Program verification 2016

Lecture 3: Lattice theory and Galois connection

Instructor: Ashutosh Gupta

TIFR, India

Compile date: 2016-03-21

- Labelled transition system
- Symbolic methods for program analysis (without abstraction)
- SMT solving
- theory solvers for various theories
- theory combination (should have been covered in detail!)

Lecture plan

- Labelled transition system (reminder)
- Fixed point computation and Abstraction
- Lattice theory
- Maps and Galios(read galva) connection
- Fixed point theory
- Asynchronous iterations for fixed points

Topic 3.1

Labeled transition system (reminder)

labeled transition system (LTS)

Definition 3.1

A program P is a tuple $(V, L, \ell_0, \ell_e, E)$, where

- V is a vector of variables,
- L be set of program locations,
- ℓ_0 is initial location,
- ℓ_e is error location, and
- $E \subseteq L \times \Sigma(V, V') \times L$ is a set of labeled transitions between locations.

Semantics

Consider program $P = (V, L, \ell_0, \ell_e, E)$.

Definition 3.2

A state $s = (\ell, v)$ of a program is program location ℓ and a valuation v of V.

Let $v(x) \triangleq$ value of variable x in v For state $s = (\ell, v)$, let $s(x) \triangleq v(x)$ and $s(loc) \triangleq \ell$

Definition 3.3

A path $\pi = e_1, \ldots, e_n$ in P is a sequence of transitions such that, for each 0 < i < n, $e_i = (\ell_{i-1}, ..., \ell_i)$ and $e_{i+1} = (\ell_i, ..., \ell_{i+1})$.

Definition 3.4

An execution corresponding to path e_1, \ldots, e_n is a sequence of states $(\ell_0, v_0), \ldots, (\ell_n, v_n)$ such that $\forall i \in 1..n, e_i(v_{i-1}, v_i)$ holds true. An execution belongs to P if there is a corresponding path in P.

Definition 3.5

 P is safe if there is no execution of P from ℓ_0 to ℓ_e .

 $@0 \otimes 0$ Program verification 2016

 Instructor: Ashutosh Gupta

Reminder: symbolic strongest post

$$sp: \Sigma(V) imes \Sigma(V, V') o \Sigma(V)$$

We define symbolic post over labels of P as follows.

$$sp(F, \rho) \triangleq (\exists V : F(V) \land \rho(V, V'))[V/V']$$

We assume that ρ and ${\it F}$ are in a theory that admits quantifier elimination

Using polymorphism, we also define $sp((\ell, F), (\ell, \rho, \ell') \in E) \triangleq (\ell', sp(F, \rho)).$

For path
$$\pi = e_1, ..., e_n$$
 of P , $sp((\ell, F), \pi) \triangleq sp(sp((\ell, F), e_1), e_2...e_n)$.

Topic 3.2

Fixed point computation and Abstraction

Reachability as fixed point equation

Consider program $P = (V, L, \ell_0, \ell_e, E)$

Let X_ℓ be a variable representing the reachable valuations at location $\ell \in L$

We may compute reachability using sp via the following fixed point equation

$$egin{aligned} X_{\ell_0} &= op \ & orall \ell' \in L \setminus \{\ell_0\}. \ X_{\ell'} &= \bigvee_{(\ell,
ho,\ell') \in E} sp(X_\ell,
ho) \end{aligned}$$

Note: For now, we are ignoring the constraints posed by the error location.

Fixed point computation

Initial assignment to variables and iteratively compute the fixed point

Let $X_{\ell}^{i} \triangleq$ value of X_{ℓ} at *i*th iteration.

In our setting, initially: $X_{\ell_0}^0 \triangleq \top$ and $X_{\ell}^0 \triangleq \bot$ for each $\ell \neq \ell_0$ and at each iteration

$$egin{aligned} X^{k+1}_{\ell_0} &= op \ orall \ell' \in L \setminus \{\ell_0\}. \ X^{k+1}_{\ell'} &= X^k_{\ell'} \lor igvee_{(\ell,
ho,\ell') \in E} sp(X^k_\ell,
ho) \end{aligned}$$

If $\forall \ell$. $X_{\ell}^{k} = X_{\ell}^{k+1}$, then we say that the iterations have converged at iteration k and we have computed the fixed point.

