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Where are we and where are we going?

We have

I defined a simple language

I defined small step operation semantics of the language

I defined logical view of program statements

I defined strongest post and weakest pre

I defined logical strongest post and weakest pre

We will

I Hoare logic

I labelled transition system

I we cover some methods that try/avoid to compute lfp
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Topic 3.1

Hoare logic
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Hoare logic - our first method of verification

I Computing a super set of the reachable states(lfp) that does not
intersect with error states should be suffice for our goal

I Since we do not know how to compute lfp, we will first see a method of
writing pen-paper proofs of program safety

I Such a proof method has following steps
I write (guess) a super set of reachable states
I show it is actually a super set
I show it does not intersect with error states

I First such method was proposed by Tony Hoare
I it is sometimes called axiomatic semantics
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Hoare Triple

Definition 3.1

{P}c{Q}

I P : Σ(V ), usually called precondition

I c : P
I Q : Σ(V ), usually called postcondition

Definition 3.2
{P}c{Q} is valid if all the executions of c that start from P end in Q, i.e.,

∀v , v ′. v |= P ∧ ((v , c), (v ′, skip)) ∈ T ∗ ⇒ v ′ |= Q.
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Hoare proof obligation/goal
The safety verification problem is slightly differently stated in Hoare logic.

We remove assert statement from the language and no err variable.

Here, a verification problem is proving validity of a Hoare triple.

Example 3.1
Program

assume(>)
r := 1;
i := 1;
while(i < 3)
{
r := r + z;
i := i + 1
}
assert(r = 2z + 1)

→

Hoare triple

{>}
r := 1;
i := 1;
while(i < 3)
{
r := r + z;
i := i + 1
}
{r = 2z + 1}
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Hoare Proof System

{P}skip{P}
(skip rule)

{P[exp/x ]}x := exp{P}
(assign rule)

{∀x .P}x := havoc(){P}
(havoc rule)

{P}assume(F){F ∧ P}
(assume rule)

We may freely choose any of sp and wp for pre/post pairs for data statements.
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Hoare Proof System (contd.)

{P}c1{Q} {Q}c2{R}
{P}c1; c2{R}

(composition rule)

{P}c1{Q} {P}c2{Q}
{P}c1[]c2{Q}

(nondet rule)

{F ∧ P}c1{Q} {¬F ∧ P}c2{Q}
{P}if(F) c1 else c2{Q}

(if rule)

P1 ⇒ P2 {P2}c{Q2} Q2 ⇒ Q1

{P1}c{Q1}
(Consequence rule)

{I ∧ F}c{I}
{I}while(F) c{¬F ∧ I}

(While rule)

Non-mechanical step: invent I such that the while rule holds. I is called
loop-invariant.
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Example Hoare proof

Example 3.2

{>}
r := 1;

{r = 1}

i := 1;

{I}

while(i < 3)
{

{I ∧ i < 3}

r := r + z

{P5}

i := i + 1
}
{r = 2z + 1}

Consider loop invariant: I = (i ≤ 3 ∧ r = (i − 1)z + 1)

{>}r := 1{r = 1} {r = 1}i := 1{I}

{r = 1}r := 1; i := 1; {I}

{i < 3 ∧ I}
r := r + z

{i < 3 ∧ r = iz + 1}

{i < 3 ∧ r = iz + 1}
i := i + 1
{I}

{i < 3 ∧ I}r := r + z; i := i + 1{I}

{>}r := 1; i := 1; {I} {i < 3 ∧ I}r := r + z; i := i + 1{I}
{>}r := 1; ..; while(..)..{I ∧ i ≥ 3}

I ∧ i ≥ 3⇒ r = 2z + 1

{>}r := 1; ..; while(..)..{r = 2z + 1}
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{P5}
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Topic 3.2

Program as labeled transition system
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A more convenient program model

I Simple language has many cases to write an algorithm

I automata like program models allow more succinct description of
verification methods
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Program as labeled transition system (LTS)

Definition 3.3
A program P is a tuple (V , L, `0, `e ,E ), where

I V is a vector of variables,

I L be set of program locations,

I `0 is initial location,

I `e is error location, and

I E ⊆ L× Σ(V ,V ′)× L is a set of labeled transitions between locations.

