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Where are we and where are we going?

| assume, you have seen

CDCL (or DPLL)

CDCL(T) (or DPLL(T))

Theory of equality with uninterpreted functions(7Tgyr)

v

v

v

v

Theory of linear rational arithmetic (7. ra)
We will see
» proof generation in CDCL(T") with T ra/TeurF
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Topic 5.1

Resolution proofs for propositional logic
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Resolution Proofs
A resolution proof rule is
pV C -pV D
cvD
We say p is a pivot that produced C Vv D.

Example 5.1
Suppose F = (pV @) A(=pV q) A(=qV r)A-r

pVg —pVgq
q -qVr
r or

L

Exercise 5.1
Prove the following generalized proof rule

LhhvG .. b NVvC V.V VvD

GVvV.vCvVvD
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Implication graph for conflict graph

Example 5.2

= (=p1V p2)

= (_‘Pl V p3 V ps)
c3 = (—p2 V pa)
¢4 = (—p3 V —pa)
(P1 V ps V —p2)
= (p2V p3)

c7 = (P2 V -p3Vpr)
cg = (ps V —ps)

Implication graph

0 e

(7
@ |ﬁp7©2| |ﬁp5@1| |p1©3|
(73

> c2 c2 | cl
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Reading proofs from implication graphs

» For each learned clause we assign a resolution proof that proves that the
learned clause is implied by the clauses in the solver so far.

We demonstrate the process using an example.

Example 5.3

—pe@1 Input clauses:

g =(psV-ps) 2= (-p1Vp3Vps)
Cs a=(ptVp) a=(pVps) c=(-p3V-ps)
|ﬁp5@1| |p1@3| Conflict clause : pg V —p1
c2 ‘/(:2 cl
Conflict as a resolution proof:
P03 |p203]
3 Ps vV 7ps  —P6 “p1Vp2 p1
—p1V p3Vps —Ps P2V pa P2
c4 @ LI e B o’
|P2©3] —p1V ps p1 —p3V —ps Pa
- c4 P3 —P3
conflict T
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Resolution proofs for conflict clauses

Example 5.4 (contd.)

ps V mps 6 —pLVp2 P
“p1VpP3Vps  peVps P2V ps —p1Vp2
ps\V/—p1V p3 Pi —p3V —ps —p1Vps
Ps V 1p1Vp3 “p1Vp3
pe V —p1VL

The above is a resolution proof of the conflict clause.

One more issue:
There may be a leaf of the above proof that is a conflict clause in itself.

> In the case, there must be a resolution proof for the conflict clause.

» We “stitch” that proof on top of the above proof .

TIFR, India
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CDCL(T) with proof generation

Algorithm 5.1: CDCL(T)

Input: CNF F, boolean encoder e
ADDCLAUSES(e(F)); m := UNITPROPAGATION();d! := 0;dstack := Ax.0;proofs = A\C.C;

do

// backtracking

while 3x {x — 0,x— 1} C m do
(C,dl, proof) := ANALYZECONFLICT(m,proofs); proofs(C) := proof;
if C = () then return unsat(proof);
m.resize(dstack(dl)); ADDCLAUSES({C}); m := UNITPROPAGATION();

// Boolean decision
if m is partial then
dstack(dl) := m.size();

L dl:=dl+1; m := DECIDE(); m := UNITPROPAGATION() ;
// Theory propagation We also need proofs of Cs from the theory
if Vx {x— 0,x— 1}  m then solvers

(Cs, dl', proofs’) := THEORYDEDUCTION(A e~ (m
if dI' < dl then {dl = dl'; m.resize(dstack(dl)); }
| proofs := proofs U proofs’; ADDCLAUSES(e(Cs)); m

i

:= UNITPROPAGATION();

while m is partial or 3x {x — 0,x — 1} C m;
return sat

@O0 Automated reasoning 2016 Instructor: Ashutosh Gupta TIFR, India 8


http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

Topic 5.2

Proofs in SAT solvers
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Issues in generation proofs in SAT solvers or any solver

Proof format vs. checking
» Detailed proofs require non-trivial work from solvers, causing overhead.

» Missing details in proofs imply expensive proof checkers.