Example: diverging analysis with sp

Example 3.2

Consider program:

$$\begin{array}{l} \text{Fixed point equations:} \\ X_{\ell_0} = \top \\ X_{\ell_1} = sp(X_{\ell_0}, x'=0) \lor sp(X_{\ell_1}, x'=x+1) \\ X_{\ell_e} = sp(X_{\ell_1}, x<0 \land x'=x) \end{array}$$

Final maint amounting

Iterates:

$$X_{\ell_0}^0 := \top, X_{\ell_1}^0 := \bot, X_{\ell_e}^0 := \bot$$

 $X_{\ell_0}^1 := \top, X_{\ell_1}^1 := (x = 0), X_{\ell_e}^1 := \bot$
 $X_{\ell_0}^2 := \top$
 $X_{\ell_1}^2 := X_{\ell_1}^1 \lor sp(X_{\ell_1}^1, x' = x + 1) \lor sp(X_{\ell_0}^1, x' = 0)$
 $:= (x = 0) \lor sp(x = 0, x' = x + 1) \lor sp(\top, x' = 0)$
 $:= (x = 0 \lor x = 1 \lor x = 0) := (0 \le x \le 1)$
 $X_{\ell_e}^2 := sp(X_{\ell_1}^1, x < 0 \land x' = x)$
 $:= sp(x = 0, x < 0 \land x' = x) := \bot$

Instructor: Ashutosh Gupta

Example: diverging analysis with *sp*(contd.)

lterates(contd.):

How to compute fixed point effectively?

Abstract post $sp^{\#}$

Now we introduce the key method of verification

Let us define

 Θ

$$\textit{sp}^{\#}: \Sigma(V) \times \Sigma(V,V') \to \Sigma(V)$$

Abstract post must satisfy the following condition over labels of P

$$sp(F, \rho) \Rightarrow sp^{\#}(F, \rho)$$

It is up to us how we choose $sp^{\#}$ that satisfies the above condition

Important: We have defined $sp^{\#}$ using formulas. However, any data type (domain) can work that is capable of representing set of states.

Abstract Fixed point

Replace sp by $sp^{\#}$ for faster convergence

initially: $X^0_{\ell_0} \triangleq \top$ and $X^0_{\ell} \triangleq \bot$ for each $\ell \neq \ell_0$ and at each iteration

$$egin{aligned} X^{k+1}_{\ell_0} &= op \ orall \ell' \in L \setminus \{\ell_0\}. \ X^{k+1}_{\ell'} &= X^k_{\ell'} ee \bigvee_{(\ell,
ho,\ell')\in E} sp^\#(X^k_\ell,
ho) \end{aligned}$$

After convergence, X_{ℓ} will be a superset of reachable states at ℓ .

We will learn lattice theory to guide us in choosing $sp^{\#}$ such that we have better guarantee of convergence.

Topic 3.3

Lattice theory

Partial order and poset

Definition 3.6

On a set X, $\leq \subseteq X \times X$ is a partial order if

- reflexive: $\Delta_X \subseteq \leq$
- anti-symmetric: $\leq \cap \leq^{-1} \subseteq \Delta_X$
- transitive: $\leq \circ \leq \subseteq \leq$

We will use $x \leq y$ to denote $(x, y) \in \leq$ Let $x < y \triangleq (x \leq y \land x \neq y)$

Definition 3.7 A poset (X, \leq) is a set equipped with partial order \leq on X

Example 3.3 $(\mathbb{N}, <)$

Covering relation

Definition 3.8 The covering relation \triangleleft for poset (X, \leq) is

$$x \lessdot y \triangleq (x \lt y) \land \neg (\exists z.x \lt z \land z \lt y)$$

Hasse diagrams

We draw posets (X, \leq) as DAG. Nodes are from X and edges are from \ll .

DAG will be vertically aligned, i.e., if there is an edge between x and y, and x is located below y then $x \leq y$.

Example 3.4

Nodes at same level are incomparable.

Chain and antichain

Definition 3.9

For a poset (X, \leq) , $C \subseteq X$ is chain if $\forall x, y \in C$. $x \leq y \lor y < x$

Definition 3.10

For a poset (X, \leq) , $C \subseteq X$ is antichain if $\forall x, y \in C$. $x \leq y \Rightarrow y = x$

- (X, \leq) satisfies ascending chain condition if for any sequence $x_0 \leq x_1 \leq x_2 \leq \ldots, \exists k. \forall n > k \; x_k = x_n$
- symmetrically descending chain condition is defined
- (X, \leq) is called well ordered if it satisfies descending chain condition

Exercise 3.1 Prove (X, \leq) has no infinite chains if it satisfies both ascending and descending chain condition Instructor: Ashutosh Gupta TIFR. India Program verification 2016 Θ

