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Where are we?

I Labelled transition system

I Symbolic methods for program analysis (without abstraction)

I SMT solving

I theory solvers for various theories

I theory combination (should have been covered in detail!)

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Lecture plan

I Labelled transition system (reminder)

I Fixed point computation and Abstraction

I Lattice theory

I Maps and Galios(read galva) connection

I Fixed point theory

I Asynchronous iterations for fixed points
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Topic 3.1

Labeled transition system (reminder)
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labeled transition system (LTS)

Definition 3.1
A program P is a tuple (V , L, `0, `e ,E ), where

I V is a vector of variables,

I L be set of program locations,

I `0 is initial location,

I `e is error location, and

I E ⊆ L× Σ(V ,V ′)× L is a set of labeled transitions between locations.

Example 3.1 `0

`1

`e

x ′ = 1

x < 0

x ′ = x + 2

V = [x]
L = {`0, `1, `e}
E = {(`0, x

′ = 1, `1),
(`1, x

′ = x + 2, `1),
(`1, x < 0, `e)}

Notation:
If e = (`, ρ(V ,V ′), `′) ∈ E ,
then
e(V ,V ′) , ρ(V ,V ′),
e(loc) , ` and
e(loc ′) , `′

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Semantics
Consider program P = (V , L, `0, `e ,E ).

Definition 3.2
A state s = (`, v) of a program is program location ` and a valuation v of V .

Let v(x) , value of variable x in v
For state s = (`, v), let s(x) , v(x) and s(loc) , `

Definition 3.3
A path π = e1, . . . , en in P is a sequence of transitions such that, for each
0 < i < n, ei = (`i−1, , `i ) and ei+1 = (`i , , `i+1).

Definition 3.4
An execution corresponding to path e1, . . . , en is a sequence of states
(`0, v0), . . . , (`n, vn) such that ∀i ∈ 1..n, ei (vi−1, vi ) holds true.
An execution belongs to P if there is a corresponding path in P.

Definition 3.5
P is safe if there is no execution of P from `0 to `e .

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Reminder: symbolic strongest post

sp : Σ(V )× Σ(V ,V ′)→ Σ(V )

We define symbolic post over labels of P as follows.

sp(F , ρ) , (∃V : F (V ) ∧ ρ(V ,V ′))[V /V ′]

We assume that ρ and F are in a theory that admits quantifier elimination

Using polymorphism, we also define sp((`,F ), (`, ρ, `′) ∈ E ) , (`′, sp(F , ρ)).

For path π = e1, .., en of P, sp((`,F ), π) , sp(sp((`,F ), e1), e2..en).

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Topic 3.2

Fixed point computation and Abstraction
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Reachability as fixed point equation

Consider program P = (V , L, `0, `e ,E )

Let X` be a variable representing the reachable valuations at location ` ∈ L

We may compute reachability using sp via the following fixed point equation

X`0 = >

∀`′ ∈ L \ {`0}. X`′ =
∨

(`,ρ,`′)∈E

sp(X`, ρ)

Note: For now, we are ignoring the constraints posed by the error location.

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Fixed point computation

Initial assignment to variables and iteratively compute the fixed point

Let X i
` , value of X` at ith iteration.

In our setting, initially: X 0
`0
, > and X 0

` , ⊥ for each ` 6= `0

and at each iteration

X k+1
`0

= >

∀`′ ∈ L \ {`0}. X k+1
`′ = X k

`′ ∨
∨

(`,ρ,`′)∈E

sp(X k
` , ρ)

If ∀`. X k
` = X k+1

` , then we say that the iterations have converged at iteration
k and we have computed the fixed point.

