Automated Reasoning 2018

Lecture 6: Encoding into SAT problem

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2018-08-04

Content

- Encoding into SAT problem
- Encoding cardinality constraints
- DIMACS Input format

Topic 6.1

Encoding in SAT

SAT encoding

Since SAT is a NP-complete problem, therefore any NP-hard problem can be encoded into SAT in polynomial size.

Therefore, we can solve hard problems using SAT solvers.

We will look into a few interesting examples.

Objective of an encoding.

- Compact encoding (linear if possible)
- Redundant clauses may help the solver
- Encoding should be "compatible" with CDCL

Encoding into CNF

CNF is the form of choice

- Most problems specify collection of restrictions on solutions
- Each restriction is usually of the form

$$
\text { if-this } \Rightarrow \text { then-this }
$$

The above constraints are naturally in CNF.
"Even if the system has hundreds and thousands of formulas, it can be put into CNF piece by piece without any multiplying out"

- Martin Davis and Hilary Putnam

Exercise 6.1

Which of the following two encodings of ite (p, q, r) is in CNF?

1. $(p \wedge q) \vee(\neg p \wedge r)$
2. $(p \Rightarrow q) \wedge(\neg p \Rightarrow r)$

Coloring graph

Problem:

color a $\operatorname{graph}\left(\left\{v_{1}, \ldots, v_{n}\right\}, E\right)$ with at most d colors s.t. if $\left(v_{i}, v_{j}\right) \in E$ then color of v_{1} is different from v_{2}.

SAT encoding

Variables: $p_{i j}$ for $i \in 1 . . n$ and $j \in 1 . . d$. $p_{i j}$ is true iff v_{i} is assigned j th color. Clauses:

- Each vertex has at least one color

$$
\text { for each } i \in 1 . . n \quad\left(p_{i 1} \vee \cdots \vee p_{i d}\right)
$$

- if $\left(v_{i}, v_{j}\right) \in E$ then color of v_{1} is different from v_{2}.

$$
\left(\neg p_{i k} \vee \neg p_{j k}\right) \quad \text { for each } k \in 1 . . d, \quad\left(v_{i}, v_{j}\right) \in 1 . . n
$$

Exercise 6.2

a. Encode: "every vertex has at most one color."
b. Do we need this constraint to solve the problem?

Pigeon hole principle

Prove:

if we place $n+1$ pigeons in n holes then there is a hole with at least 2 pigeons

The theorem holds true for any n, but we can prove it for a fixed n.

SAT encoding

Variables: $p_{i j}$ for $i \in 0 . . n$ and $j \in 1 . . n . p_{i j}$ is true iff pigeon i sits in hole j. Clauses:

- Each pigeon sits in at least one hole

$$
\text { for each } i \in 0 . . n \quad\left(p_{i 1} \vee \cdots \vee p_{i n}\right)
$$

- There is at most one pigeon in each hole.

$$
\left(\neg p_{i k} \vee \neg p_{j k}\right) \quad \text { for each } k \in 1 . . n, \quad i<j \in 1 . . n
$$

Topic 6.2

Cardinality constraints

Cardinality constraints

$x_{1}+\ldots .+x_{n} \bowtie k$

where $\bowtie \in\{<,>, \leq, \geq,=, \neq\}$

Encoding $x_{1}+\ldots+x_{n}=1$

- At least one of x_{i} is true

$$
\left(x_{1} \vee \ldots . . \vee x_{n}\right)
$$

- Not more than one $x_{i} s$ are true

$$
\left(\neg x_{i} \vee \neg x_{j}\right) \quad i, j \in\{1, . ., n\}
$$

Exercise 6.3
a. What is the complexity of at least one constraints?
b. What is the complexity of at most one constraints?

Sequential encoding of $x_{1}+. .+x_{n} \leq 1$

The earlier encoding of at most one is quadratic. We can do better by introducing auxiliary (fresh) variables.

Let s_{i} be a fresh variable to indicate that the count has reached 1 by i.