Minimum(-mal) and Maximum(-mal) elements

For poset (X, \leq) and $S \subseteq X$, minimal $(S) \triangleq \{x \in S | \neg \exists y \in S. y < x\}$

 $maximal(S) \triangleq \{x \in S | \neg \exists y \in S. \ y > x\}$

 $min(S) \triangleq x$ if $\{x\} = minimal(S) / / min(S)$ may not exist

 $max(S) \triangleq x \text{ if } \{x\} = maximal(S)$

If min(X) exists then denoted by \perp

If max(X) exists then denoted by \top

Upper bound and lower bound For poset (X, \leq) ,

- $x \in X$ is upper bound of $S \subseteq X$ if $\forall y \in S$. $y \leq x$
- $x \in X$ is lower bound of $S \subseteq X$ if $\forall y \in S. x \leq y$

Definition 3.11

 $x \in X$ is least upper bound(lub) of S if x is upper bound of S and

$$\forall u. (\forall y \in S. y \leq u) \Rightarrow x \leq u$$

lub is usually denoted by \lor, \sqcup .

Definition 3.12 $x \in X$ is greatest lower bound(glb) of S if x is lower bound of S and

$$\forall u. (\forall y \in S. \ u \leq y) \Rightarrow u \leq x$$

lub is usually denoted by \wedge,\sqcap

Note: lub and glb may not exist.

Uniqueness of lub an glb

Theorem 3.1 For poset (X, \leq) and $S \subseteq X$, if $\sqcup S$ exists then it is unique. Proof.

- Suppose x and y are $\sqcup S$.
- By definition of \sqcup , x and y both are upper bounds of S.
- Since x is upper bound and y is $\Box S$, therefore $y \leq x$.
- Symmetrically, $x \leq y$.
- Due to anti-symmetry, x = y.

Therefore, \sqcup and \sqcap are partial functions : $2^X \to X$

- If $S = \{x, y\}$, we will write $x \sqcup y$
- > The infix usage usually means, lub of finite elements

Semi-lattice

Definition 3.13 A join semi-lattice (X, \sqsubseteq, \sqcup) is a poset (X, \sqsubseteq) such that $\forall x, y \in X. x \sqcup y$ exists.

Theorem 3.2 A join semi-lattice (X, \sqsubseteq, \sqcup) satisfies

$$\blacktriangleright (a \sqcup b) \sqcup c = a \sqcup (b \sqcup c)$$

$$\blacktriangleright (a \sqcup b) = (b \sqcup a)$$

(associativity) (commutativity) (idempotence)

Exercise 3.2

Prove 3.2

Equivalently, we define meet semi-lattice.

Equivalent definition of semi-lattice Theorem 3.3 Let X be a set with function $\sqcup : X \times X \to X$ satisfying

Let \land be a set with function $\Box : \land \land \land \land \to \land$ satisfying

 $(a \sqcup b) \sqcup c = a \sqcup (b \sqcup c),$ $(a \sqcup b) = (b \sqcup a),$ and $(a \sqcup a) = a.$

Let $a \sqsubseteq b \triangleq (a \sqcup b) = b$. Then, (X, \sqsubseteq, \sqcup) is a join semi-lattice. Proof.

We need to show that \sqsubseteq satisfies poset conditions and \sqcup is lub.

1. $a \sqsubseteq a$ holds because $(a \sqcup a) = a$, (reflexivity proved)

- 2. Assume $a \sqsubseteq b$ and $b \sqsubseteq c$, and by def of \sqsubseteq , $(a \sqcup b) = b$ and $(b \sqcup c) = c$
- 3. By substitution, $((a \sqcup b) \sqcup c) = c$. By associativity, $a \sqcup (b \sqcup c) = c$
- 4. Due to 3, $a \sqcup c = c$, therefore $a \sqsubseteq c$, (transitivity proved)
- 5. Assume $a \sqsubseteq b$ and $b \sqsubseteq a$, and by def of \sqsubseteq , $(a \sqcup b) = b$ and $(b \sqcup a) = a$
- 6. By commutativity, a = b (anti-symmetry proved)
- 7. Since $a \sqcup (a \sqcup b) = (a \sqcup a) \sqcup b = a \sqcup b$, $b \sqsubseteq a \sqcup b$. Similarly, $a \sqsubseteq a \sqcup b$
- 8. Let a ⊆ x and b ⊆ x. Therefore, (a ⊔ x) = x = (b ⊔ x) ⇒ (a ⊔ (b ⊔ x)) = x ⇒ ((a ⊔ b) ⊔ x) = x ⇒ (a ⊔ b) ⊆ x
 9. Due to 7 and 8, a ⊔ b = lub({a, b})