Example 3.3 `0

`1

`e

x ′ = 1

x < 0

x ′ = x + 2

V = [x]
L = {`0, `1, `e}
E = {(`0, x

′ = 1, `1),
(`1, x

′ = x + 2, `1),
(`1, x < 0, `e)}

Notation:
If e = (`, ρ(V ,V ′), `′) ∈ E ,
then
e(V ,V ′) , ρ(V ,V ′),
e(loc) , ` and
e(loc ′) , `′
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Guarded command
Definition 3.4 (Guarded command)

A guarded command is a pair of a formula in Σ(V ) and a sequence of update
constraints (including havoc) of variables in V .

Note: we may write transition formulas as guarded commands. Havoc encodes inputs.

Example 3.4

Consider V = [x, y]. The formula represented by the guarded command
(x > y, [x := x + 1]) is x > y ∧ x′ = x + 1 ∧ y′ = y.

Example 3.5
`0

`1

`e

(>, [x := 1])

(x < 0, [])

(>, [x := x + 2])

simplified view →

`0

`1

`e

x := 1

x < 0

x := x + 2
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Semantics
Consider program P = (V , L, `0, `e ,E ).

Definition 3.5
A state s = (`, v) of a program is program location ` and a valuation v of V .

Let v(x) , value of variable x in v
For state s = (`, v), let s(x) , v(x) and s(loc) , `

Definition 3.6
A path π = e1, . . . , en in P is a sequence of transitions such that, for each
0 < i < n, ei = (`i−1, , `i ) and ei+1 = (`i , , `i+1).

Definition 3.7
An execution corresponding to path e1, . . . , en is a sequence of states
(`0, v0), . . . , (`n, vn) such that ∀i ∈ 1..n, ei (vi−1, vi ) holds true.
An execution belongs to P if there is a corresponding path in P.

Definition 3.8
P is safe if there is no execution of P from `0 to `e .
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Path constraints
Vi , variable vector obtained by adding subscript i after each variable in V .

Definition 3.9
For a path πe1, . . . , en, path constraints is

∧
i∈1..n ei (Vi−1,Vi ).

A path is feasible if corresponding path constraints is satisfiable.

Let PathCons(π) returns path constraints of π.

Theorem 3.1
A path is feasible then there is an execution that corresponds to the path.

Example 3.6

`0

`1

`e

x := 1

x < 0

x := x + 2

Consider path
(`0, x := 1, `1), (`1, x := x + 2, `1), (`1, x < 0, `e)

Path constraint for the path is
F = (x1 = 1 ∧ x2 = x1 + 2 ∧ x2 < 0)

Since F is unsat, there is no execution along the path

Path constraints are also
known as “SSA formulas”
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Path constraints
Vi , variable vector obtained by adding subscript i after each variable in V .

Definition 3.9
For a path πe1, . . . , en, path constraints is

∧
i∈1..n ei (Vi−1,Vi ).

A path is feasible if corresponding path constraints is satisfiable.

Let PathCons(π) returns path constraints of π.
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A path is feasible then there is an execution that corresponds to the path.
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From simple language to labelled transition system
Theorem 3.2
Show simple programming language is isomorphic to the labelled transition
system.

Example 3.7

L0: i = 0;

L1: while( x < 10 ) {

L2: if x > 0 then

L3: i := i + 1

else

L4: skip

}

L5: assert( i >= 0 )

`0

i := 0

`1 `2
x < 10

`3

`4

x > 0

x ≤ 0

i := i + 1

`5

x ≥ 10

`e

i < 0
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Cut-points

Definition 3.10
For a program P = (V , L, `0, `e ,E ), CutPoints(P) is the a minimal subset
of L such that every path of P containing a loop passes through one of the
location in CutPoints(P).

