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Where are we and where are we going?

We have seen
» EUF, LRA, and LIA solvers

We will see solvers for
» Difference logic

» Octagonal logic

Lecture is based on:

The octagon abstract domain.Antoine Miné. In Higher-Order and Symbolic Computation (HOSC), 19(1), 31-100, 2006. Springer.
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Topic 3.1

Difference logic

OO Automated reasoning 2016 Instructor: Ashutosh Gupta TIFR, India


http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

Logic vs. theory

In the world of SMT solving, words logic and theory are used differently than
rest of formal methods.

» theory = FOL + axioms

> logic = theory-+syntactic restrictions

Example 3.1

LRA is a theory
QF_LRA is logic, which has only quantifier free LRA formulas
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Difference Logic

Difference Logic over the integers(QF_IDL):
Boolean combinations of inequalities of the form x — y < b where x and y
are integer variables and b is an integer constant.

Difference Logic over the rationals(QF_RDL):
Boolean combinations of inequalities of the form x — y < b where x and y
are rational variables and b is an rational constant.

Widely used in analysis of timed systems for comparing clocks.

We will present an O(n®) method to decide conjunction of literals in
QF_RDL and QF_IDL.
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Difference Graph

We may view an atom x — y < b as a weighted directed edge between two
nodes x and y with weight b in graph over variables. This graph is called
difference graph.

Theorem 3.1

A conjunction of difference inequalities is unsatisfiable iff the corresponding
difference graph has negative cycles.

Example 3.2

X—y<1IANy—z<3ANz—x< -7
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Difference bound matrix

Another view of difference graph.

Definition 3.1
Let F be conjunction of difference inequalities over rational variables
{x1,...,xn}. The difference bound matrix(DBM) A is defined as follows.

0 i=j
A,'j: b X,'—XJ'SbEF

00 otherwise

Let FIA] £ Nijer.nXi — X < Ajj.

N
Let Aio...im = ka:]_ Aik—lik'
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Example: DBM

Example 3.3
Consider:
X0 —X1<A4AXT—%<-1Ax3—x1<3Ax31—x3<—-1Ax—x3<1

Constraints has three variables x1, x>, and x3.

The corresponding DBM is

0 -1 -1
4 0 ___
3 .- 0

Exercise 3.1
Fill the blanks
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Shortest path closure

Definition 3.2
The shortest path closure A® of A is defined as follows.

(A% = min A

i=ig,i1,....,im=j and m<n

Theorem 3.2
F is unsatisfiable iff 3i € 1..n. A}, <0

Proof.
If RHS holds, then trivially unsat.why?)

If LHS holds, then there must be a proof of unsatisfiability, i.e., there is a
positive linear combination of difference inequalities that results in 0 < —k.

Wilog, we assume the combination has only integer coefficients.
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Shortest path closure: there is a negative loop

Proof(contd.)

claim: thereis A;, ;i <0and ip = in.

.......

Let G = (V, E) be a graph s.t.
» G={x1,...,Xn}
> {(xi, %), -, (xi, X))} C E if x; —x;j < b has X coefficient in the

A
combination

Since each x; has to cancel out in the combination, x; has equal in and out
degree in G

Therefore, G has a Eularian walk (full traversal without repeating an edge).

The sum along the walk must be negative.
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Shortest path closure(contd.)

Proof.
claim: Shortest loop with negative sum has no sub-loops

For 0 < p < g < m, lets suppose i, = ig.

Since Aj;,_i, = A

ip-.ig

+ (Aigim + Ainin)
_—
loop loop
one of the two loops must be a negative loop.

Therefore, shorter path exists with negative sum.

Therefore, RHS holds.

Exercise 3.2 If F is sat, A}, < A..
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Tightness

Definition 3.3
A is tight if for all i and j

» ifAj < oo, dv = FIA]. vi —v; = Aj

» if Aj =00, Vm<oo.3v = F[Al. vi—v; > m
Theorem 3.3
If F is sat, A® is tight.

Proof.
Suppose there is a better bound b < Afj exists s.t. F[A®] = x; — x; < b.

Like the last proof, there is a path ip..im s.t. Ajy.i, < b, io =i and iy = jwny)
If ig..im has a loop then the sum along the loop must be positive.
Therefore, there must be a shorter path from i to j with smaller sum.why?)

Therefore, a loopfree path from i to j exists with sum less than b.