 \sqcap and \sqcup are forced to Lattice exist only for finite set Definition 3.14 A lattice $(X, \sqsubseteq, \sqcup, \sqcap)$ is a poset (X, \sqsubseteq) such that $\forall x, y \in X$ both $x \sqcup y$ and $x \sqcap y$ exist. Properties $(a \sqcap b) \sqcap c = a \sqcap (b \sqcap c)$ (associativity) $(a \sqcup b) \sqcup c = a \sqcup (b \sqcup c)$ (commutativity)

- $(a \sqcap b) = (b \sqcap a)$ $(a \sqcup b) = (b \sqcup a)$ $(a \sqcap a) = a = (a \sqcup a)$ (idempotence)
 - ▶ $a \sqcap (a \sqcup b) = a$ (absorption) \blacktriangleright $b \sqcup (a \sqcap b) = b$

The above properties are axiomatization of lattice

Note: Observe that distributivity is missing!!! Exercise 3.3

a. Prove absorption.

b. Show that semi-lattices $(X, \sqsubseteq_1, \sqcup)$ and $(X, \sqsubseteq_2, \sqcap)$, and absorption properties imply $(X, \sqsubseteq_1, \sqcup, \sqcap)$ is a lattice. Θ

Complete partial order/lattice

Definition 3.15

A complete partial order(cpo) is a poset (X, \sqsubseteq) such that every increasing chain in X has a lub in X

Definition 3.16

A complete lattice is a poset (X, \sqsubseteq) such that for all $S \subseteq X$ has $\sqcup S$ in X.

Theorem 3.4 a. complete lattice has \perp b. complete lattice has \top c. $\sqcap S \triangleq \sqcup \{y | \forall x \in S. y \sqsubseteq x\}$

Exercise 3.4 Prove 3.4(a) and (b)

Exercise 3.5

a. Finite lattices are complete

b. Show if $(X, \sqsubseteq, \sqcup, \sqcap)$ satisfies ACC and has \bot then it is a complete lattice.

Moore family

Definition 3.17

For a poset (X, \sqsubseteq) with \top element, a moore family $M \subseteq X$ is such that

- ▶ $\top \in M$
- $\forall S \subseteq M. \sqcap S \text{ exists and } \sqcap S \in M$

Theorem 3.5

Let (X, \leq) be a poset with \top element. If $M \subseteq X$ is a moore family then $(M, \subseteq, \top, \sqcap M)$ is a complete lattice.

Proof.

- 1. (X, \leq) is poset then (M, \leq) is a poset
- 2. Since $\forall S \subseteq M$. $\sqcap S$ exists, M is a complete lattice due to Theorem 3.4.

Hierarchy of objects

We have seen the following objects

Topic 3.4

Maps and Galois connection

Morphisms

Definition 3.18 For sets X and Y, $f : X \to Y$ is a morphism relative to functions $g : X \to X$ and $g' : Y \to Y$ if $\forall x. f(g(x)) = g'(f(x))$

A morphism may be defined relative to relations

Definition 3.19

For sets X and Y, $f : X \to Y$ is a morphism relative to relations $R : X \times X$ and $R' : Y \times Y$ such that

$$\forall x, y. (x, y) \in R \Rightarrow (f(x), f(y)) \in R'$$

Monotone maps

Definition 3.20 For posets (X, \leq) and (Y, \sqsubseteq) , $f : X \to Y$ is a monotone map if

$$\forall x, y \in X. \ x \leq y \Rightarrow f(x) \sqsubseteq f(y)$$

Theorem 3.6

For posets (X, \leq) and (Y, \sqsubseteq) , let $f : X \to Y$ be monotone map. For $S \subseteq X$, $\lor S$ and $\sqcup f(S)$ exist then

$$f(\lor S) \sqsubseteq \sqcup f(S)$$

Proof.

Order embedding

Definition 3.21 For posets (X, \leq) and (Y, \sqsubseteq) , $f : X \to Y$ is an order embedding if

$$\forall x, y \in X. \ x \leq y \Leftrightarrow f(x) \sqsubseteq f(y)$$

Theorem 3.7

For posets (X, \leq) and (Y, \sqsubseteq) , let $f : X \to Y$ be order embedding then f is injective.

Exercise 3.6 Prove 3.7

Order isomorphism

Definition 3.22 For posets (X, \leq) and (Y, \sqsubseteq) , $f: X \to Y$ is an order isomorphism if f is order embedding and onto. (X, \leq) and (Y, \sqsubseteq) are order isomorphic if there is an order isomorphism between then.

