
cbna Automated reasoning 2016 Instructor: Ashutosh Gupta TIFR, India 1

Automated reasoning 2016

Lecture 4: Theory of arrays

Instructor: Ashutosh Gupta

TIFR, India

Compile date: 2016-03-08

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/
http://www.tcs.tifr.res.in/~agupta/

cbna Automated reasoning 2016 Instructor: Ashutosh Gupta TIFR, India 2

Where are we and where are we going?

We have seen solvers for

I QF EUF,QF LRA,QF IDL/QF RDL

We will see today

I Theory of arrays(QF AX)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Automated reasoning 2016 Instructor: Ashutosh Gupta TIFR, India 3

Topic 4.1

Theory of arrays

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Automated reasoning 2016 Instructor: Ashutosh Gupta TIFR, India 4

Theory of arrays

The presence of arrays in programs is ubiquitous.

A solving engine needs to be able to reason over arrays.

Here we present an axiomatization of arrays, which has the following
properties.

I arrays are accessible by function symbols [] and store

I [] and store can access an index at a time

I arrays have unbounded length

Commentary: This is a simplified view of arrays. It does not model length of arrays.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Automated reasoning 2016 Instructor: Ashutosh Gupta TIFR, India 5

Many sorted FOL

FOL as we have defined has no sorts.

We need many sorted FOL to model arrays, indexes, and values.

In many sorted FOL, a model has a domain that is partitioned for values of
each sort.

A term takes value only from its own sort.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Automated reasoning 2016 Instructor: Ashutosh Gupta TIFR, India 6

Understanding store and []

I [] returns a value stored in an array at an index

[] : Array × Index → Value

I store places a value at an index in an array and returns a modified array

store : Array × Index × Value → Array

Array , Index , and Elem are disjoint parts of the domain of a model.

Commentary: Please leave your programmer’s intuition behind. Here arrays are not mutable. A write on array does not modifies the
array, but produces a modified copy.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Automated reasoning 2016 Instructor: Ashutosh Gupta TIFR, India 7

Axiom of theory of arrays (with extensionality)

Let SA , ({ []/2, store/3}, ∅). Assuming = is part of FOL syntax.

Definition 4.1
Theory of arrays† TA is defined by the following three axioms.

1. ∀a∀i∀v . store(a, i , v)[i] = v

2. ∀a∀i∀j∀v . i 6= j ⇒ store(a, i , v)[j] = a[j]

3. ∀a, b. ∃i . (a 6= b ⇒ a[i] 6= b[i]) (extensionality axiom)

†McCarthy, J.: Towards a mathematical science of computation. In: IFIP Congress. (1962) 21-28

The theories that replace the 3rd axiom with some other
axiom(s) are called non-extensional theory of arrays

Commentary: The axiomatization is simple and powerful. Various solvers use the axioms. The extensionality axiom is considered to
be the key source of difficulty, since it introduces a fresh symbol during instantiation.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Automated reasoning 2016 Instructor: Ashutosh Gupta TIFR, India 8

Models for theory of arrays
A model m contains a set of indexes Indexm, a set of values Valuem, and a
set of arrays Arraym. Constants take values from their respective sorts.

Exercise 4.1
Prove |Arraym| = |Indexm → Valuem| for model m.

Example 4.1

Consider: a[i] = a[j] ∧ i 6= j

Consider the following satisfying model of the above formula:
Let Indexm = {1, 2} and Valuem = {3, 8} and Arraym = {a1, a2, a3, a4}

a1[1]m = 3, a1[2]m = 3, a2[1]m = 8, a2[2]m = 8
a3[1]m = 3, a3[2]m = 8, a4[1]m = 8, a4[2]m = 3

storem(a1, 1, 3) =a1, storem(a1, 1, 8) =a4, storem(a4, 2, 8) = , ...

im = 1, jm = 2, a = a1

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Automated reasoning 2016 Instructor: Ashutosh Gupta TIFR, India 9

Decidability

Theory of array is undecidable.