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Example: diverging analysis with sp

Example 3.2

Consider program:

`0

`1

`e

x := 0

x < 0

x + +;

Fixed point equations:
X`0 = >
X`1 = sp(X`0 , x

′ = 0) ∨ sp(X`1 , x
′ = x + 1)

X`e = sp(X`1 , x < 0 ∧ x ′ = x)

Iterates:
X 0
`0

:= >,X 0
`1

:= ⊥,X 0
`e

:= ⊥

X 1
`0

:= >,X 1
`1

:= (x = 0),X 1
`e

:= ⊥

X 2
`0

:= >
X 2
`1

:= X 1
`1
∨ sp(X 1

`1
, x ′ = x + 1) ∨ sp(X 1

`0
, x ′ = 0)

:= (x = 0)∨ sp(x = 0, x ′ = x + 1)∨ sp(>, x ′ = 0)
:= (x = 0 ∨ x = 1 ∨ x = 0) := (0 ≤ x ≤ 1)

X 2
`e

:= sp(X 1
`1
, x < 0 ∧ x ′ = x)

:= sp(x = 0, x < 0 ∧ x ′ = x) := ⊥

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Example: diverging analysis with sp(contd.)

`0

`1

`e

x := 0

x < 0

x + +;

Iterates(contd.):

X 3
`0

:= >,X 3
`1

:= (0 ≤ x ≤ 2),X 3
`e

:= ⊥
...
X n
`0

:= >,X n
`1

:= (0 ≤ x ≤ n − 1),X n
`e

:= ⊥
...will never converge

How to compute fixed point effectively?

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Abstract post sp#

Now we introduce the key method of
verification

Let us define
sp# : Σ(V )× Σ(V ,V ′)→ Σ(V )

Abstract post must satisfy the following condition over labels of P

sp(F , ρ)⇒ sp#(F , ρ)

It is up to us how we choose sp# that satisfies the above condition

Important: We have defined sp# using formulas. However, any data type
(domain) can work that is capable of representing set of states.

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Abstract Fixed point

Replace sp by sp# for faster convergence

initially: X 0
`0
, > and X 0

` , ⊥ for each ` 6= `0

and at each iteration

X k+1
`0

= >

∀`′ ∈ L \ {`0}. X k+1
`′ = X k

`′ ∨
∨

(`,ρ,`′)∈E

sp#(X k
` , ρ)

After convergence, X` will be a superset of reachable states at `.

We will learn lattice theory to guide us in choosing sp#

such that we have better guarantee of convergence.

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Topic 3.3

Lattice theory

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/


cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 16

Partial order and poset

Definition 3.6
On a set X , ≤ ⊆ X × X is a partial order if

I reflexive: ∆X ⊆ ≤
I anti-symmetric: ≤ ∩ ≤−1⊆ ∆X

I transitive: ≤ ◦ ≤ ⊆ ≤

We will use x ≤ y to denote (x , y) ∈ ≤
Let x < y , (x ≤ y ∧ x 6= y)

Definition 3.7
A poset (X ,≤) is a set equipped with partial order ≤ on X

Example 3.3

(N,≤)

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Covering relation

Definition 3.8
The covering relation l for poset (X ,≤) is

x l y , (x < y) ∧ ¬(∃z .x < z ∧ z < y)

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Hasse diagrams

We draw posets (X ,≤) as DAG. Nodes are from X and edges are from l.

DAG will be vertically aligned, i.e., if there is an edge between x and y , and
x is located below y then x l y .

Example 3.4

Nodes at same level are incomparable.

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Chain and antichain

Definition 3.9
For a poset (X ,≤), C ⊆ X is chain if ∀x , y ∈ C . x ≤ y ∨ y ≤ x

Definition 3.10
For a poset (X ,≤), C ⊆ X is antichain if ∀x , y ∈ C . x ≤ y ⇒ y = x

antichain

chain

I (X ,≤) satisfies ascending chain condition if for any sequence
x0 ≤ x1 ≤ x2 ≤ . . . , ∃k .∀n > k xk = xn

I symmetrically descending chain condition is defined
I (X ,≤) is called well ordered if it satisfies descending chain condition

Exercise 3.1 Prove (X ,≤) has no infinite chains if it satisfies both ascending
and descending chain condition

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Minimum(-mal) and Maximum(-mal) elements

For poset (X ,≤) and S ⊆ X ,
minimal(S) , {x ∈ S |¬∃y ∈ S . y < x}

maximal(S) , {x ∈ S |¬∃y ∈ S . y > x}

min(S) , x if {x} = minimal(S) //min(S) may not exist

max(S) , x if {x} = maximal(S)

If min(X ) exists then denoted by ⊥

If max(X ) exists then denoted by >

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Upper bound and lower bound
For poset (X ,≤),

I x ∈ X is upper bound of S ⊆ X if ∀y ∈ S . y ≤ x

I x ∈ X is lower bound of S ⊆ X if ∀y ∈ S . x ≤ y

Definition 3.11
x ∈ X is least upper bound(lub) of S if x is upper bound of S and

∀u. (∀y ∈ S . y ≤ u)⇒ x ≤ u

lub is usually denoted by ∨,t.