Theorem 3.8 Posets (X, \leq) and (Y, \sqsubseteq) are order-isomorphic iff there exists $f : X \to Y$ and $g : Y \to X$ such that

- $f \circ g = 1_X$,
- $g \circ f = 1_Y$, and
- f and g are monotone.

Exercise 3.7

Prove theorem 3.8

Continuous maps

Definition 3.23 For posets (X, \leq) and (Y, \sqsubseteq) , $f : X \to Y$ is continuous (upper-continuous) if for all chains $C \subseteq X$ such that $\lor C$ exists then $\sqcup f(C)$ exists and

$$f(\vee C) = \sqcup f(C)$$

Symmetrically, lower-continuous is defined.

Theorem 3.9 Continuous maps are monotonic

Exercise 3.8 Show if $x \sqsubseteq y$ and f is continuous then $f(y) = f(x) \sqcup f(y)$

Closure operators

Definition 3.24

On a poset (X, \leq) , f is an upper closure operator if for all $x, y \in X$

- $x \le f(x)$ (extensive)
- $x \leq y \Rightarrow f(x) \leq f(y)$, and
- f(f(x)) = f(x). (idempotent)

Theorem 3.10

f is upper closure operator iff $x \le f(y) \Leftrightarrow f(x) \le f(y)$ Proof.

Assume f is upper closer

- 1. $x \le f(y) \Rightarrow f(x) \le f(f(y)) \Rightarrow f(x) \le f(y)$ (proved forward implication)
- 2. $f(x) \le f(y) \Rightarrow x \le f(x) \le f(y) \Rightarrow x \le f(y)$ (proved backward implication) Assume $x \le f(y) \Leftrightarrow f(x) \le f(y)$
 - 1. $f(x) \leq f(x) \Rightarrow f \leq f(x)$ (proved extensive)
 - 2. $x \le y \Rightarrow x \le y \le f(y) \Rightarrow x \le f(y) \Rightarrow f(x) \le f(y)$ (proved monotonic)
 - 3. $f(x) \le f(x) \Rightarrow f(f(x)) \le f(x)$ and $f(f(x)) \le f(f(x)) \Rightarrow f(x) \le f(f(x))$ (proved idempotent)

(monotone)

Fixed points of closure operators

Theorem 3.11

An upper closure operator is uniquely defined by its fixed points

Proof.

Let f and g be two upper closure operators that have same fixed points. But, differ at point x, i.e., $f(x) \neq g(x)$.

due to idempotence of f and gdue to shared fixed points due to extensive property due to monotone gdue to monotone fContradiction: f(x) = g(x)

36

Exercise 3.9

- a. Show $f(x) \sqcup f(y)$ is a fixed point
- b. Show image of complete lattice by closure operator is complete lattice

Galois connection

Definition 3.25 For posets (X, \leq) and (Y, \sqsubseteq) , a pair of maps (α, γ) of maps $\alpha : X \to Y$ and $\gamma : Y \to X$ is a galois connection if

$$\forall x \in X \forall y \in Y. \ \alpha(x) \sqsubseteq y \Leftrightarrow x \le \gamma(y)$$

which is usually written

$$(X,\leq) \stackrel{\gamma}{\underset{\alpha}{\longleftarrow}} (Y,\sqsubseteq)$$

 α and γ are called upper and lower adjoints respectively.

Unique adjoints

Theorem 3.12
In
$$(X, \leq) \xrightarrow{\gamma} (Y, \sqsubseteq)$$
, α uniquely defines γ and vice-versa.
 $\alpha(x) = \sqcap \{y | x \leq \gamma(y)\}$ $\gamma(y) = \lor \{x | \alpha(x) \sqsubseteq y\}$

Proof.

▶ By definition of meet, $\sqcap \{y | \alpha(x) \sqsubseteq y\}$ exists and

$$\alpha(x) = \sqcap \{ y | \alpha(x) \sqsubseteq y \}$$

By def. of galois connection

$$\alpha(x) = \sqcap \{ y | x \le \gamma(y) \}$$

Symmetrically for $\gamma(x)$.