The following constraints encode $x_{1}+. .+x_{n} \leq 1$.

$$
\begin{aligned}
\left(s_{i-1} \Rightarrow\right. & \left.\left.\neg x_{i}\right) \quad\right) \\
\left(s_{n-1} \Rightarrow\right. & \left.\neg x_{n}\right) \\
& \begin{array}{l}
\text { If already seen a } \\
\text { one, no more ones. }
\end{array}
\end{aligned}
$$

Exercise 6.4

a. Give a satisfying assignment when $x_{3}=1$ and all other x s are 0 .
b. Give a satisfying assignments of $s_{i} s$ when all xs are 0 .
c. Convert the constraints into CNF

Bitwise encoding of $x_{1}+\ldots .+x_{n} \leq 1$

Let $m=\lceil\ln n\rceil$.

- Consider bits $r_{1}, \ldots ., r_{m}$
- For each $i \in 1 \ldots n$, let b_{1}, \ldots, b_{m} be the binary encoding of $(i-1)$. We add the following constraints for x_{i} to be 1 .

$$
\left(x_{i} \Rightarrow\left(r_{1}=b_{1} \wedge \ldots \wedge r_{m}=b_{m}\right)\right)
$$

Example 6.1

Consider $x_{1}+x_{2}+x_{3} \leq 1$.
$m=\lceil\ln n\rceil=2$.

We get the following constraints.
$\left(x_{1} \Rightarrow\left(r_{1}=0 \wedge r_{2}=0\right)\right)$
$\left(x_{2} \Rightarrow\left(r_{1}=0 \wedge r_{2}=1\right)\right)$
$\left(x_{3} \Rightarrow\left(r_{1}=1 \wedge r_{2}=0\right)\right)$

Simplified

$$
\begin{aligned}
& \left(x_{1} \Rightarrow\left(\neg r_{1} \wedge \neg r_{2}\right)\right) \\
& \left(x_{2} \Rightarrow\left(\neg r_{1} \wedge r_{2}\right)\right) \\
& \left(x_{3} \Rightarrow\left(r_{1} \wedge \neg r_{2}\right)\right)
\end{aligned}
$$

Exercise 6.5
What are the variable and clause size complexities?

Encoding $x_{1}+\ldots+x_{n} \leq k$

There are several encodings

- Generalized pairwise
- Sequential counter
- Sorting networks
- Cardinality networks

Exercise 6.6

Given the above encodings, how to encode $x_{1}+\ldots .+x_{n} \geq k$?

Generalized pairwise encoding for $x_{1}+\ldots+x_{n} \leq k$

No $k+1$ variables must be true at the same time.

For each $i_{1}, \ldots, i_{k+1} \in 1 . . n$, we add the following clause

$$
\left(\neg x_{i_{1}} \vee \cdots \vee \neg x_{i_{k+1}}\right)
$$

Exercise 6.7

What many clauses are added for the encoding?

Sequential counter encoding for $x_{1}+\ldots .+x_{n} \leq k$
Let variable $s_{i j}$ encode that the sum upto x_{i} has reached to j or not.

- Constraints for first variable x_{1}

$$
\left(x_{1} \Rightarrow s_{11}\right) \wedge \bigwedge_{j \in[2, k]} \neg s_{1 j}
$$

- Constraints for x_{i}, where $i>1$

$$
\left(\left(x_{i} \vee s_{(i-1) 1}\right) \Rightarrow s_{i 1}\right) \wedge \bigwedge_{j \in[2, k]}(\underbrace{\left(x_{i} \wedge s_{(i-1)(j-1)}\right.}_{\text {add }+1} \vee s_{(i-1) j}) \Rightarrow s_{i j})
$$

Sequential counter encoding for $x_{1}+\ldots .+x_{n} \leq k$ (II)

- If the sum has reached to k at $i-1$, no more ones

$$
\left(s_{(i-1) k} \Rightarrow \neg x_{i}\right)
$$

Exercise 6.8
What is the variable/clause complexity?

Cardinality constraints via sorted variables $O\left(n \ln ^{2} n\right)$

Let us suppose we have a circuit that produces sorted bits in decreasing order.

$$
\left(\left[y_{1}, . ., y_{n}\right], C s\right):=\operatorname{sort}\left(x_{1}, . . x_{n}\right)
$$

We can encode the cardinality constraints as follows

$$
\begin{array}{cc}
x_{1}+. .+x_{n} \leq k & \left\{y_{k+1}=0\right\} \cup C s \\
x_{1}+. .+x_{n} \geq k & \left\{y_{k}=1\right\} \cup C s
\end{array}
$$

Exercise 6.9
a. How to encode $x_{1}+. .+x_{n}<k$
b. How to encode $x_{1}+. .+x_{n}>k$
c. How to encode $x_{1}+. .+x_{n}=k$

Sorting networks

The following circuit sorts two bits x_{1} and x_{2}.