Therefore, A® is tight [
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Implication checking and canonical form

Definition 3.4
A set of objects R represents a class of formulas ¥ canonically if for each
F,F' € X if F=F' and o € R represents F then o represents F’.

Theorem 3.4
The set of shortest path closed DBMs canonically represents difference logic
formulas.

Exercise 3.3
Give an efficient method of checking equisatisfiablity and implication using
DBMs.
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Floyd-Warshall Algorithm for shortest closure

We can compute A® using the following iterations generating A°, . ..

AP = A

Al = min(AST1 AR
Theorem 3.5
A. — An
Exercise 3.4

Prove Theorem 3.5.
Hint: Inductively show each loop-free path is considered

Exercise 3.5
a. Extend the above algorithm to support strict inequalities
b. Does the above algorithm also works for 7.7
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Example: DBM

Example 3.4 0 -1 -1
Consider DBM: A=14 0 1
3 c0o O

Apply first iteration:

A(;lJll A(lJl2 A?13 0— 0 -1 -1
Apply second iteration:

Al A, Al 3-10 0 -1 -1

_A321 A322 A323_ _6 2 2_ _3 2 0 _
Apply third iteration:

Al A2, A%l 21-1 0 -1 -1

_A331 A§32 A§33_ _3 20 | _3 2 0 _
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Topic 3.2

Octagonal constraints
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Octagonal constraints

Definition 3.5
Octagonal constraints are boolean combinations of inequalities of the form

+x+ty < bor+tx < b where x and y are 7 /Q variables and b is an 7, /Q
constant.

We can always translate octagonal constraints into equisatisfiable difference
constraints.
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Octagon to difference logic encoding (contd.)

Consider conjunction of octagonal atoms F over variables V = {xy,...,xs}.
We construct a difference logic formula F" over variables V' = {x{,...,x5,}.

. / /
In the encoding, x5, ; represents x; and x;; represents —x;.
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Octagon to difference logic encoding
F’ is constructed as follows

F> xi<b ~ Xpi 1 — X5 < 2b eF
F> —x; <b ~ xhi —xb. 1 <2b cF
Fo xi—x<b ~ g -x,<bx;—x;<b €F
F> Xxi+x<b ~ xéifl—xéjgb, xéjil—xéigb eF
F> —xi—x;<b ~ Xhi — Xéj—l < b, xéj —xbi 1 <b €F
Definition 3.6
The DBM corresponding to F' are called octagonal DBMs(ODBM:s).
Theorem 3.6

If F is over Q then
» If (vi,...,vn) = F then (vi,—vi,...,Vp,—Vvp) E F’
> If (vi,va,...,Von—1,Vvan) E F' then ((V1;v2), e (V2"‘12_V2")) = F

Exercise 3.6
a. Prove Theorem 3.6. b. Give an example over 7. when Theorem 3.6 fails
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Example: octagonal DBM

Exercise 3.7
Consider:

X1+X <4AXx—x1<HAX—x<3A—x—x<1Axp<2AN—x <7

Corresponding ODBM

0 o 3 4
o~ 0 1 5
5 4 0 4
1 3 14 0

x1+x2 <4~ xp—x4 <4, x3—x2<4

Xp—x1 <5~ x3—x1 <5, x0—x4 <5

x1—x2 <3~ x3 —x3<3,x4—x2<3

—X1—X2§1M—>X1—X4§1,X3—X231
x2 <2~ x3—x4 <4

—x2 <7~ x3—x4 <14
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Relating indices and coherence

Let 2k £ 2k — 1 and 2k — 1 £ 2k

Example 3.5
11=22 21=12 22=11 31=42 42=31 32=41
Consider the following DBM due to 2 variable octagonal constraints.

0 3
o0 1
5 0
1

14

w bk oy
o &~ o &

Cells with matching colors are pairs (ij, ji).

Definition 3.7
A DBM A is coherent if Vi, j. Ajj = Aﬁ.
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Unsatisfiability

For Q, any method of checking unsat of difference constraints will work on
ODBMs.

Let A be ODBM of F. A® will let us know in 2n steps if F is sat.

For Z, we may need to interpret ODBMs differently.
We will cover this shortly.
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Implication checking and canonical form

Floyd-Warshall Algorithm does not obtain canonical form for ODBMs.

X) = —xé is not needed for satisfiablity check. Consequently, A® is not

canonical over Q.

We need to tighten the bounds that may be proven due to the above
equalities.