Properties galois connection

- Let $(X, \leq) \xrightarrow[]{\alpha}{\gamma} (Y, \sqsubseteq)$ then 1. $\forall x \in X.x \leq \gamma \circ \alpha(x)$ 2. $\forall y \in Y.\alpha \circ \gamma(y) \sqsubseteq y$
 - 3. α is monotone
 - 4. γ is monotone
 - 5. $\alpha \circ \gamma \circ \alpha = \alpha$
 - **6**. $\gamma \circ \alpha \circ \gamma = \gamma$
 - 7. α is onto $\Leftrightarrow \gamma$ is one-to-one $\Leftrightarrow \alpha \circ \gamma = 1_X$
 - 8. γ is onto $\Leftrightarrow \alpha$ is one-to-one $\Leftrightarrow \gamma \circ \alpha = 1_Y$

Exercise 3.10 Prove the above properties

Exercise 3.11 Prove properties 1-4 also define galois connection

Topic 3.5

Fixed point theory

Fixed points

Let X be a set.

A fixed point of a operator $f: X \to X$ is $x \in X$ such that f(x) = x

Let f be an operator on poset (X, \leq) :

•
$$fp(f) \triangleq \{x | f(x) = x\}$$

- $prefp(f) \triangleq \{x | x \leq f(x)\}$
- $postfp(f) \triangleq \{x | f(x) \le x\}$
- ▶ least fixed point $lfp(f) \triangleq min(fp(f))$
- greatest fixed point $gfp(f) \triangleq max(fp(f))$

Note: $fp(f) = prefp(f) \cap postfp(f)$

Knaster-Tarski fixed point theorem

Theorem 3.13

A monotonic map $f : X \to X$ on a complete lattice $(X, \sqsubseteq, \top, \bot, \sqcap, \sqcup)$ has a least fixed point and a greatest fixed point, which are

$$Ifp(f) = \sqcap postfp(f) = \sqcap \{x | f(x) \sqsubseteq x\}$$
$$gfp(f) = \sqcup prefp(f) = \sqcup \{x | x \sqsubseteq f(x)\}$$

Ifp greater than a prefix point

Definition 3.26

Let $f : X \to X$ be a monotonic map on a complete lattice $(X, \subseteq, \top, \bot, \sqcap, \sqcup)$. Let $a \in X$. Let $lfp_a(f)$ be the least fixed point of f greater than a, i.e.,

 $a \sqsubseteq \mathit{lfp}_{a}(f) \qquad \mathit{lfp}_{a}(f) = f(\mathit{lfp}_{a}(f)) \qquad \forall x. \ a \sqsubseteq x = f(x) \Rightarrow \mathit{lfp}_{a}(f) \sqsubseteq x$

Theorem 3.14

If $a \in prefp(f)$ then $lfp_a(f)$ exists and $lfp_a(f) = lfp(\lambda x.a \sqcup f(x))$.

Proof.

- 1. Let $p = lfp(\lambda x.a \sqcup f(x))$. So, $p = a \sqcup f(p)$.
- 2. By def. of \sqcup , $a \sqsubseteq p$, the first condition satisfied
- 3. Due to monotonic $f, f(a) \sqsubseteq f(p)$
- 4. Due to $a \sqsubseteq f(a)$ and transitivity, $a \sqsubseteq f(p)$
- 5. Therefore, $f(p) = a \sqcup f(p)$ and p = f(p), the second condition satisfied
- 6. Choose q such that $a \sqsubseteq q$ and q = f(q), then $a \sqcap f(q) = q$.
- 7. Therefore, $q \in postfp(\lambda x.a \sqcup f(x))$.
- 8. Kanaster-Tarski, $p \sqsubseteq q$, the third condition satisfied

Fixed point lattice

Theorem 3.15

Let $f : X \to X$ be a monotonic map on a complete lattice $(X, \subseteq, \top, \bot, \sqcap, \sqcup)$. fp(f) forms a complete lattice.

Exercise 3.12

For $S \subseteq fp(f)$, show that $lfp_{\sqcup S}(f)$ exists and is lub of X in poset $(fp(f), \sqsubseteq)$ Hint: use previous theorem

Fixed point compose

Theorem 3.16 Let (X, \leq) and (Y, \sqsubseteq) be complete lattices, and $f : X \to Y$ and $g : Y \to X$ are monotonic then

$$g(lfp(f \circ g)) = lfp(g \circ f)$$

Proof.

