Automated Reasoning 2018

Lecture 10: Linear Rational Arithmetic (Background)

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2018-08-18

Reasoning over linear arithmetic

Example 10.1

Consider the following proof step

$$
\frac{2 x-y \leq 1 \quad 4 y-2 x \leq 6}{x+y \leq 5}
$$

Is the above proof step complete?

Basic concepts

- Linearly independent
- Rank of a set of vectors
- Vector vs. Row vector
- Hyperplane

Fundamental theorem of linear inequality

Theorem 10.1
Let a_{1}, \ldots, a_{m}, b be n-dimensional vectors. Then, one of the following is true.

1. $b:=\lambda_{1} a_{i_{1}}+\cdots+\lambda_{k} a_{i_{k}}$ for $\lambda_{j} \geq 0$ and $a_{i_{1}}, \ldots, a_{i_{k}}$ are linearly independent
2. There exists a hyperplane $\{x \mid c x=0\}$ containing $t-1$ linearly independent vectors from a_{1}, \ldots, a_{m} such that

$$
c a_{1} \geq 0, \ldots, c a_{m} \geq 0 \text { and } c b<0
$$

where $t:=\operatorname{rank}\left\{a_{1}, \ldots, a_{m}, b\right\}$.

Observation:

- c is a row vector
- Wlog, we assume $t=n$.(why?)
- Both possibilities cannot be true at the same time.(why?)

Geometrically, theorem case 1

In the first case, b is in the cone of a_{1}, \ldots, a_{m}.

Geometrically theorem case 2

In the second case, b is outside of the cone of a_{1}, \ldots, a_{m}.
Furthermore, a_{1}, \ldots, a_{m} are in one side of $\{x \mid c x=0\}$ and b is on the other.

Exercise 10.1
Give a c?

Proof: fundamental theorem of linear inequality

Proof.

Consider the following iterative algorithm.

Initially choose n independent vectors $D:=\left\{a_{i_{1}}, \ldots, a_{i_{n}}\right\}$ from a_{1}, \ldots, a_{m}.

1. Let $b=\lambda_{i_{1}} a_{i_{1}}+\cdots+\lambda_{i_{n}} a_{i_{n}}$.
2. If $\lambda_{i_{1}}, \ldots, \lambda_{i_{n}} \geq 0$, case 1 and exit.
3. Otherwise, choose smallest i_{h} such that $\lambda_{i_{h}}<0$.

Clearly, $c b<0$.(why?)
4. Choose c such that $c a=0$ for each $a \in D \backslash\left\{a_{i_{h}}\right\}$ and $c a_{i_{h}}=1$.
5. If $c a_{1}, \ldots, c a_{m} \geq 0$, case 2 and exit. (why?)
6. Otherwise, choose smallest s such that $c a_{s}<0$.
7. $D:=D \backslash\left\{a_{i_{h}}\right\} \cup\left\{a_{s}\right\}$. goto 1 .

Exercise 10.2
a. Why λ s exists in step 1? b. Why c exists in step 4?
c. Why D remains linearly independent over time?

Proof: fundamental theorem of linear inequality II

Proof.
We are yet to prove termination of the algorithm.
Let D^{k} be the set D at iteration k.
claim: D^{k} will not repeat in any future iterations. (Therefore, termination.)
Contrapositive: For some $\ell>k, D^{\ell}=D^{k}$.

Let r be the highest index such that a_{r} left D at p th iteration and came back at q th iteration for $k \leq p<q \leq \ell$

Therefore, $D^{p} \cap\left\{a_{r+1}, \ldots, a_{m}\right\}=D^{q} \cap\left\{a_{r+1}, \ldots, a_{m}\right\}$

Blue dots are indexes for D^{p}. Red dots are indexes for D^{q}.

Proof: fundamental theorem of linear inequality III

Proof.

$D^{p}:=\left\{a_{i p}^{p}, \ldots, a_{i n}\right\}$
At q th iteration, we have $c^{q} b<0$.
Let $b=\lambda_{i_{1}^{i} a_{i}^{p}}+\cdots+\lambda_{i n}^{p} a_{i}^{i}$.
Since r left D^{p},
if $i_{j}^{p}<r, \lambda_{i j}^{p} \geq 0$ and
if $i_{j}^{p}=r, \lambda_{r}<0$.