Exercise 3.8
Give an example such that A® is not tight for octagonal constraints.
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Canonical closure for octagonal constraints

Let us define closure property for ODBMs.

Definition 3.8
For a ODBM A, let F[A] define the corresponding formula over original
variables.

Definition 3.9
For both Z and Q, an ODBM A is tight if for all i and j

> if Aj < oo then Jv |= FIA]. v/ — vj = Aj; and
> if Aj = oo then Vm < co. 3v = F[A]. v/ — vj > m,
where v}, £ v and Vo Ly

Theorem 3.7
If A is tight then A is a canonical representation of F[A]
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Q tightness condition

Theorem 3.8
Let us suppose F[A] is sat.
If Vi j k, Ay < Aj and Ay < (A + Ag)/2 then A is tight

Proof.

Consider cell ij in A s.t. i # j.(otherwise trivial)
Suppose Aj; is finite.

Let A = A[jf — —A,'J',ﬁ — —A,'j]

claim: v |= F[A] and v; — v; = Aj; iff v |= F[A']

Forward direction easily holds.why?)

Since A has no negative cycles, Aj + Aj; > 0. So, A;; > —Aj;. So, Aji > A;-,-.
Therefore, A is pointwise greater than A’. Therefore, F[A'] = F[A].

Since A;; = —A%, if v [= F[A] then v; — v/ = Aj;. Backward direction holds.
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Q tightness condition(contd.)
Proof(contd.)

Now we are only left to show the following.
claim: F[A] is sat, which is there are no negative cycles in A’
A’ can have negative cycles only if ji or ij occur in the cycle.why?)

Wilog, we assume only ji occurs in a negative cycle i = fy..i;; = J

/ !/
Therefore, A, + dietm Ai(H)f/ < 0. Therefore, —Ajj + > 1 m A i—nyir < 0.
Therefore, > ;21 Aiy_yyiy < Ajj.Contradiction.

Now we assume both ji and ij occur in a negative cycle i = fg..imig..im = J,
Where Im = I and J = ié.(one case missing)
/ /
TherEfore’ Aji + AU—’_ Zlel .m // 11y + Zlel .m’ A’ ’ <0.
Therefore, —2A; + 3,1 . Al it et m A’ i < 0.

Therefore, —2A;; + Az + Ajj < 0. Contradlctlon. O

Exercise 3.9
a. Prove the Ajj = oo case.  b. Does converse of the theorem holds?

@O0 Automated reasoning 2016 Instructor: Ashutosh Gupta TIFR, India

26


http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

Computing canonical closure for octagonal constraints

Due to the previous theorem and desire of efficient computation, let us
redefine A® for ODBMs.

Definition 3.10

We compute A® using the following iterations generating A°, ..., A’" = A®.

Let o =2k — 1 for some k € 1..n.

A0 = A
(A°+1); = min(Ag, 25 0) (odd rule)
(AO)U = mln(AO 1 Aijj ! A/Oo_[l’ A%O}’AIOOO}) (eVen ru,e)

Why so complicated update rules?

> In the even rule, three new paths are analyzed to exploit the implicit
structure of ODBMs

We need to prove that A® is tight.
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Example: canonical closure of ODBM

Example 3.6
Consider:
0 oo 3 4
oo 0 1 5
5 4 0 4
1 3 14 0

First we apply the even rule o = 1:

Al Al - mln(AU7A/117A1217A112J7A?21j)

A12 = A21 = mln(A12,A112,A122,A1122,A1212) = min(00, 00,00, 00,00) = 00
A%4 = Az = mm(A24, A214,A224, A2124, A2214) = min(5,00,5,00,00) =5
A34 = A, = mln(A34, A3147 Ao Ad124, Ado14) = min(4,9,9, 00, 00) = 4
Az = Az = min(Als, A3, Alas, Adros, Alrs) = min(14,4,4,00,00) = 4

Exercise 3.10
Find the tight ODBM for the following octagonal constraints:

2<x4+y<TAx<INy—x<1A-y<1
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Tightness of A®

Theorem 3.9

A® is tight.

Proof.

For each /,j, and k, we need to show A% <

ij =

claim: For k >0, AZ% < (A% + AJ?J—.k) /2

A2k 1

(A% + A%)/2 and Af < A%

Note A2k = (why?)
By def,
o I?Tk—l + A?jk_l
(A7) < 5
Therefore,
o A,2,k + A2k
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Tightness of A®(contd.)

Proof(contd.)
We are yet to prove Vi, j. A% < Aj..