Definition 3.12
x ∈ X is greatest lower bound(glb) of S if x is lower bound of S and

∀u. (∀y ∈ S . u ≤ y)⇒ u ≤ x

lub is usually denoted by ∧,u
Note: lub and glb may not exist.

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Uniqueness of lub an glb

Theorem 3.1
For poset (X ,≤) and S ⊆ X , if tS exists then it is unique.

Proof.

I Suppose x and y are tS .

I By definition of t, x and y both are upper bounds of S .

I Since x is upper bound and y is tS , therefore y ≤ x .

I Symmetrically, x ≤ y .

I Due to anti-symmetry, x = y .

Therefore, t and u are partial functions : 2X → X

I If S = {x , y}, we will write x t y

I The infix usage usually means, lub of finite elements

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Semi-lattice

Definition 3.13
A join semi-lattice (X ,v,t) is a poset (X ,v) such that ∀x , y ∈ X . x t y
exists.

Theorem 3.2
A join semi-lattice (X ,v,t) satisfies

I (a t b) t c = a t (b t c) (associativity)

I (a t b) = (b t a) (commutativity)

I a = (a t a) (idempotence)

Exercise 3.2
Prove 3.2

Equivalently, we define meet semi-lattice.

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Equivalent definition of semi-lattice
Theorem 3.3
Let X be a set with function t : X × X → X satisfying

(a t b) t c = a t (b t c), (a t b) = (b t a), and (a t a) = a.

Let a v b , (a t b) = b. Then, (X ,v,t) is a join semi-lattice.

Proof.
We need to show that v satisfies poset conditions and t is lub.

1. a v a holds because (a t a) = a, (reflexivity proved)

2. Assume a v b and b v c, and by def of v, (a t b) = b and (b t c) = c

3. By substitution, ((a t b) t c) = c. By associativity, a t (b t c) = c

4. Due to 3, a t c = c, therefore a v c, (transitivity proved)

5. Assume a v b and b v a, and by def of v, (a t b) = b and (b t a) = a

6. By commutativity, a = b (anti-symmetry proved)

7. Since a t (a t b) = (a t a) t b = a t b, b v a t b. Similarly, a v a t b

8. Let a v x and b v x . Therefore,
(a t x) = x = (b t x)⇒ (a t (b t x)) = x ⇒ ((a t b) t x) = x ⇒ (a t b) v x

9. Due to 7 and 8, a t b = lub({a, b})

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Lattice

Definition 3.14
A lattice (X ,v,t,u) is a poset (X ,v) such that ∀x , y ∈ X both x t y and
x u y exist.

Properties
I (a u b) u c = a u (b u c) (associativity)
I (a t b) t c = a t (b t c)
I (a u b) = (b u a) (commutativity)
I (a t b) = (b t a)
I (a u a) = a = (a t a) (idempotence)
I a u (a t b) = a (absorption)
I b t (a u b) = b

The above properties are axiomatization of lattice
Note: Observe that distributivity is missing!!!

Exercise 3.3
a. Prove absorption.
b. Show that semi-lattices (X ,v1,t) and (X ,v2,u), and absorption
properties imply (X ,v1,t,u) is a lattice.

u and t are forced to
exist only for finite set

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Complete partial order/lattice

Definition 3.15
A complete partial order(cpo) is a poset (X ,v) such that every increasing
chain in X has a lub in X

Definition 3.16
A complete lattice is a poset (X ,v) such that for all S ⊆ X has tS in X .