We can sort any number of bits by composing the circuit according to a sorting algorithm.
Example 6.2 Sorting 6 bits using merge sort.

Formal definition of sorting networks

base case:

$n=1$

$$
\operatorname{sort}\left(x_{1}, x_{2}\right) \triangleq \operatorname{merge}\left(\left[x_{1}\right],\left[x_{2}\right]\right) ;
$$

induction step:

$2 n>2$
Let,

$$
\begin{aligned}
\left(\left[x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right], C s_{1}\right) & :=\operatorname{sort}\left(x_{1}, . ., x_{n}\right) \\
\left(\left[x_{n+1}^{\prime}, \ldots, x_{2 n}^{\prime}\right], C s_{2}\right) & :=\operatorname{sort}\left(x_{n+1}, . ., x_{2 n}\right) \\
\left(\left[y_{1}, \ldots, y_{2 n}\right], C s_{M}\right) & :=\operatorname{merge}\left(\left[x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right],\left[x_{n+1}^{\prime}, \ldots, x_{2 n}^{\prime}\right]\right)
\end{aligned}
$$

Then,

$$
\operatorname{sort}\left(x_{1}, . ., x_{2 n}\right) \triangleq\left(\left[y_{1}, . ., y_{2 n}\right], C s_{1} \cup C s_{2} \cup C s_{M}\right)
$$

Formally merge: odd-even merging network

Merge assumes that the input vectors are sorted.

base case:

$$
\operatorname{merge}\left(\left[x_{1}\right],\left[x_{2}\right]\right) \triangleq\left(\left[y_{1}, y_{2}\right],\left\{y_{1} \Leftrightarrow x_{1} \wedge x_{2}, y_{2} \Leftrightarrow x_{1} \vee x_{2}\right\}\right)
$$

induction step:

Let

$$
\begin{aligned}
& \left(\left[z_{1}, . ., z_{n}\right], C s_{1}\right):=\operatorname{merge}\left(\left[x_{1}, x_{3} \ldots, x_{n-1}\right],\left[y_{1}, y_{3}, \ldots, y_{n-1}\right]\right) \\
& \left(\left[z_{1}^{\prime}, . ., z_{n}^{\prime}\right], C s_{2}\right):=\operatorname{merge}\left(\left[x_{2}, x_{4} \ldots, x_{n}\right],\left[y_{2}, y_{4}, \ldots, y_{n}\right]\right)
\end{aligned}
$$

$$
\left(\left[c_{2 i}, c_{2 i+1}\right], C S_{M}^{i}\right):=\operatorname{merge}\left(\left[z_{i+1}\right],\left[z_{i}^{\prime}\right]\right)
$$

$$
\text { for each } i \in[1, n-1]
$$

Then,

$$
\operatorname{merge}\left(\left[x_{1}, \ldots, x_{n}\right],\left[y_{1}, \ldots, y_{n}\right]\right) \triangleq\left(\left[z_{1}, c_{1}, . ., c_{2 n-1}, z_{n}^{\prime}\right], C s_{1} \cup C s_{2} \cup \bigcup_{i} C S_{M}^{i}\right)
$$

Topic 6.3

Pseudo Boolean constraints

Pseudo-Boolean constraints

Let x_{1}, \ldots, x_{n} be Boolean variables.
The following is a pseudo-Boolean constraint.

$$
c_{1} x_{1}+\ldots c_{n} x_{n} \leq c
$$

where $c_{1}, . ., c_{n}, c \in \mathbb{Z}$.

How should we solve them?

- Using Boolean reasoning
- Using arithmetic reasoning

Here we will see the Boolean encoding for the constraints.