CutPoints(P) in LTS loop heads in simple language

Example 3.8

Consider the following program P.

`0

i := 0

`1 `2
x < 10

`3

`4

x > 0

x ≤ 0

x := x + 1

`5

x ≥ 10

`e

i < 0

CutPoints(P) = {`1}
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Reminder: symbolic strongest post

sp : Σ(V )× Σ(V ,V ′)→ Σ(V )

We define symbolic post over labels of P as follows.

sp(F , ρ) , (∃V : F (V ) ∧ ρ(V ,V ′))[V /V ′]

We assume that ρ and F are in a theory that admits quantifier elimination

Using polymorphism, we also define sp((`,F ), (`, ρ, `′) ∈ E ) , (`′, sp(F , ρ)).

For path π = e1, .., en of P, sp((`,F ), π) , sp(sp((`,F ), e1), e2..en).
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Topic 3.3

Loop invariants
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Invariants

Definition 3.11
For P, a map I : L→ Σ(V ) is called invariant map if, for each ` ∈ L, all
reachable states at ` satisfy I(`).

Definition 3.12
For P, a map I : L→ Σ(V ) is called inductive if, for each (`, ρ, `′) ∈ E ,

sp(I(`), ρ)⇒ I(`′).

Definition 3.13
For P, a map I : L→ Σ(V ) is called safe if I(`0) = > and I(`e) = ⊥

Theorem 3.3
For P, if I is inductive and safe then I is an invariant and P is safe.

Invariant checking: is I a safe inductive invariant map?

Exercise 3.1
What is the algorithm for invariant checking?
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Cut-point invariant maps
Let P be a program and C = CutPoints(P)∪{`0, `e}.

Definition 3.14
A map I : C → Σ(V ) is called cut-point invariant map if, for each ` ∈ C , all
reachable states at ` satisfy I(`).

Definition 3.15
A map I : C → Σ(V ) is called inductive if, for each `, `′ ∈ C and
π ∈ LoopFreePaths(P, `, `′), sp(I(`), π)⇒ I(`′).

Definition 3.16
A map I : C → Σ(V ) is called safe if I(`0) = > and I(`e) = ⊥

Theorem 3.4
If I is inductive and safe then I is an cut-point invariant map and P is safe.

Proof.
Every path from `0 to `e can be segmented into loop free paths between
cut-points. Therefore, no such path is feasible.
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Annotated verification: VCC demo

http://rise4fun.com/Vcc

Exercise 3.2
Complete the following program such that Vcc proves it correct

#include <vcc.h>

int main()

{

int x, y;

_(assume x > y +3 && x < 3000 )

while( 0 < y ) _(invariant ....) {

x = x + 1;

y = y -1;

}

_(assert x >= y)

return 0;

}
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Annotated verification

I There are many tools like VCC that require user to write invariants at
the loop heads and function boundaries

I Rest of the verification is done as discussed in earlier slides

I User needs to do a lot of work, not a very desirable method

What if we want to compute the invariants automatically?
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Topic 3.4

Concrete model checking - enumerate reachable states
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Isn’t enumeration impossible?

I Explore the transition graph explicitly, light weight machinery

I If edge labels are guarded commands then finding next values are trivial

I After resolving non-determinism, concrete model checking reduces to
program execution

I May be only finitely many states are reachable

I May be impossible to cover all states explicitly, but it may cover a
portion of interest

I Useful for learning design principles of computing reachable states
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Concrete model checking
Algorithm 3.1: Concrete model checking

