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CDCL(T)

CDCL solves(i.e. checks satisfiability) quantifier-free propositional formulas

CDCL(T) solves quantifier-free formulas in theory T,
> separates the boolean and theory reasoning,
» proceeds like CDCL, and

» needs support of a T-solver DPy, i.e., a decision procedure for
conjunction of literals of T

The tools that are build using CDCL(T) are called
satisfiablity modulo theory solvers (SMT solvers)
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CDCL(T) - some notation

Let 7 be a first-order-logic theory with signature S.

We assume input formulas are from 7, quantifier-free, and in CNF.

Definition 7.1
For a quantifier-free T formula F, let atoms(F) denote the set of atoms
appearing in F.

Example 7.1

> f(x) =~ g(h(x,y)) is a formula in QF_EUF.
» x>0Vy+ x=3.5zisa formula in QF_LRA.
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Free variables vs. constants

If we have a quantifier-free formula and are interested in satisfiability. Then,
we may assume that all variables in the formula are existentially quantified.

If we apply skolemization on such a formula then we obtain a formula with
fresh constants and no variables.

In quantifier-free satisfiability checking, variables
and constants play the same role.
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Boolean encoder

For a formula F, let boolean encoder e be a partial map from atoms(F) to
fresh boolean variables.

Definition 7.2
For a formula F, let e(F) denote the term obtained by replacing each atom a
by e(a) if e(a) is defined.

Example 7.2

Let F=x<2V(y>0Vx>2)
ande={x <2 x1,y >0 x2}
e(F)=x1V(x2V-x)
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Partial model

Definition 7.3
For a boolean encoder e, a partial model m is an ordered partial map from
range(e) to B.

Example 7.3
partial models {x — 0,y — 1} and {y — 1,x +— 0} are not same.

Definition 7.4
For a partial model m of e, let
e t(m) 2 {e}(x)|x = 1€ m}uU{-et(x)|x — 0¢c m}

Example 7.4

Lete={x <2 x1,y >0~ x2} and m = {x; — 0,x — 1}.
el={x—x<2,x—y>0}

et (m) = {=(x <2),y >0}
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CDCL(T)

Algorithm 7.1: CDCL(T)(formula F’)

e := CREATEENCODER(F') ;
F := e(F'); m := UNITPROPAGATION(m, F); dI := 0; dstack := A\x.0;
do

S
// backtracking [stands for decision level )

while m [~ F do
if dl = 0 then return unsat;
(C,dl) := ANALYZECONFLICT(m) ; // clause learning
m.resize(dstack(dl)); F := FU{C}; m := UNITPROPAGATION(m, F);

// Boolean decision dstack records history]
if m is partial then .
dstack(dl) := m.size(); jer baddiEedi

| dl:=dl+1; m = DECIDE(m, F); m := UNITPROPAGATION(m, F) ;
// Theory propagation
if m = F then
(Cs,dl') := TueEORYDEDUCTION(T)(A e *(m), m, dstack, dI);
if dl' < dl then {dl = dI'; m.resize(dstack(dl)); } ; AN
| F==FU e(Cs); m := UNITPROPAGATION(m, F); returns a clause set
while m is partial or m [~ F; and a decision level
return sat
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Theory propagation

THEORYDEDUCTION looks at the atoms assigned so far and checks
» if they are mutually unsatisfiable

» if not, are there other literals from F that are implied by the current
assignment

Any implementation must comply with the following goals
» Correctness: boolean model is consistent with T

» Termination: unsat partial models are never repeated
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THEORYDEDUCTION

THEORYDEDUCTION solves conjunction of literals and returns a set of
clauses and a decision level.

(Cs, dI') := TeORYDEDUCTION(T)(/\ e (m), m, dstack, dI)

Cs may contain the clauses of the form

(A\L)=¢
where ¢ € lits(F')U{L} and L C e~ (m).
Example 7.5

If THEORYDEDUCTION(QF_LRA)(x > 1 A x < 0,...) is called, the returned
clauses will be

CGs:={(x>1Ax<0= 1)}
If THEORYDEDUCTION(QF_LRA)(x > 1 Ay > 0,...) is called, the returned

clauses will be Assuming x +y > 0
occurs in input

Cs:={(x>1ANy>0=x+y>0),..}.
lCommentary: The RHS need not be a single literal. However, in most theories the single literal is a good practical choice.
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Requirement form THEORYDEDUCTION

The output of THEORYDEDUCTION must satisfy the following conditions

» If Ae1(m)is unsat in 7 then Cs must contain a clause with £ = L.

» if A e 1(m) is sat then dI' = dl.
Otherwise, dI’ is the decision level immediately after which the
unsatisfiablity occurred (clearly stated shortly).