Theorem 3.4
a. complete lattice has ⊥
b. complete lattice has >
c. uS , t{y |∀x ∈ S . y v x}

Exercise 3.4
Prove 3.4(a) and (b)

Proof 3.4c.
S

Y = {y |∀x ∈ S . y v x}

∈ ub(Y )

∈ lb(S)
tYlb(S) 3

Exercise 3.5
a. Finite lattices are complete
b. Show if (X ,v,t,u) satisfies ACC and has ⊥ then it is a complete lattice.

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Moore family

Definition 3.17
For a poset (X ,v) with > element, a moore family M ⊆ X is such that

I > ∈ M

I ∀S ⊆ M. u S exists and uS ∈ M

Theorem 3.5
Let (X ,≤) be a poset with > element. If M ⊆ X is a moore family then
(M,v,>,uM) is a complete lattice.

Proof.

1. (X ,≤) is poset then (M,≤) is a poset

2. Since ∀S ⊆ M. u S exists, M is a complete lattice due to Theorem 3.4.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/


cbna Program verification 2016 Instructor: Ashutosh Gupta TIFR, India 28

Hierarchy of objects

We have seen the following objects

Set X

Poset (X ,v)

Semi-lattice (X ,v,t) and (X ,v,u)

Lattice (X ,v,t,u)

cpo

Complete lattice (X ,v,>,⊥,t,u)Moore family

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Topic 3.4

Maps and Galois connection

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Morphisms

Definition 3.18
For sets X and Y , f : X → Y is a morphism relative to functions g : X → X
and g ′ : Y → Y if

∀x . f (g(x)) = g ′(f (x))

A morphism may be defined relative to relations

Definition 3.19
For sets X and Y , f : X → Y is a morphism relative to relations R : X × X
and R ′ : Y × Y such that

∀x , y . (x , y) ∈ R ⇒ (f (x), f (y)) ∈ R ′

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Monotone maps

Definition 3.20
For posets (X ,≤) and (Y ,v), f : X → Y is a monotone map if

∀x , y ∈ X . x ≤ y ⇒ f (x) v f (y)

Theorem 3.6
For posets (X ,≤) and (Y ,v), let f : X → Y be monotone map. For S ⊆ X ,
∨S and tf (S) exist then

f (∨S) v tf (S)

Proof.

S

∨S f (∨S) ∈ ub(f (S))
f

f

f (S)

tf (S)

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Order embedding

Definition 3.21
For posets (X ,≤) and (Y ,v), f : X → Y is an order embedding if

∀x , y ∈ X . x ≤ y⇔f (x) v f (y)

Theorem 3.7
For posets (X ,≤) and (Y ,v), let f : X → Y be order embedding then f is
injective.

Exercise 3.6
Prove 3.7

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Order isomorphism

Definition 3.22
For posets (X ,≤) and (Y ,v),
f : X → Y is an order isomorphism if f is order embedding and onto.
(X ,≤) and (Y ,v) are order isomorphic if there is an order isomorphism
between then.

Theorem 3.8
Posets (X ,≤) and (Y ,v) are order-isomorphic iff there exists f : X → Y
and g : Y → X such that

I f ◦g = 1X ,

I g◦f = 1Y , and

I f and g are monotone.

Exercise 3.7
Prove theorem 3.8

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Continuous maps

Definition 3.23
For posets (X ,≤) and (Y ,v), f : X → Y is continuous (upper-continuous)
if for all chains C ⊆ X such that ∨C exists then tf (C ) exists and

f (∨C ) = tf (C )

Symmetrically, lower-continuous is defined.

Theorem 3.9
Continuous maps are monotonic

Exercise 3.8
Show if x v y and f is continuous then f (y) = f (x) t f (y)

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Closure operators

Definition 3.24
On a poset (X ,≤), f is an upper closure operator if for all x , y ∈ X

I x ≤ f (x) (extensive)

I x ≤ y ⇒ f (x) ≤ f (y), and (monotone)

I f (f (x)) = f (x). (idempotent)

Theorem 3.10
f is upper closure operator iff x ≤ f (y)⇔ f (x) ≤ f (y)

Proof.
Assume f is upper closer

1. x ≤ f (y)⇒ f (x) ≤ f (f (y))⇒ f (x) ≤ f (y) (proved forward implication)