- 1. $(g \circ f)g((lfp(f \circ g))) = g(f \circ g(lfp(f \circ g))) = g(lfp(f \circ g))$
- 2. Therefore, $g(lfp(f \circ g))$ is a fixed point of $g \circ f$
- 3. Assume $x = g \circ f(x)$
- 4. $\Rightarrow f(x) = f \circ g \circ f(x) \Rightarrow f(x) = f \circ g \circ f(x) \Rightarrow f(x) = f \circ g(f(x))$
- 5. Therefore, by Kanaster-tarski, $lfp(f \circ g) \sqsubseteq f(x)$
- 6. Since g is monotone, $g(lfp(f \circ g)) \leq g \circ f(x)$
- 7. Due to 3, $g(lfp(f \circ g)) \leq x$
- 8. Therefore, $g(lfp(f \circ g))$ is lfp of $g \circ f$

Greater function

Theorem 3.17 Let $f, g: X \to X$ be monotonic maps on a complete lattice $(X, \sqsubseteq, \top, \bot, \sqcap, \sqcup)$ such that for all $x \in X$, $f(x) \sqsubseteq g(x)$ then

 $lfp(f) \sqsubseteq lfp(g)$

Exercise 3.13 Prove the above theorem

Transfinite iterates

Let $f: X \to X$ be an operator on a poset $(X, \sqsubseteq, \sqcap, \sqcup)$.

Definition 3.27

For some ordinal number λ , the upward iterates $(I^k, k \leq \lambda)$ of f from a is a sequence such that

- $I^k = a$
- ► $\mathbf{I}^{k+1} = f(\mathbf{I}^k)$
- $\blacktriangleright \mathbf{I}^{\lambda} = \sqcup_{k < \lambda} \mathbf{I}^{k}$

Definition 3.28

For some ordinal number λ , the downward iterates $(I^k, k \leq \lambda)$ of f from a is a sequence such that

- ▶ $I^k = a$
- ► $\mathbf{I}^{k+1} = f(\mathbf{I}^k)$
- $\blacktriangleright \mathbf{I}^{\lambda} = \sqcap_{k < \lambda} \mathbf{I}^{k}$

In poset, \sqcap and \sqcup are partially defined. Consequently, iterates are partially defined. If X is a lattice or cpo then iterates are well-defined. $\textcircled{\label{eq:posterior} Program verification 2016}$

A condition for finite iterates converging to lfp Theorem 3.18

lf

- $(X, \sqsubseteq, \sqcup, \sqcap)$ is poset,
- $f: X \to X$ is a monotone operator,
- $a \in prefp(f)$,
- upward iterates $(\mathrm{I}^k,k\leq\omega)$ of f from a exists, and
- ► $I^{\omega} \in fp(f)$ Seen $(I^k, k \leq \omega)$ is increasing chain and $I^{\omega} = lfp_{\alpha}(f)$ When $I^{\omega} \in fp(f)$?

then $(I^k, k \leq \omega)$ is increasing chain and $I^{\omega} = lfp_a(f)$. When $I^{\omega} \in fp(f)$. Proof.

- 1. Since $a \sqsubseteq f(a)$, $I_0 \sqsubseteq I_n$
- 2. Induction hyp, $I^n \sqsubseteq I^{n+1}$. Due to monotone f, $f(I^n) \sqsubseteq f(I^{n+1}) \Rightarrow I^{n+1} \sqsubseteq I^{n+2}$
- 3. By induction, $\forall n < \omega$. $I^n \sqsubseteq I^{n+1}$
- 4. Since $X^{\omega} = \sqcup_{k < \omega} I^k$ and X^{ω} exists, $\forall n \leq \omega$. $I^n \sqsubseteq I^{n+1}$ (proved increasing chain)
- 5. Since $a = I_0$, $a \sqsubseteq X^{\omega}$
- 6. Assume $a = I^0 \sqsubseteq x = f(x)$. Since f is monotone, $I^n \sqsubseteq x \Rightarrow I^{n+1} = f(I^n) \sqsubseteq f(x) = x$

7. By induction and def. of X^{ω} , $\forall n \leq \omega . I^n \sqsubseteq x$. Therefore $X^{\omega} = lfp_a(f)$ @ (1) Program verification 2016 Instructor: Ashutosh Gupta TIFR, India

Kleene fixed point theorem Theorem 3.19

- ▶ (X, \sqsubseteq, \sqcup) is cpo,
- $f: X \to X$ is upper continuous,
- $a \in prefp(f)$, and
- $(\mathrm{I}^k, k \leq \omega)$ be upward iterates of f from a
- then $I^{\omega} = lfp_{a}(f)$.

Proof.