@O0 Automated Reasoning 2018 Instructor: Ashutosh Gupta IITB, India 10


http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

Example : CDCL(QF_-EUF)

Example 7.6
Consider F/ = (x = yVy~2z)A(y#zVz=xu)A(z=x)
e(F)=(0aVx)A(—xVx3)Axg

After F := e(F’); m := UNITPROPAGATION(m, F)
m = {x4 — 1}

After m := DECIDE(m, F);
m={xs — 1,x2— 0}

After m ;= UNITPROPAGATION(m, F)
m={xg—1,x—0,x+— 1}
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Example : CDCL(QF_EUF) I

After (Cs,dl') := THEORYDEDUCTION(QF_EUF)(x = y Ay £ zAz = X, ..)
Cs={x#yVyrmzVz#x}d' =0,e(Cs)={-x1VxxV-xq}

After F := F U e(Cs)); m := UNITPROPAGATION()
m={xa — 1,xp — 0,x1 — 1} < conflict with learned clause

Exercise 7.1
Complete the run
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Topic 7.1

Implementation of THEORYDEDUCTION
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Theory propagation implementation - incremental solver

Theory propagation is implemented using incremental theory solvers.

Incremental solver DPy for theory T

» takes input constraints as a sequence of literals,

» maintains a data structure that defines the solver state and satisfiability
of constraints seen so far.
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Theory solver DPy interface

A theory solver must provide the following interface.

» push( ¢ ) - adds literal £ in “constraint store”
» pop() - removes last pushed literal from the store
» checkSat() - checks satisfiability of current store

» unsatCore() - returns the set of literals that caused unsatisfiablity

not necessary. However, practical tools allow users to choose the policy of calling checkSat() - lazy vs. eager
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Theory propagation implementation

Algorithm 7.2: THEORYDEDUCTION

Input: Set of literals Ls
Read only input: m partial model, dstack decision depths, d/ current decision level
foreach / € Ls do

L DPr-push(f) [Ls’ = Ls will also be correct. }

if DPg.checkSat() == unsat then But. inefficient.
// theory conflict 4
Ls" := DPy.unsatCore(); // minimize clause z

dl' := max{dl"|3¢ € Ls',i. m[i] = e(€) A dstack(dI") < i};
return ({= A Ls'}, dl")

else [d/’ is the latest decision after which ]

é./s'mfl(';d clauses all literals in Ls’ became true.

foreach ¢ € Lits(F') do
DPr.push(—£);
if DPy.checkSat() == unsat then
Ls' := DPy.unsatCore(); // { is called implied literal and —¢ € Ls’
L Cs:= CsU{-ALs'}

DP7.pop();
return (Cs,dl)
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Topic 7.2

Example theory propagation implementation

OO

Automated Reasoning 2018 Instructor: Ashutosh Gupta IITB, India

17


http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tcs.tifr.res.in/~agupta/

Theory of Equality and function symbols (EUF)

EUF syntax: quantifier-free first order formulas with signature S = (F, (),
i.e., countably many function symbols and no predicates.

The theory axioms include
1. Vx. x = x
2.Vx,y. xmRy=>y~rXx
3.V, y,zxmRyANyrRz=>x~2Z
4. for each f/n € F,

VX1, ey Xny Y1y ooy Yne XL R Y1 A o A X & Y = (X1, .0, %n) = F(y1, .., Yn)

Since the axioms are valid in FOL with equality, the theory is sometimes
referred as the base theory.

Note: Predicates can be easily added if desired
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DPeyr

Decides conjunction of literals with interface

push, pop, checkSat, and unsatCore.
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DPEUF.pUSh

General idea: maintain equivalence classes among terms

Algorithm 7.3: DPEUF.pUSh(tl > t2)

globals:set of terms Ts := (),set of pairs of classes DisEq := (), bool conflictFound := 0
Ts := TsUsubTerms(t1) U subTerms(t,);
G := getClass(t1); G := getClass(t,); // if t; is seen first time, create new class
if > = “=” then
if G = G, then return ;
if (Ci, G;) € DisEq then { conflictFound := 1; return; } ;
C := mergeClasses(Cy1, G;); parent(C) := (G, G, t1 = b);
DisEq := Diseq[C, — C, G — (]
else
J] o =
DisEq := DisEq U (G, G2);
if C; = G, then conflictFound := 1; return ;

foreach f(ri,...,r),f(s1,...,5,) € TsAVi€ 1l.n.3C. ri,s; € C do
L DPEU/:.pUS/’I(f(I’l7 RN r,,) ~ f(Sl,. . .75,7));
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Example: push