Input: P = (V , L, `0, `e ,E )
Output: Safe if P is safe, Unsafe otherwise

1 reach := ∅;
2 worklist := {(`0, v)|v ∈ Z|V |};
3 while worklist 6= ∅ do
4 choose (`, v) ∈ worklist;
5 worklist := worklist \ {(`, v)};
6 if (`, v) /∈ reach then
7 reach := reach ∪ {(`, v)};
8 foreach (`,F (V ,V ′), `′) ∈ E do
9 worklist := worklist ∪ {(`′, v ′)|F (v , v ′)};

10 if (`e , ) ∈ reach then
11 return Unsafe
12 else
13 return Safe

the choice defines the
nature of exploration

Exercise 3.3
Suggest improvements in the algorithm
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Example: concrete model checking

Example 3.9

Consider the following example

`0

`1

`e

0 < x < 9, i := x

x ≤ 4 ∧ i 6= x

x > 4, x := x− 1,
i := i− 1

Let V = [x, i]

Initialization:
reach = ∅, worklist = {(`0, v)|v ∈ Z2}

Choose a state:
Lets choose (`0, [8, 0])

Update worklist:
worklist := worklist \ {(`0, [8, 8])}

Add successors in worklist if state not visited:
worklist := worklist∪{(`1, [8, 8])}
reach := reach∪{(`0, [8, 0])}

... go back to choosing a new state from worklist
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Search strategies

I DFS

I BFS

I A∗

I worklist is a priority queue,
I weights are assigned to states based on estimate on possibility of reaching

error

Exercise 3.4
Describe A∗ search strategy
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Optimizations: exploiting structure

I Symmetry reduction

I Assume guarantee

I Partial order reduction ( for concurrent systems )
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Optimizations: reducing space

I hashed states - reach set contains hash of states (not sound)

I Stateless exploration - no reach set (redundant)

Trade-off among time, space, and soundness

Exercise 3.5
Write concrete model checking using hash tables
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Proof and counterexample

Definition 3.17
A proof of a program is an object that allows one to check safety of the
program using a low complexity (preferably linear) algorithm
in the size of the object.

Example 3.10

In our concrete model checking algorithm, reach set is the proof. The
checker needs to find that no more states can be reached from reach.

Definition 3.18
A counterexample of a program is an execution that ends at `e .

A verification method may produce three possible outcomes for a program

I proof

I counterexample

I unknown or non-termination
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Enabling counterexample generation
Algorithm 3.2: Concrete model checking

Input: P = (V , L, `0, `e ,E )
Output: Safe if P is safe, Unsafe otherwise

1 reach := ∅;

parents := λx .NaN ;

2 worklist := {(`0, v)|v ∈ Z|V |};
3 while worklist 6= ∅ do
4 choose (`, v) ∈ worklist;
5 worklist := worklist \ {(`, v)};
6 if (`, v) /∈ reach then
7 reach := reach ∪ {(`, v)};
8 foreach v ′ s.t. F (v , v ′) is sat ∧(`,F (V ,V ′), `′) ∈ E do
9 worklist := worklist ∪ {(`′, v ′)};

parents((`′, v ′)) := (`, v);

10 if (`e , v) ∈ reach then
11 return Unsafe

(traverseToInit(parents, (`e , v)))

12 else
13 return Safe

Exercise 3.6
add data structure to
report counterexample
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Topic 3.5

Symbolic methods
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Why symbolic?

To avoid, state explosion problem
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Symbolic methods

Now, we cover some methods that try/avoid to compute lfp

I Symbolic model checking

I Constraint based invariant generation
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Symbolic state

Definition 3.19
A symbolic state s of P = (V , L, `0, `e ,E ) is a pair (`,F ), where

I ` ∈ L

I F is a formula over variables V in a given theory
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Symbolic model checking
Algorithm 3.3: Symbolic model checking

Input: P = (V , L, `0, `e ,E )
Output: Safe if P is safe, Unsafe otherwise

1 reach : L→ Σ(V ) := λx .⊥;
2 worklist := {(`0,>)};
3 while worklist 6= ∅ do
4 choose (`,F ) ∈ worklist;
5 worklist := worklist \ {(`,F )};
6 if ¬(F ⇒ reach(`)) is sat then
7 reach := reach[` 7→ reach(`) ∨ F ];
8 foreach (`, ρ(V ,V ′), `′) ∈ E do
9 worklist := worklist ∪ {(`′, sp(F , ρ))};

10 if reach(`e) 6= ⊥ then
11 return Unsafe
12 else
13 return Safe

Note: We need efficient implementations of various

logical operators!

