 ≤ 0

∀i ∈ 1..n. I(li) = (pi1x1 + . . . pimxm ≤ pi0)

I(le) = 0 ≤ −1

pij are called parameters to the templates and they define a set of candidate
invariants.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 160

Constraint generation

A safe inductive invariant map I must satisfy for all (li , ρ, li ′) ∈ E

sp(I(li), ρ)⇒ I(li ′).

The above condition translates to

∀V ,V ′. (pi1x1 + . . . pimxm ≤ pi0) ∧ ρ(V ,V ′)⇒ (pi ′1x ′1 + . . . pi ′mx ′m ≤ pi ′0)

Our goal is to find pijs such that the above constraints are satisfied.
Unfortunately there is quantifier alternation in the constraints. Therefore,
they are hard to solve.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 161

Constraint solving using Farkas lemma

If all ρs are linear constraints then we can use Farkas lemma to turn the
validity question into a “conjunctive satisfiablity question”

Lemma 3.1
For a rational matrix A, vectors a and b, and constant c,
∀X . AX ≤ b ⇒ aX ≤ c iff
∃λ ≥ 0. λTA = a and λTb ≤ c

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 162

Application of farkas lemma

Consider (li , (AV + A′V ≤ b), li ′) ∈ E

After applying Farkas lemma on

∀V ,V ′. (pi1x1 + . . . pimxm ≤ pi0) ∧ ρ(V ,V ′)⇒ (pi ′1x ′1 + . . . pi ′mx ′m ≤ pi ′0),

we obtain

∃λ0, λ. (λ0[pi1, . . . , pim] + λTA) = 0 ∧ λTA′ = [pi ′1, . . . , pi ′m]∧
λ0pi0 + λTb ≤ pi ′0

All the variables pijs and λs are existentially quantified, which can be solved
by a quadratic constraints solver.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 163

Example: invariant generation

Example 3.12

Consider the following
example

`0

`1

`e

x := 2, y := 3

y ≤ 10,
x := x− 1,
y := y + 1

y > 10 ∧ x ≥ 10

Let V = [x, y]

We assume the following invariant template at `1:
I(`1) = (p1x + p2y ≤ p0)

We generate the following constraints for program
transitions:

For `0 to `1,
∀x′, y′. x′ = 2 ∧ y′ = 3⇒ (p1x

′ + p2y
′ ≤ p0)

For `1 to `1,
∀x, y, x′, y′. (p1x + p2y ≤ p0)∧ y ≤ 10∧ x′ = x− 1∧

y′ = y + 1 ⇒ (p1x
′ + p2y

′ ≤ p0)

For `1 to `e ,
∀x, y. (p1x + p2y ≤ p0) ∧ y > 10 ∧ x ≥ 10⇒ ⊥

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 164

Example: invariant generation

Example 3.12

Consider the following
example

`0

`1

`e

x := 2, y := 3

y ≤ 10,
x := x− 1,
y := y + 1

y > 10 ∧ x ≥ 10

Let V = [x, y]

We assume the following invariant template at `1:
I(`1) = (p1x + p2y ≤ p0)

We generate the following constraints for program
transitions:

For `0 to `1,
∀x′, y′. x′ = 2 ∧ y′ = 3⇒ (p1x

′ + p2y
′ ≤ p0)

For `1 to `1,
∀x, y, x′, y′. (p1x + p2y ≤ p0)∧ y ≤ 10∧ x′ = x− 1∧

y′ = y + 1 ⇒ (p1x
′ + p2y

′ ≤ p0)

For `1 to `e ,
∀x, y. (p1x + p2y ≤ p0) ∧ y > 10 ∧ x ≥ 10⇒ ⊥

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 165

Example: invariant generation

Example 3.12

Consider the following
example

`0

`1

`e

x := 2, y := 3

y ≤ 10,
x := x− 1,
y := y + 1

y > 10 ∧ x ≥ 10

Let V = [x, y]

We assume the following invariant template at `1:
I(`1) = (p1x + p2y ≤ p0)

We generate the following constraints for program
transitions:

For `0 to `1,
∀x′, y′. x′ = 2 ∧ y′ = 3⇒ (p1x

′ + p2y
′ ≤ p0)

For `1 to `1,
∀x, y, x′, y′. (p1x + p2y ≤ p0)∧ y ≤ 10∧ x′ = x− 1∧

y′ = y + 1 ⇒ (p1x
′ + p2y

′ ≤ p0)

For `1 to `e ,
∀x, y. (p1x + p2y ≤ p0) ∧ y > 10 ∧ x ≥ 10⇒ ⊥

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 166

Example: invariant generation

Example 3.12

Consider the following
example

`0

`1

`e

x := 2, y := 3

y ≤ 10,
x := x− 1,
y := y + 1

y > 10 ∧ x ≥ 10

Let V = [x, y]

We assume the following invariant template at `1:
I(`1) = (p1x + p2y ≤ p0)

We generate the following constraints for program
transitions:

For `0 to `1,
∀x′, y′. x′ = 2 ∧ y′ = 3⇒ (p1x

′ + p2y
′ ≤ p0)

For `1 to `1,
∀x, y, x′, y′. (p1x + p2y ≤ p0)∧ y ≤ 10∧ x′ = x− 1∧

y′ = y + 1 ⇒ (p1x
′ + p2y

′ ≤ p0)

For `1 to `e ,
∀x, y. (p1x + p2y ≤ p0) ∧ y > 10 ∧ x ≥ 10⇒ ⊥

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 167

Example: invariant generation

Example 3.12

Consider the following
example

`0

`1

`e

x := 2, y := 3

y ≤ 10,
x := x− 1,
y := y + 1

y > 10 ∧ x ≥ 10

Let V = [x, y]