However, QF fragment is decidable and its complexity is NP.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Automated reasoning 2016 Instructor: Ashutosh Gupta TIFR, India 10

Example : checking sat in theory of arrays

Example 4.2

Consider the following QF AX formula:
store(a, i , b[i]) = store(b, i , a[i]) ∧ a 6= b

Apply axiom 3,
store(a, i , b[i]) = store(b, i , a[i]) ∧ a[j] 6= b[j]

Due to congruence,
store(a, i , b[i])[j] = store(b, i , a[i])[j] ∧a[j] 6= b[j]

case i = j : Due to the axiom 1,
b[i] = a[i] ∧ a[j] 6= b[j] ←Contradiction.

case i 6= j : Due to the axiom 2,
b[j] = a[j] ∧ a[j] 6= b[j] ←Contradiction.

Therefore, the formula is unsat.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Automated reasoning 2016 Instructor: Ashutosh Gupta TIFR, India 11

Exercise

Exercise 4.2
Show if the following formulas are sat or unsat

1. a = b ∧ a[i] 6= b[i]

2. a = b ∧ a[i] 6= b[j]

3. store(store(a, j , y), i , x) 6= store(store(a, i , x), j , y) ∧ i 6= j

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Automated reasoning 2016 Instructor: Ashutosh Gupta TIFR, India 12

Topic 4.2

A theory solver for TA

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Automated reasoning 2016 Instructor: Ashutosh Gupta TIFR, India 13

Theory solver for arrays

The key issues of checking sat of conjunction of TA literals are

I finding the set of the indices of interest

I finding the witness of disequality

Array solvers lazily/eagerly add instantiations of the axioms for relevant
indices

Commentary: An eager solver instantiates axioms all possible relevant ways at pre-solving phase. Afterwords, it solves using some
EUF solver. A lazy solver instantiates on demand. And, there can be a combination of the two approaches.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Automated reasoning 2016 Instructor: Ashutosh Gupta TIFR, India 14

A policy of axiom instantiations

Here we present the policy used in Z3 to add the instantiations.

I flattening of clauses

I solve flattened clauses using CDCL(TEUF)

I time to time introduce new clauses due to instantiations.

L. Moura, N. Bjorner, Generalized, Efficient Array Decision Procedures. FMCAD09 (section 2-4)

Commentary: Here is another policy used in another solver:
M. Bofill and R. Nieuwenhuis, A Write-Based Solver for SAT Modulo the Theory of Arrays, FMCAD2008

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Automated reasoning 2016 Instructor: Ashutosh Gupta TIFR, India 15

Flattening

The solver maintains a set of definitions and a set of clauses.

[]/store terms are replaced by a fresh symbol and the definitions record the
replacement.

Example 4.3

Consider clauses: store(store(a, j , y), i , x) 6= store(store(a, i , x), j , y) ∧ i 6= j

Flattened clauses: u 6= v ∧ i 6= j

Definition store:
u , store(u′, i , x), u′ , store(a, j , y), v , store(v ′, j , y), v ′ , store(a, i , y)

Exercise 4.3
Translate the following in flattened clauses:
store(a, i , b[i]) = store(b, i , a[i]) ∧ a 6= b
Commentary: The example is not chosen well. It has only unit clauses.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Automated reasoning 2016 Instructor: Ashutosh Gupta TIFR, India 16

CDCL(TEUF) on flattened clauses

CDCL(TEUF) is applied on the flattened clauses

As more equivalences are discovered by EUF solver, relevant instantiations
are introduced.

Commentary: CDCL assigns truth value to atoms and EUF solver translates the truth values into equivalence classes.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Automated reasoning 2016 Instructor: Ashutosh Gupta TIFR, India 17

Relevant axiom instantiation
The following rules add new instantiations of the axioms in the clause set.
The instantiated clauses are flattened and added in CDCL(TEUF).

a , store(b, i , v)

a[i] = v

a , store(b, i ,) , a′[j] a ∼ a′

i = j ∨ a[j] = b[j]

a , store(b, i ,) , b′[j] b ∼ b′

i = j ∨ a[j] = b[j]

a : Array b : Array

a = b ∨ a[ka,b] 6= b[ka,b]

Reading the above rules:
In the 2nd rule, if a is defined as above, a and a′ are equivalent under current
assignment, and a′ is accessed at j then we instantiate the 2nd axiom
involving indexes i and j , and arrays a and b

∼ denotes the discovered
equivalences in TEUF

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Automated reasoning 2016 Instructor: Ashutosh Gupta TIFR, India 18

Soundness and completeness

The solver is sound because it only introduces the instantiations of axioms.