Proof minimization
» Problems of moderate size may have very large proofs
» Proofs often have redundancies

> It is wise to minimize proofs before dumping it out
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Proof formats in SAT solvers

SAT solvers typically return two kinds of proofs
» List of learned clauses (low overhead)

» Resolution proofs (detailed)

Example 5.5

Input CNF Learned clauses Resolution proof

p cnf 3 6 -2 0 1-2 300

-2 3 0 3 0 2 1 300

1 3 0 0 3-1 200

-1 2 0 4 -1-200

-1 -2 0 5 1-200

1 -2 0 6 2-300
-3 0 7-2 0450

GV G . VG hV.VlvD S8 3 01230

GV.VvCvVvD 9 0 6780
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Proof checking

A proof is a proof only if an independent checker can checker it efficiently.

To check a learned clauses proof, we need to check the following things
1. Unit propagation on the input+learned clauses leads to conflict

2. Each learned clause is implied by the preceding+input clauses

Exercise 5.2

a. Give procedure for the 2nd step in the above proof checking

b. Give procedure for checking resolution proofs as presented in the the
previous slide
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Proof minimization

> There are several kinds of redundancies that may occur in proofs.

» We may apply several passes to minimize for each kind

» A minimization pass should preferably be a linear-time algorithm

Here we present one such case.
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Redundent resolutions

The process of resolution removes a literal in each step until none is left.
In a step, the pivot literal is removed and others may be introduced.
Definition 5.1

if a pivot is repeated in a derivation path to 1, then the earlier resolution is
redundant in the path.

Example 5.6

Consider the following resolution proof:
aVvb —aVb

NS

b -bV -a
av-c avce —a
N\, /(‘/ The proof is shown as
-C c a graph to illustrate that
N proofs are DAGs not trees.
1

The resolution at b is redundant in both the paths to L.
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Removing redundant resolution
By rewiring the proof, we may remove the redundant node v.

One of the parent of v will be wired to the children of v.

Example 5.7
avb —aVvb

A 1

b —-bV —a

aVv —c aVce —a

—-C /C(
1
After rewiring we may need to update clauses in some proof nodes.

Exercise 5.3
Which parent to choose?
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Detecting redundant resolution - expansion set
Definition 5.2

For a proof node v, expansion set p(v) is the set of literals such that
¢ € p(v) iff £ will be removed in all paths to L. p is defined as follows.

v=_1
ﬂp YU {rit(v,v')} — {=rlit(v,v')} otherwise
v/ €Echildren(v)

where rlit(v, V') is the literal involved on the edge (v, V).

Exercise 5.4 avb -aVb
Calculate p(v) for each node: NS

avV —c avVv

\///
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Detecting redundant resolution (contd.)

Theorem 5.1
If pivot(v) or —pivot(v) € p(v) then v is redundant.

Exercise 5.5

a. What is the complexity of computing p?

b. Prove p(v) D literals in v

c. Given the above observation suggest an heuristic optimization.
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Topic 5.3

Proofs from theory solvers
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Theory solvers

Each theory needs to have its own proof rules and instrumentation of the
employed decision procedure to obtain proofs.

Here, we will look at two examples
» Theory of linear rational arithmetic (7.ra)
» Theory of equality with uninterpreted functions(7gyr)
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Proof generation in T, ra

In the theory of LRA, atoms are linear constraints over rational variables.

The following is the only proof rule for the theory.

a1 X S b1 aiX S b1
(AMa1 + Aoa2)x < (A1b1 + Aabo)

A1, A2 >0

Example 5.8
Consider: 3x1 < —6AXx1 —3x <1AX1+x <2

x1 =3 <1 x3+x<2
3x1 < —6 dx1 <7
0< -1

M=1=3

AL =4/3 ) =1
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LRA solver

There are many decision procedures for solving LRA.

We will present proof generation via Fourier-Motzkin algorithm for solving
LRA.
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Proof generation from Fourier-Motzkin

Observation:
» Fourier-Motzkin proceeds by replacing inequalities by other inequalities
> incoming inequalities are positive linear combination of old inequalities

» We may instrument Fourier-Motzkin to keep the record and produce
proof if input is found to be unsat

Example 5.9

In the previous example,

—x1+x+23<0 x31—x3<0 —x1+x+23<0 x3—x <0
x4+ x3<0 x3 <0 —x3 < —1
0< -1
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End of Lecture 5

@O0

Automated reasoning 2016 Instructor: Ashutosh Gupta

TIFR, India

23


http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

	Resolution proofs for propositional logic
	Proofs in SAT solvers
	Proofs from theory solvers