2. f (x) ≤ f (y)⇒ x ≤ f (x) ≤ f (y)⇒ x ≤ f (y) (proved backward implication)

Assume x ≤ f (y)⇔ f (x) ≤ f (y)

1. f (x) ≤ f (x)⇒ f ≤ f (x) (proved extensive)

2. x ≤ y ⇒ x ≤ y ≤ f (y)⇒ x ≤ f (y)⇒ f (x) ≤ f (y) (proved monotonic)

3. f (x) ≤ f (x)⇒ f (f (x)) ≤ f (x) and f (f (x)) ≤ f (f (x))⇒ f (x) ≤ f (f (x)) (proved
idempotent)

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Fixed points of closure operators

Theorem 3.11
An upper closure operator is uniquely defined by its fixed points

Proof.
Let f and g be two upper closure operators that have same fixed points.
But, differ at point x , i.e., f (x) 6= g(x).

due to idempotence of f and g

due to shared fixed points

due to extensive property

due to monotone g

due to monotone f
Contradiction: f (x) = g(x)

x

f (x) g(x)

f g

f

gg

f
≥

≤

Exercise 3.9
a. Show f (x) t f (y) is a fixed point
b. Show image of complete lattice by closure operator is complete lattice

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Galois connection

Definition 3.25
For posets (X ,≤) and (Y ,v), a pair of maps (α, γ) of maps α : X → Y and
γ : Y → X is a galois connection if

∀x ∈ X∀y ∈ Y . α(x) v y ⇔ x ≤ γ(y)

which is usually written

(X ,≤) −−−→←−−−α
γ

(Y ,v)

α and γ are called upper and lower adjoints respectively.

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Unique adjoints

Theorem 3.12
In (X ,≤) −−−→←−−−α

γ
(Y ,v), α uniquely defines γ and vice-versa.

α(x) = u{y |x ≤ γ(y)} γ(y) = ∨{x |α(x) v y}

Proof.

I By definition of meet, u{y |α(x) v y} exists and

α(x) = u{y |α(x) v y}

I By def. of galois connection

α(x) = u{y |x ≤ γ(y)}

Symmetrically for γ(x).
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Properties galois connection

Let (X ,≤) −−−→←−−−α
γ

(Y ,v) then

1. ∀x ∈ X .x ≤ γ◦α(x)

2. ∀y ∈ Y .α◦γ(y) v y

3. α is monotone

4. γ is monotone

5. α◦γ◦α = α

6. γ◦α◦γ = γ

7. α is onto ⇔ γ is one-to-one ⇔ α◦γ = 1X

8. γ is onto ⇔ α is one-to-one ⇔ γ◦α = 1Y

Exercise 3.10
Prove the above properties

Exercise 3.11
Prove properties 1-4 also define galois connection
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Topic 3.5

Fixed point theory
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Fixed points

Let X be a set.
A fixed point of a operator f : X → X is x ∈ X such that f (x) = x

Let f be an operator on poset (X ,≤):

I fp(f ) , {x |f (x) = x}
I prefp(f ) , {x |x ≤ f (x)}
I postfp(f ) , {x |f (x) ≤ x}
I least fixed point lfp(f ) , min(fp(f ))

I greatest fixed point gfp(f ) , max(fp(f ))

Note: fp(f ) = prefp(f )∩postfp(f )
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Knaster-Tarski fixed point theorem

Theorem 3.13
A monotonic map f : X → X on a complete lattice (X ,v,>,⊥,u,t) has a
least fixed point and a greatest fixed point, which are

lfp(f ) = upostfp(f ) = u{x |f (x) v x}
gfp(f ) = tprefp(f ) = t{x |x v f (x)}

Proof. Reasons: complete lattice ⇒ u exist
x ∈ postfp(f )
f is monotone

transitivity
f (a) is lb and a is glb

f is monotone
def. postfp(f )

def. upostfp(f )

Result: f (a) = a ∈ postfp(f )

postfp(f ) 3 x

upostfp(f ) = a

f (x)

f

f (a)

f
f (f (a))

f

∈ postfp(f )