- 1. f is continuous \Rightarrow f is monotone \Rightarrow (I^k, $k \leq \omega$) increasing chain
- 2. Since X is cpo, I^{ω} exists.
- 3. $f(\mathbf{I}^{\omega}) = f(\sqcup_{k < \omega} \mathbf{I}^k)$
- 4. $= \bigsqcup_{k < \omega} f(\mathbf{I}^k)$, since f is continuous.
- 5. $= \sqcup_{0 < k < \omega} \mathbf{I}^k = \mathbf{a} \sqcup_{0 < k < \omega} \mathbf{I}^k = \sqcup_{k < \omega} \mathbf{I}^k = \mathbf{I}^{\omega}$
- 6. Due to previous theorem, $I^{\omega} = lfp_a(f)$

Knaster-Tarski for CPOs

We can prove Knaster-Tarski Theorem like results on cpos.

Theorem 3.20

lf

- ▶ (X, \sqsubseteq, \sqcup) is cpo,
- $f: X \rightarrow X$ is upper continuous, and
- $a \in prefp(f)$

then $lfp_a(f) = \sqcap \{x \in X | a \sqsubseteq x \land f(x) \sqsubseteq x\}.$

Proof.

Let $P = \{x \in X | a \sqsubseteq x \land f(x) \sqsubseteq x\}$. Let $(I^k, k \le \omega)$ are iterates of f from a.

- 1. Due to previous theorem, $\mathit{lfp}_a(f) = \mathrm{I}^\omega$. And, $\mathrm{I}^\omega \in \mathcal{P}.$
- 2. Choose *x*, $a \sqsubseteq x \in P$
- 3. Induction hyp, $I^n \leq x \Rightarrow f(I^n) \leq f(x) \leq x \Rightarrow I^{n+1} \leq x$
- 4. By induction, $\forall n < \omega, I^n \leq x$.
- 5. By def. of I^{ω} , $I^{\omega} \leq x$
- 6. Therefore, $lfp_a(f) \sqsubseteq \sqcap P$

Fixed point for monotone functions on cpos

Theorem 3.21 If

• (X, \sqsubseteq, \sqcup) is cpo,

Monotone is weaker condition than continuous. Therefore, we need larger ordinals

- $f: X \to X$ is monotone function,
- $a \in prefp(f)$, and

▶ for some ordinal λ , $(I^k, k \leq \lambda)$ be upward iterates of f from a then $(I^k, k \leq \lambda)$ is increasing chain, which is ultimately stationary and converges to $lfp_a(f)$.

We will skip the proof. However, the length to the stationary point is bounded by the ordinal size of the cpo

Topic 3.6

Asynchronous iterations for fixed points

System of simultaneous fixed point equations For $i \in 1...n$, $(X_i, \sqsubseteq_i, \bot_i, \top_i, \sqcup_i, \sqcap_i)$ be complete lattices.

Let complete lattice $(X, \sqsubseteq, \bot, \top, \sqcup, \sqcap)$ be

$$X = X_1 \times \cdots \times X_n$$

$$\blacktriangleright x \sqsubseteq y = (\wedge_{i=1}^n x_i \sqsubseteq_i y_i)$$

Let
$$f : X \times X$$
 and $f_i : X \times X_i$ be $f_i(X) = (f(X))_i$

The fixed point equation x = f(x) can be written as the following simultaneous fixed point equation.

$$x_1 = f_1(x_1, \dots, x_n)$$

$$\vdots$$

$$x_n = f_n(x_1, \dots, x_n)$$

Asynchronous iterations

We need not update each component at each iteration. We only need to ensure that each component is updated fairly.

Definition 3.29 (Chaotic iterations)

Let $(J^k, k \in \mathbb{O})$ be a sequence of subsets of [1, n], which is weakly fair, i.e.,

$$\forall i \in 1..n \ \forall j \in \mathbb{O}. \ \exists k > j. \ i \in J^k$$

The iterates $(I^k, k < \lambda)$ starting from $a \in X$ for F defined by $(J^k, k \in \mathbb{O})$ is

$$I^{0} = a$$

$$I_{i}^{k} = f_{i}(I^{k-1}) \quad if \ i \in J^{k}$$

$$I_{i}^{k} = I^{k-1} \quad if \ i \notin J^{k}$$

$$I^{\lambda} = \sqcup_{k < \lambda} I^{k}$$

Theorem 3.22 $(I^k, k < \lambda)$ is increasing chain, ultimately stationary, and limit is $lfp_a(f)$ $@ \oplus @ @ Program verification 2016$ Instructor: Ashutosh Gupta TIFR, India

54

Example: asynchronous iterations

- Jacobi iterations: $J^k = [1, n]$
 - update every component in each step
- Gauss-Seidel iterations: $J^k = \{k \mod n\}$
 - update only one component in each step

End of Lecture 3