Theorem 4.1
The solver is complete

Proof sketch.
We need to show that only finite and all relevant instantiations are added.
If no conflict is discovered after saturation then we can construct a model.

Exercise 4.4
Fill the details in the above proof

I Only finite instantiations are added

I Construct a model at saturation

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Automated reasoning 2016 Instructor: Ashutosh Gupta TIFR, India 19

Optimizations

We may reduce the number of instantiations that are needed to be complete.

Here, we discuss three such optimizations.

I Instantiations for equivalent symbols are redundant

I Instantiate extensionality only if a disequality is discovered in EUF

I Instantiate 2nd axiom only if the concerning index is involved in the final
model construction

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Automated reasoning 2016 Instructor: Ashutosh Gupta TIFR, India 20

Redundant Instantiations

If EUF solver has proven i ∼ i ′, j ∼ j ′, a ∼ a′, and b ∼ b′ then

i = j ∨ a[j] = b[j]
and

i ′ = j ′ ∨ a′[j ′] = b′[j ′]

are mutually redundant instantiations.

We need to instantiate only one of the two.

Similarly, if EUF solver has proven a ∼ a′, and b ∼ b′ then

a = b ∨ a[ka,b] 6= b[ka,b]
and

a′ = b′ ∨ a′[ka′,b′] 6= b′[ka′,b′]

are mutually redundant instantiations.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Automated reasoning 2016 Instructor: Ashutosh Gupta TIFR, India 21

Extensionality axiom only for disequalities

We only need to produce evidence that two arrays are disequal only if EUF
finds such disequality

a : Array b : Array a 6∼ b

a = b ∨ a[ka,b] 6= b[ka,b]

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Automated reasoning 2016 Instructor: Ashutosh Gupta TIFR, India 22

Restricted instantiation of the 2nd axiom

Definition 4.2
b ∈ modified if

1. b , store(, ,) and there is another b′ s.t. b ∼ b′ and b′ , store(, ,)

2. a , store(b, ,) and a ∈ modified

3. a ∼ b and a ∈ modified

We restrict the third instantiation rule as follows.

a , store(b, i , v) w , b′[j] b ∼ b′ b ∈ modified

i = j ∨ a[j] = b[j]

Theorem 4.2
If b 6∈ modified, value of index j has no effect in the model construction of a.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Automated reasoning 2016 Instructor: Ashutosh Gupta TIFR, India 23

Topic 4.3

A decidable fragment of quantified arrays

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Automated reasoning 2016 Instructor: Ashutosh Gupta TIFR, India 24

Decidable fragments

Definition 4.3
An undecidable class often has non-obvious sub-classes that are decidable,
which are called decidable fragments.

For example, QF AX is a decidable fragment of AX .

Finding decidable fragments of various logics is an active area of research.

Now we will present a decidable fragment of AX called “array properties”,
which allows some restricted form of quantifiers.

For ease of introducing core ideas, the fragment presented here is smaller than the original proposal in

Aaron R. Bradley, Zohar Manna, Henny B. Sipma: What’s Decidable About Arrays? VMCAI 2006

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Automated reasoning 2016 Instructor: Ashutosh Gupta TIFR, India 25

Some notation

For formulas/terms F and G , we say

I G ∈ F if G occurs in F and

I G is QF in F if G ∈ F and no variable in FV (G) is universally quantified
in F

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Automated reasoning 2016 Instructor: Ashutosh Gupta TIFR, India 26

Array properties

Array properties fragment puts the following restrictions.

I Index = Z.

I Value sort is part of some decidable theory Tv .

I the formulas in the fragment are conjunctions of array properties that
are defined in the next slide.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Automated reasoning 2016 Instructor: Ashutosh Gupta TIFR, India 27

Array property

Definition 4.4
An array property is a formula that has the following shape.

∀~i . (FI (~i)⇒ FV (~i))

I there are other array, index, and value variables that are free

I FI (~i) ∈ guard

guard ::= guard ∨ guard | guard ∧ guard | exp ≤ exp | exp = exp

exp ::= i | pexp i ∈~i
pxpr ::= Z | Zj | pexp + pexp j 6∈~i

I FV (~i) is a QF formula from Tv . If i ∈~i and i ∈ FV then i only occurs as
parameter of some array read and nested accesses are disallowed.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Automated reasoning 2016 Instructor: Ashutosh Gupta TIFR, India 28

Example: array properties

Example 4.4

Are the following formulas array property?