Since fp(f ) ⊆ postfp(f ), a is lfp. (why postfp(f ) 6= ∅?)
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lfp greater than a prefix point

Definition 3.26
Let f : X → X be a monotonic map on a complete lattice (X ,v,>,⊥,u,t).
Let a ∈ X . Let lfpa(f ) be the least fixed point of f greater than a, i.e.,

a v lfpa(f ) lfpa(f ) = f (lfpa(f )) ∀x . a v x = f (x)⇒ lfpa(f ) v x

Theorem 3.14
If a ∈ prefp(f ) then lfpa(f ) exists and lfpa(f ) = lfp(λx .a t f (x)).

Proof.
1. Let p = lfp(λx .a t f (x)). So, p = a t f (p).

2. By def. of t, a v p, the first condition satisfied

3. Due to monotonic f , f (a) v f (p)

4. Due to a v f (a) and transitivity, a v f (p)

5. Therefore, f (p) = a t f (p) and p = f (p), the second condition satisfied

6. Choose q such that a v q and q = f (q), then a u f (q) = q.

7. Therefore, q ∈ postfp(λx .a t f (x)).

8. Kanaster-Tarski, p v q, the third condition satisfied
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Fixed point lattice

Theorem 3.15
Let f : X → X be a monotonic map on a complete lattice (X ,v,>,⊥,u,t).
fp(f ) forms a complete lattice.

Exercise 3.12
For S ⊆ fp(f ), show that lfptS(f ) exists and is lub of X in poset (fp(f ),v)
Hint: use previous theorem
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Fixed point compose

Theorem 3.16
Let (X ,≤) and (Y ,v) be complete lattices, and f : X → Y and g : Y → X
are monotonic then

g(lfp(f ◦g)) = lfp(g◦f )

Proof.

1. (g◦f )g((lfp(f ◦g))) = g(f ◦g(lfp(f ◦g))) = g(lfp(f ◦g))

2. Therefore, g(lfp(f ◦g)) is a fixed point of g◦f
3. Assume x = g◦f (x)

4. ⇒ f (x) = f ◦g◦f (x) ⇒ f (x) = f ◦g◦f (x) ⇒ f (x) = f ◦g(f (x))

5. Therefore, by Kanaster-tarski, lfp(f ◦g) v f (x)

6. Since g is monotone, g(lfp(f ◦g)) ≤ g◦f (x)

7. Due to 3, g(lfp(f ◦g)) ≤ x

8. Therefore, g(lfp(f ◦g)) is lfp of g◦f
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Greater function

Theorem 3.17
Let f , g : X → X be monotonic maps on a complete lattice
(X ,v,>,⊥,u,t) such that for all x ∈ X , f (x) v g(x) then

lfp(f ) v lfp(g)

Exercise 3.13
Prove the above theorem
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Transfinite iterates
Let f : X → X be an operator on a poset (X ,v,u,t).

Definition 3.27
For some ordinal number λ, the upward iterates (Ik , k ≤ λ) of f from a is a
sequence such that

I Ik = a

I Ik+1 = f (Ik)

I Iλ = tk<λIk

Definition 3.28
For some ordinal number λ, the downward iterates (Ik , k ≤ λ) of f from a is
a sequence such that

I Ik = a

I Ik+1 = f (Ik)

I Iλ = uk<λIk

In poset, u and t are partially defined. Consequently, iterates are partially
defined. If X is a lattice or cpo then iterates are well-defined.
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A condition for finite iterates converging to lfp

Theorem 3.18
If

I (X ,v,t,u) is poset,

I f : X → X is a monotone operator,

I a ∈ prefp(f ),

I upward iterates (Ik , k ≤ ω) of f from a exists, and

I Iω ∈ fp(f )

then (Ik , k ≤ ω) is increasing chain and Iω = lfpa(f ).