Example 7.7
Consider input f(f(x)) % x N f(x) =~ x
» DPgyr.push(f(f(x)) % x)
» term set Ts = {x, f(x), f(f(x))}
> classes C; = {f(f(x))}, and G, = {x}
> DisEq = {(G, )}

» DPeyg.push(f(x) = x)
> classes C; = {f(f(x))}, G = {x}, and G = {f(x)}
» C4 = mergeClasses(Cy, G3): classes C; = {f(f(x))}, Co = {f(x), x}
> DiSEq = {(Cl, C4)}
> Apply congruence on function f and terms of C4
> Triggers recursive call DPgyr.push(f(f(x)) = f(x))

> DPeyr.push(f(f(x)) = f(x))
» Since (G, Gy) € DisEq, conflictFound =1 and exit
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checkSat and pop

» DPgyr.checkSat() { return conflictFound; }

» DPeyr.pop() is implemented by recording the time stamp of pushes and
undoing all the mergers happened in after last push.

Exercise 7.2
Write pseudo code for DPgyg.pop()
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Unsat core

Definition 7.5
An unsat core of ¥ is a subset (preferably minimal) of ¥ that is unsat.

Algorithm 7.4: DPgyg.unsatCore()

assume(conflictFound = 1);
Let (t1 % t») be the disequality that was violated;
return {t; % t>} U getReason(t1, t2);

Algorithm 7.5: getReason(t1, t2)

Let (t; ~ t;) be the merge operation that placed t; and t in same class;
if t{ =f(s1,..,5¢) =~ f(u1,...ux) = t; was derived due to congruence then
‘ reason := | J; getReason(s;, u;)
else
| reason := {t] ~ t3}

return getReason(t1, t|) U reason U getReason(t;, t»)

tr ti + té t1
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Incremantal theory propagation

» Earlier CDCL(T)

CDCL

model

T-solver

Implied /Conflict clause

» Fine-grained interaction with theory

CDCL

Literal assignment

DPT.puSh

Literal backtracking

DPy.pop

Non-deterministically

DPy.checkSat

Implied/Conflict clause

T-solver
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Theory propagation strategies

» Exhaustive or Eager :

Cs contains all possible clauses
» Minimal or Lazy :

Cs only contains the clause that refutes current m
» Somewhat Lazy :

Cs contains only easy to deduce clauses
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Implied literals without implied clauses

Bottleneck: There may be too many implied clauses.

Observation: Very few of the implied clauses are useful, i.e., contribute in
early detection of conflict.

Optimization: apply implied literals, without adding implied clauses.

Optimization overhead: If an implied model is used in conflict then
recompute the implied clause for the implication graph analysis.
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Relevancy

Bottleneck: All the assigned literals are sent to the theory solver.

Observation: However, CDCL only needs to send those literals to the solver
that make unique clauses satisfiable.

Optimization:
» Each clause chooses one literal that makes it sat under current model.

» Those clause that are not sat under current model do nothing.

» If a literal is not chosen by any clause then it is not passed on to
T-solver.

Patented: U58140459 by Z3 EUYS(the original idea is more general than stated here)

Optimization overhead: Relevant literal management

Exercise 7.3
Suggest a scheme for relevant literal management.
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Effect of optimizations

Only experiments can tell if these are good ideas!
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Rise of SMT solvers

» In early 2000s, stable SMT solvers started appearing. e.g., Yiecs

» SMT competition(SMT-comp) became a driving force in their ever
increasing efficiency

» Formal methods community quickly realized their potential

» 73, one of the leading SMT solver, alone has about 3000+ citations
(375 per year)(June 2016)
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Leading tools

The following are some of the leading SMT solvers

» 73
> CVC4
> MathSAT

» Boolector
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Run SMT solvers

Exercise 7.4

» Find a satisfying assignment of the following formula using SMT solver
(x>0Vy<0)A(x+y>0Vx—y<D0)

Give the model generated by the SMT solver.

» Prove the following formula is valid using SMT solver
(x>yANy>z)=>x>z
Give the proof generated by the SMT solver.

Please do not simply submit the output. Please write the answers in the
mathematical notation.
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Knapsack problem

Exercise 7.5

Write a program for solving the knapsack problem that requires filling a
knapsack with stuff with maximum value. For more information look at the
following.

https://en.wikipedia.org/wiki/Knapsack_problem

The output of the program should be the number of solutions that have
value more than 95% of the best value.

Download Z3 from the following webpage:
https: // github. com/ Z3Prover/ z3

We need a tool to feed random inputs to your tool. Write a tool that
generates random instances, similar to what was provided last time.

Evaluate the performance on reasonably sized problems. You also need to
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End of Lecture 7
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