We assume the following invariant template at `1:
I(`1) = (p1x + p2y ≤ p0)

We generate the following constraints for program
transitions:

For `0 to `1,
∀x′, y′. x′ = 2 ∧ y′ = 3⇒ (p1x

′ + p2y
′ ≤ p0)

For `1 to `1,
∀x, y, x′, y′. (p1x + p2y ≤ p0)∧ y ≤ 10∧ x′ = x− 1∧

y′ = y + 1 ⇒ (p1x
′ + p2y

′ ≤ p0)

For `1 to `e ,
∀x, y. (p1x + p2y ≤ p0) ∧ y > 10 ∧ x ≥ 10⇒ ⊥

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 168

Example: invariant generation

Example 3.12

Consider the following
example

`0

`1

`e

x := 2, y := 3

y ≤ 10,
x := x− 1,
y := y + 1

y > 10 ∧ x ≥ 10

Let V = [x, y]

We assume the following invariant template at `1:
I(`1) = (p1x + p2y ≤ p0)

We generate the following constraints for program
transitions:

For `0 to `1,
∀x′, y′. x′ = 2 ∧ y′ = 3⇒ (p1x

′ + p2y
′ ≤ p0)

For `1 to `1,
∀x, y, x′, y′. (p1x + p2y ≤ p0)∧ y ≤ 10∧ x′ = x− 1∧

y′ = y + 1 ⇒ (p1x
′ + p2y

′ ≤ p0)

For `1 to `e ,
∀x, y. (p1x + p2y ≤ p0) ∧ y > 10 ∧ x ≥ 10⇒ ⊥

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 169

Example: invariant generation

Example 3.12

Consider the following
example

`0

`1

`e

x := 2, y := 3

y ≤ 10,
x := x− 1,
y := y + 1

y > 10 ∧ x ≥ 10

Let V = [x, y]

We assume the following invariant template at `1:
I(`1) = (p1x + p2y ≤ p0)

We generate the following constraints for program
transitions:

For `0 to `1,
∀x′, y′. x′ = 2 ∧ y′ = 3⇒ (p1x

′ + p2y
′ ≤ p0)

For `1 to `1,
∀x, y, x′, y′. (p1x + p2y ≤ p0)∧ y ≤ 10∧ x′ = x− 1∧

y′ = y + 1 ⇒ (p1x
′ + p2y

′ ≤ p0)

For `1 to `e ,
∀x, y. (p1x + p2y ≤ p0) ∧ y > 10 ∧ x ≥ 10⇒ ⊥

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 170

Example: invariant generation(contd.)

Now consider the second constraint:
∀x, y, x′, y′.
(p1x + p2y ≤ p0) ∧ y ≤ 10 ∧ x′ = x− 1 ∧ y′ = y + 1 ⇒ (p1x

′ + p2y
′ ≤ p0)

Matrix view of the transition relation y ≤ 10 ∧ x′ = x− 1 ∧ y′ = y + 1
0 1 0 0
1 0 −1 0
−1 0 1 0
0 1 0 −1
0 −1 0 1

x

y

x′

y′

 ≤

10
1
−1
−1
1

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 171

Example: invariant generation(contd.)

Now consider the second constraint:
∀x, y, x′, y′.
(p1x + p2y ≤ p0) ∧ y ≤ 10 ∧ x′ = x− 1 ∧ y′ = y + 1 ⇒ (p1x

′ + p2y
′ ≤ p0)

Matrix view of the transition relation y ≤ 10 ∧ x′ = x− 1 ∧ y′ = y + 1
0 1 0 0
1 0 −1 0
−1 0 1 0
0 1 0 −1
0 −1 0 1

x

y

x′

y′

 ≤

10
1
−1
−1
1

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 172

Example: invariant generation(contd.)
Applying farkas lemma on the constraint, we obtain

[
λ0 λ1 λ2 λ3 λ4 λ5

]

p1 p2 0 0
0 1 0 0
1 0 −1 0
−1 0 1 0
0 1 0 −1
0 −1 0 1

 =
[

0 0 p1 p2

]

[
λ0 λ1 λ2 λ3 λ4 λ5

]

p0

10
1
−1
−1
1

 ≤
[

p0

]

Exercise 3.10
Apply farkas lemma on the other two implications
∀x′, y′. x′ = 2 ∧ y′ = 3⇒ (p1x

′ + p2y
′ ≤ p0)

∀x, y. (p1x + p2y ≤ p0) ∧ y > 10 ∧ x ≥ 10⇒ ⊥

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 173

Does this method work?

I Quadratic constraint solving does not scale

I For small tricky problems, this method may prove to be useful

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 174

Topic 3.7

Assignment

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 175

Problem 1

1. (1) Prove the following Hoare triple is valid

{true}

assume(n > 1);

i = n;

x = 0;

while(i > 0) {

x = x + i;

i = i - 1;

}

{ 2x = n*(n+1) }

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 176

Problem 2

2. (1) Fill the annotations to prove following program correct via Vcc

#include <vcc.h>

int main()

{

int x = 0, y = 2;

_(assume 1==1)

while(x < 3) _(invariant ...) {

x = x + 1;

y = 3;

}

_(assert y == 3)

return 0;

}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 177

Problem 3

3. (2) extend your tool in the last assignment in the following ways
I define classes for

I locations,
I variables,
I guarded commands,
I transitions (give names to the transitions), and
I programs

I encode the program in example 3.12 using the class
I Write a function that computes path constraints for a given path
I Read path from command line as space separated transition names and

output the path constraints

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

	Hoare logic
	Program as labeled transition system
	Loop invariants
	Concrete model checking - enumerate reachable states
	Symbolic methods
	Constraint based invariant generation
	Assignment