I ∀i . a[i] = b[i] 3

I ∀i . a[i] = b[i + 1] 7

I ∀i . a[i] = b[j + 1] 3

I ∀i , j . i ≤ j ⇒ a[i] ≤ a[j] 3

I ∀i , j . i ≤ j ⇒ a[a[i]] ≤ a[j] 7

I ∀i , j . i ≤ k + 1⇒ a[i] ≤ a[j] 3

I ∀i , j . ¬(i ≤ k + 1)⇒ a[i] ≤ a[j] 7

I ∀i , j . i ≤ j + 1⇒ a[i] ≤ a[j] 7

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Automated reasoning 2016 Instructor: Ashutosh Gupta TIFR, India 29

Decision procedure: notation

Definition 4.5
For an array property F, read Set RF is the set

RF , {t| [t] ∈ F ∧ t is not QF in F}

Definition 4.6
For an array property F, bound Set BF is the set

BF , {t|(∀~i . FI (~i)⇒ FV (~i)) ∈ F ∧ t ./ i ∈ FI ∧ t is not QF in F}

where ./= {≤,=,≥}.

Definition 4.7
For an array property F, index set IF = BF∪RF

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Automated reasoning 2016 Instructor: Ashutosh Gupta TIFR, India 30

Decision procedure for array properties

1. Replace writes by 1st and 2nd axioms of arrays

F [store(a, t, v)]

F [b] ∧ b[t] = v ∧ ∀i . (i 6= t ⇒ a[i] = b[i])

We will call transformed formula F ′.

2. Replace universal quantifiers by index sets

F ′[(∀~i . FI (~i)⇒ FV (~i))]

F ′[
∧

~t∈I len(~i)

F ′
(FI (~t)⇒ FV (~t))]

We will call transformed formula F ′′.

3. F ′′ is in QF fragment of TA+TZ+Tv . We solve it using a decision
procedure for the theory combination.We have not covered theory combination yet!!

Exercise 4.5
Extend this procedure for the boolean combinations of array properties.

Remains in array
property fragment

no universal
quantifiers

Commentary: The first two rules are substitutions.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Automated reasoning 2016 Instructor: Ashutosh Gupta TIFR, India 31

Example: solving array properties

Example 4.5

Consider:
x < y ∧ k + 1 < ` ∧ b = store(a, `, x) ∧ c = store(a, k , y)∧
∀i , j . (k ≤ i ≤ j ≤ `⇒ b[i] ≤ b[j]) ∧ ∀i , j . (k ≤ i ≤ j ≤ `⇒ c[i] ≤ c[j])

After removing stores:
w < x < y < z ∧ k + 1 < `∧
b[`] = x ∧ ∀i . (` + 1 ≤ i ∨ i ≤ `− 1)⇒ b[i] = a[i]∧
c[k] = y ∧ ∀i . (k + 1 ≤ i ∨ i ≤ k − 1)⇒ c[i] = a[i]∧
∀i , j . (k ≤ i ≤ j ≤ `⇒ b[i] ≤ b[j])∧
∀i , j . (k ≤ i ≤ j ≤ `⇒ c[i] ≤ c[j])∧

Commentary: Removing stores may introduce new arrays. The above example is simple enough and we need not introduce new arrays.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Automated reasoning 2016 Instructor: Ashutosh Gupta TIFR, India 32

Example: solving array properties(contd.)

Index set I = {k − 1, k, k + 1, `− 1, `, ` + 1}

We instantiate every universal quantifier 6 times.

However, let us consider only the following instantiations of the quantifiers:
x < y ∧ k + 1 < ` ∧ b[`] = x ∧ c[k] = y∧
(` + 1 ≤ k + 1 ∨ k + 1 ≤ `− 1)⇒ b[k + 1] = a[k + 1]∧
(k + 1 ≤ k + 1 ∨ k + 1 ≤ k − 1)⇒ c[k + 1] = a[k + 1]∧
k ≤ k ≤ k + 1 ≤ `⇒ c[k] ≤ c[k + 1]∧
k ≤ k + 1 ≤ ` ≤ `⇒ b[k + 1] ≤ b[`] ∧(many more)

Since all the above mentioned guards are true,
x < y = c[k] ≤ c[k + 1] = a[k + 1] = b[k + 1] ≤ b[`] = x
Contradiction. Why are finite instantiations sufficient

for checking sat of ∀ quantifiers?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Automated reasoning 2016 Instructor: Ashutosh Gupta TIFR, India 33

Correctness

Theorem 4.3
If F is sat iff F ′ is sat

Proof.
This step only explicates theory axioms. Trivially holds.