Proof.
1. Since a v f (a), I0 v In

2. Induction hyp, In v In+1. Due to monotone f , f (In) v f (In+1)⇒ In+1 v In+2

3. By induction, ∀n < ω. In v In+1

4. Since Xω = tk<ωI
k and Xω exists, ∀n ≤ ω. In v In+1 (proved increasing chain)

5. Since a = I0, a v Xω

6. Assume a = I0 v x = f (x). Since f is monotone, I n v x ⇒ In+1 = f (In) v f (x) = x

7. By induction and def. of Xω, ∀n ≤ ω.In v x . Therefore Xω = lfpa(f )

Assumed Iω ∈ fp(f ).
When Iω ∈ fp(f )?
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Kleene fixed point theorem

Theorem 3.19
If

I (X ,v,t) is cpo,

I f : X → X is upper continuous,

I a ∈ prefp(f ), and

I (Ik , k ≤ ω) be upward iterates of f from a

then Iω = lfpa(f ).

Proof.

1. f is continuous ⇒ f is monotone ⇒ (Ik , k ≤ ω) increasing chain

2. Since X is cpo, Iω exists.

3. f (Iω) = f (tk<ωI
k)

4. = tk<ωf (Ik), since f is continuous.

5. = t0<k<ωI
k = a t0<k<ω Ik = tk<ωI

k = Iω

6. Due to previous theorem, Iω = lfpa(f )
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Knaster-Tarski for CPOs
We can prove Knaster-Tarski Theorem like results on cpos.

Theorem 3.20
If

I (X ,v,t) is cpo,

I f : X → X is upper continuous, and

I a ∈ prefp(f )

then lfpa(f ) = u{x ∈ X |a v x ∧ f (x) v x}.

Proof.
Let P = {x ∈ X |a v x ∧ f (x) v x}. Let (Ik , k ≤ ω) are iterates of f from a.

1. Due to previous theorem, lfpa(f ) = Iω. And, Iω ∈ P.

2. Choose x , a v x ∈ P

3. Induction hyp, In ≤ x ⇒ f (In) ≤ f (x) ≤ x ⇒ In+1 ≤ x

4. By induction, ∀n < ω, In ≤ x .

5. By def. of Iω, Iω ≤ x

6. Therefore, lfpa(f ) v uP
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Fixed point for monotone functions on cpos

Theorem 3.21
If

I (X ,v,t) is cpo,

I f : X → X is monotone function,

I a ∈ prefp(f ), and

I for some ordinal λ, (Ik , k ≤ λ) be upward iterates of f from a

then (Ik , k ≤ λ) is increasing chain, which is ultimately stationary and
converges to lfpa(f ).

We will skip the proof. However, the length to the stationary point is
bounded by the ordinal size of the cpo

Monotone is weaker condition than contin-
uous. Therefore, we need larger ordinals
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Topic 3.6

Asynchronous iterations for fixed points
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System of simultaneous fixed point equations
For i ∈ 1..n, (Xi ,vi ,⊥i ,>i ,ti ,ui ) be complete lattices.

Let complete lattice (X ,v,⊥,>,t,u) be

I X = X1 × · · · × Xn

I x v y = (∧ni=1xi vi yi )

Let f : X × X and fi : X × Xi be fi (X ) = (f (X ))i

The fixed point equation x = f (x) can be written as the following
simultaneous fixed point equation.

x1 =f1(x1, . . . , xn)

...

xn =fn(x1, . . . , xn)
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Asynchronous iterations
We need not update each component at each iteration. We only need to
ensure that each component is updated fairly.

Definition 3.29 (Chaotic iterations)

Let (Jk , k ∈ O) be a sequence of subsets of [1, n], which is weakly fair, i.e.,

∀i ∈ 1..n ∀j ∈ O. ∃k > j . i ∈ Jk

The iterates (Ik , k < λ) starting from a ∈ X for F defined by (Jk , k ∈ O) is

I0 = a

Iki = fi (I
k−1) if i ∈ Jk

Iki = Ik−1 if i 6∈ Jk

Iλ = tk<λI k

Theorem 3.22
(Ik , k < λ) is increasing chain, ultimately stationary, and limit is lfpa(f )
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Example: asynchronous iterations

I Jacobi iterations: Jk = [1, n]
I update every component in each step

I Gauss-Seidel iterations: Jk = {k mod n}
I update only one component in each step
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End of Lecture 3
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