I_j =
A ..
Let Fact(k,o0) = Vi, j. A} < AG; AN AT < A:.’l—(j

So we need to prove Yk € 1..n. Fact(2k,2n).

the following three will prove the above by induction:why?)

1. In odd rules (o = 2k’ — 1), Fact(k,0) = Fact(k,o0+ 1) (preserve)
2. In even rules (o = 2k’), Fact(k,o0) = Fact(k,o+ 1) (preserve)
3. After even rules (o = 2k’), Fact(o, o) (establish)
@O0 Automated reasoning 2016 Instructor: Ashutosh Gupta TIFR, India 30



http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

Tightness of A®: odd rules preserve the facts
Proof(contd.)
claim: odd rule, if Vi, j. A7 < A A AS < A" then Vi, ;. A°+1 < A;’kjl.
We have four cases(hy?) and denoted them by palrs

(11) AGH = Ag, ATF = Ag: AT < A2 < AG; = AGH

ikj
——
odd rule lhs  case cond.

(2.1) AG = (A% + A)/2, AT =AY
R R S T3 AR AR AT A

A% < U < i ki Tkkj
odd rule |‘hrs Ihs e
A2 + Ao
< #kk + A A:)kj_l
~~ Hr—’
coherence case cond.

( ) Alk = Ik' AO+1 (AO O—)/2 (Symmetric to the last case)
(2.2) AR = (A% + A%)/2 and AT = (A% + A%)/2

Exercise 3.11 Prove the last case.
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Tightness of A® : even rules preserve the facts

Proof(contd.) . . . .
L e s ao— o o o ..
claim: even rule, if Vi, ;. Aij < Aikj A A,.J. < A,‘Tq then Vi, j. Ag- < Aj?kj.
Here, we have 25 caseswhy? and denoted them by pairs:
-1 -1, -1 -1
(1,1) A = A;’k ,Aij = Aij : AZ- < AZ. < A¢ = A
—_———

ikj ikj
~——
even rule lhs case cond.
o _ po—1 po _ p0—1. po o—1 o—1 _ jo
(2'1) Aik - Aiok 'Akj - Akj : Aij < Aioj < Aiokj - Aikj :
N——— ~——
even rule lhs case cond.
o _ po—1 po _ po0—1. po o—1 o—1 o—1 o—1
(4v5) Aik - Aioak'Akj - Akaoj‘ Alj < Aioj < Aioj + Aoc_)o + Abkc')
even rule no negative loops
o—1 o—1 __ po
< Aok T Aksoj = Alkj
—_—
rewrite case cond.

Exercise 3.12
Prove cases (1,4), (2,3) and (3,3).

Hint: key proof technique: introduce cycles, introduce k
@O0 Automated reasoning 2016
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Tightness of A® : even rule establishes the fact

Proof(contd.)

claim: even rule, Vi, . A° < Aj’oj A A,‘J’ < Afoj

We only prove AZ < Aj’oj the other inequality is symmetric.
Again, we have 25 cases.(why?)

Since there are no negative cycles and Ag, =0,

A,'o = Aioo < Aioc')o and /oo < io00.

Therefore, only four cases left to consider.why?)

(11) A2 = AL LA = A2TH: A2 < ADSH = A2,
—_—— Y——

even rule case cond.

(22) A2 = A% LA = A%

100 ! 00J

le) o—1 o 1 o 1 o 1 o—1 o
A AIO_] AIOJ Aooo A:oo AOO_] AIOJ
——
even rule no negative cycles rewrite case cond.

Exercise 3.13
Prove case (1,2).
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Octagonal constraints over Z

For Z, we need a stronger property to ensure tightness.

Theorem 3.10
Let A be ODBM interpreted over 7.
ifVi,j, k, Aj < Aig, A < (A7 + Ajj)/2, and Aj; is even then A is tight.
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Computing canonical closure for octgonal DBMs over QQ

In this case, we present an incremental version of the closure iterations.
Lets suppose A is tight and we add another octagonal atom in A that
updates Ay, and A~ (Observe: always updated together).

Let A° be the updated DBM.

(Al)ij - min(A%’A%ojoJ'?A(l?JBiBj) ifi # ]
AV
N 0 0 0 HoJo!
(A= m'n(Ai7’AiJBiBiojo7’ Aiiojoj?)l?ﬁ’zL 2 1)
(A%);j = min(Ag, T)

Theorem 3.11
A2 s tight
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End of Lecture 3
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