Since r entered in D^{q}, for each $j<r, c^{q} a_{j} \geq 0$, for each $j=r, c^{q} a_{r}<0$, and for each $i_{j}^{q}>r, c^{q} a_{i j}^{q}=0$.

$$
c^{q} a_{r}<0 \quad c^{q} a_{i j}=0
$$

$$
c^{q} a_{j} \geq 0
$$

Proof: fundamental theorem of linear inequality IV

Proof.

$$
c^{q} a_{r}<0 \quad c^{q} a_{i j}^{q}=0
$$

Consider

$$
0>c^{q} b=c^{q}\left(\lambda_{i_{1}^{p}} a_{i_{1}^{p}}+\cdots+\lambda_{i_{n}^{p}} a_{i n}^{p}\right)
$$

Let us show for each $j, \lambda_{i j}^{p}\left(c^{q} a_{i j}^{p}\right)$ is nonnegative.
Three cases

- $i_{j}^{p}<r: \lambda_{i_{j}^{p}} \geq 0$ and $c^{q} a_{i j} \geq 0$
- $i_{j}^{p}=r: \lambda_{r}<0$ and $c^{q} a_{r}<0$
- $i_{j}^{p}>r: c^{q} a_{i j}^{p}=0_{\text {(why?) }}$

Therefore, $c^{q} b \geq 0$. Contradiction.

Cone,Polyhedra

Definition 10.1
A set C of vectors is a cone if $x, y \in C$ then $\lambda_{1} x+\lambda_{2} y \in C$ for each $\lambda_{1}, \lambda_{2} \geq 0$.

Definition 10.2
A cone C is a polyhedral if $C=\{x \mid A x \leq 0\}$ for some matrix A.

Definition 10.3
A cone C is finitely generated by vectors x_{1}, \ldots, x_{m} is the set

$$
\operatorname{cone}\left\{x_{1}, \ldots, x_{m}\right\}:=\left\{\lambda_{1} x_{1}+\cdots+\lambda_{m} x_{m} \mid \lambda_{1}, \ldots, \lambda_{m} \geq 0\right\}
$$

Polyhedron, affine half space, polytope

Definition 10.4

A set of vectors P is called polyhedron if

$$
P=\{x \mid A x \leq b\}
$$

for some matrix A and vector b.
Definition 10.5
A set of vectors H is called affine half-space if

$$
H=\{x \mid w x \leq \delta\}
$$

for some nonzero row vector w and number δ.

Farkas lemma (version I)

Theorem 10.2

Let A be a matrix and b be a vector. Then, there is a vector $x \geq 0$ such that $A x=b$ iff

$$
\text { for all } y, \quad y A \geq 0 \Rightarrow y b \geq 0 \text {. }
$$

Proof.
(\Rightarrow)
Let $x_{0} \geq 0$ be such that $A x_{0}=b$.
Therefore, for some row vector $y, y A x_{0}=y b$.
Since $x_{0} \geq 0$, if $y A \geq 0$ then $y b \geq 0$.
(\Leftarrow)
Let us suppose there is no such x.
Let a_{1}, \ldots, a_{n} be columns of A.
Therefore, $b \notin$ cone $\left\{a_{1}, \ldots, a_{n}\right\}$.(why?)
Due to Theorem 10.1, there is a y such that $y A \geq 0$ and $y b<0$.

Farkas lemma (version II)

Theorem 10.3
Let A be a matrix and b be a vector. Then, there is a vector x such that $A x \leq b$ iff

$$
\text { for all } y, \quad y \geq 0 \wedge y A=0 \Rightarrow y b \geq 0
$$

Proof.

Consider matrix $A^{\prime}=\left[\begin{array}{lll}I & A & -A\end{array}\right]$.
$A^{\prime} x^{\prime}=b$ with $x^{\prime} \geq 0$ has a solution iff $A x \leq b$ has.(why?)
Due to theorem 10.2, The left hand side is equivalent to

$$
\text { for all } y, \quad y\left[\begin{array}{ll}
I & A-A
\end{array}\right] \geq 0 \Rightarrow y b \geq 0 \text {. }
$$

Therefore, for all $y, \quad y \geq 0 \wedge y A \geq 0 \wedge-y A \geq 0 \Rightarrow y b \geq 0$.
Therefore, for all $y, \quad y \geq 0 \wedge y A=0 \Rightarrow y b \geq 0$.
Exercise 10.3
Find the relation between solutions of $A^{\prime} x^{\prime}=b \wedge x^{\prime} \geq 0$ and $A x \leq b$.

Farkas lemma (version III)

Exercise 10.4

Prove that:
Let A be a matrix and b be a vector. Then, there is a vector $x \geq 0$ such that $A x \leq b$ iff

$$
\text { for all } y, \quad y \geq 0 \wedge y A \geq 0 \Rightarrow y b \geq 0
$$

Linear programming problem

Definition 10.6

Linear programming (LP) is the problem of maximizing or minimizing linear functions over a polyhedron. For example,

$$
\min \{c x \mid A x \leq b\}
$$

Duality theorem

Theorem 10.4

Let A be a matrix, and let b and c be vectors. Then,

$$
\max \{c x \mid A x \leq b\}=\min \{y b \mid y \geq 0 \wedge y A=c\}
$$

provided both sets are nonempty.