Theorem 4.4
If F ′ is sat iff F ′′ is sat

Proof.
Since F ′′ is finite instantiations of F ′, if F ′′ is unsat then F ′ is unsat.

Now we show that if m′′ |= F ′′ then we can construct a model m′ for F ′.

Let IF ′ = {t1, ..., t`}. Wlog, we assume t1
m′′ ≤ ... ≤ t`m′′

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Automated reasoning 2016 Instructor: Ashutosh Gupta TIFR, India 34

Correctness (contd.)

Proof(contd.)

Observation:
m′′ assigns values to all non-array variables of F ′.
In arrays, m′′ assigns values only at indexes IF ′ .(why?)

Constructing m’:
We copy assignment of non-array variables from m′′ to m′.
Let a be an array appearing in F ′. We construct am′ as follows.
For each j ∈ Z,

am′(j) , am′′(tkm′′)

where k = max{1}∪{j |t jm′′ ≤ j}.

t1
m′′ t2

m′′ t3
m′′

am′′(t1
m′′) am′′(t1

m′′) am′′(t2
m′′) am′′(t3

m′′)
...

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Automated reasoning 2016 Instructor: Ashutosh Gupta TIFR, India 35

Correctness (contd.)

Proof(contd.)

claim: m′ |= F ′

Consider ∀~i . FI (~i)⇒ FV (~i) ∈ F ′.

Let ~v ∈ Zn, where n = len(i).
Choose ~u , (t j1m′′ , .., t jnm′′) and ~w , (t j1+1

m′′ , .., t jn+1
m′′) s.t. ~u ≤ ~v < ~w .

Since m′′ |= F ′′, m′′[~i → ~u] |= FI (~i)⇒ FV (~i).

Case m′′[~i → ~u] |= FI (~i):
Therefore, m′′[~i → ~u] |= FV (~i).
Therefore, m′′[~i → ~v] |= FV (~i).(why?)

Therefore, m′′[~i → ~v] |= FI (~i)⇒ FV (~i). ...

Commentary: This proof divides quantified space into finite parts and chooses a representative such that if it satisfies the formula
then all in the partition satisfy the formula.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Automated reasoning 2016 Instructor: Ashutosh Gupta TIFR, India 36

Correctness (contd.)

Case m′′[~i → ~u] 6|= FI (~i):
For ip, iq ∈~i , there are three kinds of atoms in FI .

I ip ≤ tr

I tr ≤ ip
I ip ≤ iq

•

•

•

t
jp
m′′ t

jp+1
m′′

t
jq
m′′

t
jq+1
m′′

~v

~u

~w

If they are false in m′′[~i → ~u] then they will be false in m′′[~i → ~v].(why?)

Since FI is positive boolean combination of the atoms, m′′[~i → ~v] 6|= FV (~i).
Therefore, m′′[~i → ~v] |= FI (~i)⇒ FV (~i).

Exercise 4.6
Some ranges of ~i are missing in the above argument. Complete the proof.

Commentary: Note that if any atom is true at ~u then it can become false at ~v .

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Automated reasoning 2016 Instructor: Ashutosh Gupta TIFR, India 37

Topic 4.4

Problems

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Automated reasoning 2016 Instructor: Ashutosh Gupta TIFR, India 38

Model generation

Exercise 4.7
Give a model that satisfies the following formula:

store(store(b, i0, b[i1]), i1, b[i0]) = store(store(b, i1, b[i1]), i1, b[i1])

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Automated reasoning 2016 Instructor: Ashutosh Gupta TIFR, India 39

Run Z3

Exercise 4.8
Run Z3 in proof producing mode on the following example:

store(store(a, j , y), i , x) 6= store(store(a, i , x), j , y) ∧ i 6= j

explain the proof of unsatisfiability produced by Z3.

Note that: In smt-lib format select denotes [].

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

cbna Automated reasoning 2016 Instructor: Ashutosh Gupta TIFR, India 40

End of Lecture 4

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

	A theory solver for TA
	A decidable fragment of quantified arrays
	Problems