Exercise 3.7
Give a condition for definite termination?
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13 return Safe

Note: We need efficient implementations of various

logical operators!
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Give a condition for definite termination?
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Example: symbolic model checking

Example 3.11

Consider the following
example

`0

`1

`e

0 < x < 9, i := x

x > 4,
x := x− 1,
i := i− 1

x ≤ 4 ∧ i 6= x

Let V = [x, i]

Init: reach = λx .⊥, worklist = {(`0,>)}
Choose a state: (`0,>) (only choice)
Update worklist: worklist := ∅
Add successors in worklist:
Since ¬(> ⇒ reach(`0)) is sat,

worklist := worklist∪{(`1, 0 < x = i < 9)}
reach(`0) := reach(`0) ∨ > := >

Again choose a state: {(`1, 0 < x = i < 9)}
Update worklist: worklist := ∅
Add successors in worklist:
Since ¬(0 < x = i < 9⇒ reach(`1)) is sat,

worklist := worklist∪{(`1, 3 < x = i < 9), (`e ,⊥)}
reach(`1) := reach(`1) ∨ 0 < x = i < 9
reach(`e) := reach(`e) ∨ ⊥

Exercise 3.8
complete the run of the algorithm
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Proof generation

If the symbolic model checker terminates with the answer Safe, then it must
also report a proof of the safety, which is the reach map.

It has implicitly computed a Hoare style proof of P = (V , L, `0, `e ,E ).

(`, ρ(V ,V ′), `′) ∈ E {reach(`)}ρ(V ,V ′){reach(`′)}

If an LTS program has been obtained from a simple language program then
one may generate a Hoare style proof system.

Exercise 3.9
Describe the construction for the above translation
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Topic 3.6

Constraint based invariant generation
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Invariant generation using constraint solving

Invariant generation: find a safe inductive invariant map I

I This is our first method that computes the fixed point automatically
without resorting to some kind of enumeration
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Templates

Let L = {l0, . . . , ln, le},
Let V = {x1, . . . , xm}

We assume the following templates for each invariant in the invariant map.

I(l0) = 0 ≤ 0

∀i ∈ 1..n. I(li ) = (pi1x1 + . . . pimxm ≤ pi0)

I(le) = 0 ≤ −1

pij are called parameters to the templates and they define a set of candidate
invariants.
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Constraint generation

A safe inductive invariant map I must satisfy for all (li , ρ, li ′) ∈ E

sp(I(li ), ρ)⇒ I(li ′).

The above condition translates to

∀V ,V ′. (pi1x1 + . . . pimxm ≤ pi0) ∧ ρ(V ,V ′)⇒ (pi ′1x ′1 + . . . pi ′mx ′m ≤ pi ′0)

Our goal is to find pijs such that the above constraints are satisfied.
Unfortunately there is quantifier alternation in the constraints. Therefore,
they are hard to solve.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/


cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 161

Constraint solving using Farkas lemma

If all ρs are linear constraints then we can use Farkas lemma to turn the
validity question into a “conjunctive satisfiablity question”

Lemma 3.1
For a rational matrix A, vectors a and b, and constant c,
∀X . AX ≤ b ⇒ aX ≤ c iff
∃λ ≥ 0. λTA = a and λTb ≤ c
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Application of farkas lemma