Observations on pseudo-Boolean constraints

- Replacing negative coefficients to positive

$$
t-c_{i} x_{i} \leq c \quad \rightsquigarrow \quad t+c_{i}\left(\neg x_{i}\right) \leq c+c_{i}
$$

- Divide the whole constraints by $d:=\operatorname{gcd}\left(c_{1}, \ldots ., c_{n}\right)$.

$$
c_{1} x_{1}+\ldots+c_{n} x_{n} \leq c \quad \rightsquigarrow \quad\left(c_{1} / d\right) x_{1}+. .+\left(c_{n} / d\right) x_{n} \leq\lfloor c / d\rfloor
$$

- Trim large coefficients to $c+1$. Let us suppose $c_{i}>c$.

$$
t+c_{i} x_{i} \leq c \quad \rightsquigarrow \quad t+(c+1) x_{i} \leq c
$$

- Trivially true are replaced by T. If $c>=c_{i}+\ldots .+c_{n}$

$$
c_{1} x_{1}+\ldots+c_{n} x_{n} \leq c \quad \rightsquigarrow \quad \top
$$

- Trivially false are replace by \perp. If $c<0$

$$
c_{1} x_{1}+\ldots+c_{n} x_{n} \leq c \quad \rightsquigarrow \quad \perp
$$

Translating to decision diagrams

We choose a 0 and 1 for each variable to split cases and simplify.

Example 6.3
Consider $2 x_{1}+3 x_{2}+x_{3} \leq 3$

Simplify

Example: translating to decision diagrams

We can split node left node $3 x_{2}+x_{3} \leq 3$ further on x_{2}.

Example: decision diagrams to clauses

An auxiliary variable for each internal node

$$
\begin{aligned}
\rightsquigarrow & \left(\neg x_{1} \Rightarrow \text { temp } 1\right) \wedge \\
& \left(\text { temp } 1 \wedge \neg x_{2} \Rightarrow \top\right) \wedge \\
& \left(\text { temp } 1 \wedge x_{2} \Rightarrow \neg x_{3}\right) \wedge \\
& \left(x_{1} \Rightarrow \text { temp } 2\right) \wedge \\
& \left(\text { temp } 2 \wedge \neg x_{2} \Rightarrow \top\right) \wedge \\
& \left(\text { temp } 2 \wedge x_{2} \Rightarrow \perp\right)
\end{aligned}
$$

Exercise 6.10

a. Simplify the clauses
b. Complexity of the translation from pseudo-Boolean constraints?

Topic 6.4

More problems

Solving Sudoku using SAT solvers

Example 6.4

- Variables: $v_{i, j, k} \in \mathcal{B}$ and $i, j, k \in\{1, \ldots ., 9\}$
- If $v_{i, j, k}=1$, column i and row j contains k.
- Value in each cell is valid:

4	2	6	5	7	1	3	9	8
8	5	7	2	9	3	1	4	6
1	3	9	4	6	8	2	7	5
9	7	1	3	8	5	6	2	4
5	4	3	7	2	6	8	1	9
6	8	2	1	4	9	7	5	3
7	9	4	6	3	2	5	8	1
2	6	5	8	1	4	9	3	7
3	1	8	9	5	7	4	6	2
$5 u d o k u$								

$$
\sum_{k=1}^{9} v_{i, j, k}=1 \quad i, j \in\{1, . ., 9\}
$$

Each value used exactly once in each row:

$$
\sum_{i=1}^{9} v_{i, j, k}=1 \quad j, k \in\{1, . ., 9\}
$$

Each value used exactly once in each column:

$$
\sum_{j=1}^{9} v_{i, j, k}=1 \quad i, k \in\{1, . ., 9\}
$$

- Each value used exactly once in each 3×3 grid

$$
\sum_{s=1}^{3} \sum_{r=1}^{3} v_{3 i+r, j+s, k}=1 \quad i, j \in\{0,1,2\}, k \in\{1, . ., 9\}
$$

Bounded model checking

Consider a Mealy machine

- I is a vector of variables representing input
- O is a vector of variables representing output
- X is a vector of variables representing current state
- X^{\prime} is a vector of variables representing next state

Prove: After n steps, the machines always produces output O that satisfies some formula $F(O)$.