Proof.

claim: max will be less than or equal to \min
Let us suppose $A x \leq b, y \geq 0$, and $y A=c$.
After multiply x in $y A=c$, we obtain $y A x=c x$.
Since $y \geq 0$ and $A x \leq b, y b \geq c x$.

We need to show that the following is nonempty.

$$
A x \leq b \wedge y \geq 0 \wedge y A=c \wedge \underbrace{c x \geq y b}_{\text {makes min and max equal }}
$$

Duality theorem (contd.)

Proof.
Writing $A x \leq b \wedge y \geq 0 \wedge y A=c \wedge c x \geq y b$ as follows.

$$
\left[\begin{array}{rr}
A & 0 \\
0 & -I \\
0 & A^{T} \\
0 & -A^{T} \\
-c & b^{T}
\end{array}\right]\left[\begin{array}{r}
x \\
y^{T}
\end{array}\right] \leq\left[\begin{array}{r}
b \\
0 \\
c^{T} \\
-c^{T} \\
0
\end{array}\right]
$$

To show the above is nonempty, we apply theorem 10.3. Now we need to show that for each $u, t, v, w, \lambda \geq 0$

$$
u A-\lambda c=0 \wedge \lambda b^{T}+(v-w) A^{T}-t=0 \Rightarrow u b+(v-w) c^{T} \geq 0
$$

After simplifications, we need to show that for each $u, \lambda \geq 0$ and v^{\prime}

$$
u A=\lambda c \wedge \lambda b^{T}+v^{\prime} A^{T} \geq 0 \Rightarrow u b+v^{\prime} c^{T} \geq 0
$$

Duality theorem (contd.)

Proof.

We need to show that for each $u, \lambda \geq 0$ and v^{\prime}

$$
u A=\lambda c \wedge \lambda b^{T}+v^{\prime} A^{T} \geq 0 \Rightarrow u b+v^{\prime} c^{T} \geq 0
$$

We assume left hand side and case split on number λ.
case $\lambda>0$:
Consider $\lambda b^{T}+v^{\prime} A^{T} \geq 0 \rightsquigarrow b^{T}+v^{\prime} A^{T} / \lambda \geq 0 \rightsquigarrow b+A v^{\prime T} / \lambda \geq 0$ $\rightsquigarrow u b+\lambda c v^{\prime T} / \lambda \geq 0 \quad \rightsquigarrow \quad u b+c v^{\prime T} \geq 0 \quad \rightsquigarrow \quad u b+v^{\prime} c^{T} \geq 0_{(\text {why? })}$
case $\lambda=0$:
Left hand side reduces to $u A=0 \wedge v^{\prime} A^{T} \geq 0$.
claim: $u b \geq 0$
There is a x_{0} such that $A x_{0} \leq b$. There is a y_{0} such that $y_{0} \geq 0 \wedge y_{0} A=c$.
Therefore, $u b \geq u A x_{0}=0$.
claim: $v^{\prime} c^{T} \geq 0$
$y_{0}^{T} \geq 0 \wedge v^{\prime} A^{T} y_{0}^{T}=v^{\prime} c^{T}$.
Therefore, $v^{\prime} c^{T} \geq 0$.

Emptiness of dual space

Definition 10.7

For an LP problem $\max \{c x \mid A x \leq b\}$, the set $\{y \mid y \geq 0 \wedge y A=c\}$ is called dual space.

Theorem 10.5

If the dual space of $L P$ problem $\max \{c x \mid A x \leq b\}$ is empty. Then, the maximum vaule is unbounded.

Proof.

Let us suppose the dual space $y \geq 0 \wedge y A=c$ is empty.
Due to theorem 10.2 , there is a z such that

$$
A z \geq 0 \wedge c z<0
$$

We can use $-z$ to arbitrarily increase the value of $c x$. Therefore, the max value is unbounded.

Farkas lemma (Affine version)

Theorem 10.6

Let the system $A x \leq b$ is nonempty and let c be a row vector and δ be a number. Let us suppose for each x

$$
A x \leq b \Rightarrow c x \leq \delta
$$

Then there exists $\delta^{\prime} \leq \delta$ such that $c x \leq \delta^{\prime}$ is a nonnegative linear combination of the inequalities in $A x \leq b$.
Proof.
Since the max is bounded, the dual space is nonempty and let the max be δ^{\prime}.

Since both the spaces are nonempty and due to the duality theorem,

$$
\max \{c x \mid A x \leq b\}=\min \{y b \mid y \geq 0 \wedge y A=c\}
$$

Therefore, there exists y_{0}, such that $y_{0} b=\delta^{\prime} \wedge y_{0} \geq 0 \wedge y_{0} A=c$.(why?)

End of Lecture 10