Consider (li , (AV + A′V ≤ b), li ′) ∈ E

After applying Farkas lemma on

∀V ,V ′. (pi1x1 + . . . pimxm ≤ pi0) ∧ ρ(V ,V ′)⇒ (pi ′1x ′1 + . . . pi ′mx ′m ≤ pi ′0),

we obtain

∃λ0, λ. (λ0[pi1, . . . , pim] + λTA) = 0 ∧ λTA′ = [pi ′1, . . . , pi ′m]∧
λ0pi0 + λTb ≤ pi ′0

All the variables pijs and λs are existentially quantified, which can be solved
by a quadratic constraints solver.
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Example: invariant generation

Example 3.12

Consider the following
example

`0

`1

`e

x := 2, y := 3

y ≤ 10,
x := x− 1,
y := y + 1

y > 10 ∧ x ≥ 10

Let V = [x, y]

We assume the following invariant template at `1:
I(`1) = (p1x + p2y ≤ p0)

We generate the following constraints for program
transitions:

For `0 to `1,
∀x′, y′. x′ = 2 ∧ y′ = 3⇒ (p1x

′ + p2y
′ ≤ p0)

For `1 to `1,
∀x, y, x′, y′. (p1x + p2y ≤ p0)∧ y ≤ 10∧ x′ = x− 1∧

y′ = y + 1 ⇒ (p1x
′ + p2y

′ ≤ p0)

For `1 to `e ,
∀x, y. (p1x + p2y ≤ p0) ∧ y > 10 ∧ x ≥ 10⇒ ⊥
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Example: invariant generation(contd.)

Now consider the second constraint:
∀x, y, x′, y′.
(p1x + p2y ≤ p0) ∧ y ≤ 10 ∧ x′ = x− 1 ∧ y′ = y + 1 ⇒ (p1x

′ + p2y
′ ≤ p0)

Matrix view of the transition relation y ≤ 10 ∧ x′ = x− 1 ∧ y′ = y + 1
0 1 0 0
1 0 −1 0
−1 0 1 0
0 1 0 −1
0 −1 0 1




x

y

x′

y′

 ≤


10
1
−1
−1
1
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Example: invariant generation(contd.)
Applying farkas lemma on the constraint, we obtain

[
λ0 λ1 λ2 λ3 λ4 λ5

]


p1 p2 0 0
0 1 0 0
1 0 −1 0
−1 0 1 0
0 1 0 −1
0 −1 0 1

 =
[

0 0 p1 p2

]

[
λ0 λ1 λ2 λ3 λ4 λ5

]


p0

10
1
−1
−1
1

 ≤
[

p0

]

Exercise 3.10
Apply farkas lemma on the other two implications
∀x′, y′. x′ = 2 ∧ y′ = 3⇒ (p1x

′ + p2y
′ ≤ p0)

∀x, y. (p1x + p2y ≤ p0) ∧ y > 10 ∧ x ≥ 10⇒ ⊥
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Does this method work?

I Quadratic constraint solving does not scale

I For small tricky problems, this method may prove to be useful
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Topic 3.7

Assignment
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Problem 1

1. (1) Prove the following Hoare triple is valid

{true}

assume( n > 1);

i = n;

x = 0;

while(i > 0) {

x = x + i;

i = i - 1;

}

{ 2x = n*(n+1) }
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Problem 2

2. (1) Fill the annotations to prove following program correct via Vcc

#include <vcc.h>

int main()

{

int x = 0, y = 2;

_(assume 1==1 )

while( x < 3 ) _(invariant ... ) {

x = x + 1;

y = 3;

}

_(assert y == 3)

return 0;

}
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Problem 3

3. (2) extend your tool in the last assignment in the following ways
I define classes for

I locations,
I variables,
I guarded commands,
I transitions (give names to the transitions), and
I programs

I encode the program in example 3.12 using the class
I Write a function that computes path constraints for a given path
I Read path from command line as space separated transition names and

output the path constraints
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