Bounded model checking encoding

SAT encoding:
Variables:

- I_{0}, \ldots, I_{n-1} representing input at every step
- O_{1}, \ldots, O_{n} representing output at every step
- X_{0}, \ldots, X_{n} representing internal state at every step

Clauses:

- Encoding system runs

$$
T\left(I_{0}, X_{0}, X_{1}, O_{1}\right) \wedge \cdots \wedge T\left(I_{n-1}, X_{n-1}, X_{n}, O_{n}\right)
$$

- Encoding property

$$
\neg F\left(O_{n}\right)
$$

If the encoding is unsat the property holds.

Topic 6.5

Input Format

DIMACS Input format

Example 6.5
Input CNF

Topic 6.6

Problems

SAT encoding: n queens

Exercise 6.11
Encode N-queens problem in a SAT problem.
N-queens problem: Place n queens in $n \times n$ chess such that none of the queens threaten each other.

SAT encoding: overlapping subsets

Exercise 6.12

For a set of size n, find a maximal collection of k sized sets such that any pair of the sets have exactly one common element.

SAT encoding: setting a question paper

Exercise 6.13
There is a datbase of questions with the following properties:

- Hardness level $\in\{$ Easy,Medium,Hard $\}$
- Marks $\in \mathbb{N}$
- Topic $\in\left\{T_{1}, \ldots, T_{t}\right\}$
- LastAsked \in Years

Make a question paper with the following properties

- It must contain $x \%$ easy, $y \%$ medium, and $z \%$ difficult marks.
- The total marks of the paper are given.
- The number of problems in the paper are given.
- All topics must be covered.
- No question that was asked in last five years must be asked.

Write an encoding into SAT problem that finds such a solution. Test your encoding on reasonably sized input database. Devise a strategy to evaluate your tool and report plots to demonstrate the performance.

SAT encoding: finding a schedule

Exercise 6.14

An institute is offering m courses.

- Each has a number of contact hours $==$ credits

The institute has r rooms.

- Each room has a maximum student capacity

The institute has s weekly slots to conduct the courses.

- Each slot has either 1 or 1.5 hour length

There are n students.

- Each student have to take minimum number of credits
- Each student has a set of preferred courses.

Assign each course slots and a room such that all student can take courses from their preferred courses that meet their minimum credit criteria. Write an encoding into SAT problem that finds such an assignment . Test your encoding on reasonably sized input. Devise a strategy to evaluate your tool and report plots to demonstrate the performance.

SAT encoding: synthesis by examples

Exercise 6.15

Consider an unknown function $f: \mathcal{B}^{N} \rightarrow \mathcal{B}$. Let us suppose for inputs $I_{1}, \ldots, I_{m} \in \mathcal{B}^{N}$, we know the values of $f\left(I_{1}\right), . ., f\left(I_{m}\right)$.
a) Write a SAT encoding of finding a k-sat formula containing ℓ clauses that represents the function.
b) Write a SAT encoding of finding an NNF (negation normal form, i.e., \neg is only allowed on atoms) formula of height k and width ℓ that represents the function.(Let us not count negation in the height.)
c) Write a SAT encoding of finding a binary decision diagram of height k and maximum width ℓ that represents the function.

Test your encoding on reasonably sized input. Devise a strategy to evaluate your tool and report plots to demonstrate the performance.

SAT encoding: Rubik's cube

Exercise 6.16

Write a Rubik's cube solver using a SAT solver

- Input:
- start state,
- final state, and
- number of operations k
- Output:
- sequence of valid operations or
- "impossible to solve within k operations"

Test your encoding on reasonably many inputs. Devise a strategy to evaluate your tool and report plots to demonstrate the performance.

Search square of squares

Exercise 6.17

Squaring the square problem: "Tiling an integral square using only other smaller integral squares such that all tiles have different sizes."

Consider a square of size $n \times n$, find a solution of above problem using a SAT solver using tiles less than k.

Test your encoding on reasonably sized n and k. Devise an strategy to evaluate your tool and report plots to demonstrate the performance.

Encode Mondrian art

Exercise 6.18

Mondiran art problem: "Divide an integer square into non-congruent rectangles. If all the sides are integers, what is the smallest possible difference in area between the largest and smallest rectangles?"

Consider a square of size $n \times n$, find a Mondrian solution above k using a SAT solver.

End of Lecture 6

