Automated Reasoning 2018

Lecture 10: Linear Rational Arithmetic (Background)

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2018-08-18

Reasoning over linear arithmetic

Example 10.1

Consider the following proof step

$$\frac{2x - y \le 1 \quad 4y - 2x \le 6}{x + y \le 5}$$

Is the above proof step complete?

Basic concepts

- Linearly independent
- Rank of a set of vectors
- Vector vs. Row vector

Hyperplane

Fundamental theorem of linear inequality

Theorem 10.1

Let a_1, \ldots, a_m , b be n-dimensional vectors. Then, one of the following is true.

- 1. $b := \lambda_1 a_{i_1} + \dots + \lambda_k a_{i_k}$ for $\lambda_j \ge 0$ and a_{i_1}, \dots, a_{i_k} are linearly independent
- 2. There exists a hyperplane $\{x | cx = 0\}$ containing t 1 linearly independent vectors from a_1, \ldots, a_m such that

$$ca_1 \geq 0, \ldots, ca_m \geq 0$$
 and $cb < 0$,

where
$$t := rank\{a_1, \ldots, a_m, b\}$$
.

Observation:

- c is a row vector
- Wlog, we assume $t = n_{.(why?)}$
- Both possibilities cannot be true at the same time.(why?)

Geometrically, theorem case 1

In the first case, b is in the cone of a_1, \ldots, a_m .

Geometrically theorem case 2

In the second case, b is outside of the cone of a_1, \ldots, a_m .

Furthermore, a_1, \ldots, a_m are in one side of $\{x | cx = 0\}$ and b is on the other.

Exercise 10.1 Give a c?

Proof: fundamental theorem of linear inequality

Proof.

Consider the following iterative algorithm.

Initially choose *n* independent vectors $D := \{a_{i_1}, \ldots, a_{i_n}\}$ from a_1, \ldots, a_m .

1. Let
$$b = \lambda_{i_1} a_{i_1} + \cdots + \lambda_{i_n} a_{i_n}$$
.

- 2. If $\lambda_{i_1}, \ldots, \lambda_{i_n} \geq 0$, case 1 and exit.
- 3. Otherwise, choose smallest i_h such that $\lambda_{i_h} < 0$.
- 4. Choose c such that ca = 0 for each $a \in D \setminus \{a_{i_h}\}$ and $ca_{i_h} = 1$.
- 5. If $ca_1, \ldots, ca_m \ge 0$, case 2 and exit. (why?)
- 6. Otherwise, choose smallest s such that $ca_s < 0$.

7.
$$D := D \setminus \{a_{i_h}\} \cup \{a_s\}$$
. goto 1.

Exercise 10.2

- a. Why λ s exists in step 1? b. Why c exists in step 4?
- c. Why D remains linearly independent over time?
- d. Why not simply enumerate all linearly independent subsets from $a_1, ..., a_m$?

Proof: fundamental theorem of linear inequality II

Proof.

We are yet to prove termination of the algorithm.

Let D^k be the set D at iteration k.

claim: D^k will not repeat in any future iterations. (Therefore, termination.) Contrapositive: For some $\ell > k$, $D^{\ell} = D^k$.

Let r be the highest index such that a_r left D at pth iteration and came back at qth iteration for $k \le p < q \le \ell$

Proof: fundamental theorem of linear inequality III

Proof.

$$D^{p} := \{a_{i_{1}^{p}}, \dots, a_{i_{n}^{p}}\}$$

Let $b = \lambda_{i_{1}^{p}}a_{i_{1}^{p}} + \dots + \lambda_{i_{n}^{p}}a_{i_{n}^{p}}$.

Since r left D^{p} , if $i_{j}^{p} < r$, $\lambda_{i_{j}^{p}} \ge 0$ and if $i_{j}^{p} = r$, $\lambda_{r} < 0$. At qth iteration, we have $c^q b < 0$.

Since r entered in D^q , for each j < r, $c^q a_j \ge 0$, for each j = r, $c^q a_r < 0$, and for each $i_j^q > r$, $c^q a_{i_j^q} = 0$.

Proof: fundamental theorem of linear inequality IV

Proof. Consider

$$0 > c^{\boldsymbol{q}}b = c^{\boldsymbol{q}}(\lambda_{i_1^p}a_{i_1^p} + \cdots + \lambda_{i_n^p}a_{i_n^p})$$

Let us show for each j, $\lambda_{i_j^p}(c^q a_{i_j^p})$ is nonnegative. Three cases

►
$$i_j^p < r$$
: $\lambda_{i_j^p} \ge 0$ and $c^q a_{i_j^p} \ge 0$
► $i_j^p = r$: $\lambda_r < 0$ and $c^q a_r < 0$
► $i_j^p > r$: $c^q a_{i_j^p} = 0_{(why?)}$

Therefore, $c^q b \ge 0$. Contradiction.

Cone, Polyhedra

Definition 10.1

A set C of vectors is a cone if $x, y \in C$ then $\lambda_1 x + \lambda_2 y \in C$ for each $\lambda_1, \lambda_2 \ge 0$.

Definition 10.2 A cone C is a polyhedral if $C = \{x | Ax \le 0\}$ for some matrix A.

Definition 10.3 A cone C is finitely generated by vectors x_1, \ldots, x_m is the set

$$cone\{x_1,\ldots,x_m\} := \{\lambda_1 x_1 + \cdots + \lambda_m x_m | \lambda_1,\ldots,\lambda_m \ge 0\}$$

Polyhedron, affine half space, polytope

Definition 10.4 A set of vectors P is called polyhedron if

$$P = \{x | Ax \le b\}$$

for some matrix A and vector b.

Definition 10.5 A set of vectors H is called affine half-space if

 $H = \{x | wx \le \delta\}$

for some nonzero row vector w and number δ .

Farkas lemma (version I)

Theorem 10.2

Let A be a matrix and b be a vector. Then, there is a vector $x \ge 0$ such that Ax = b iff

for all
$$y$$
, $yA \ge 0 \Rightarrow yb \ge 0$.

Proof. (\Rightarrow) Let $x_0 \ge 0$ be such that $Ax_0 = b$. Therefore, for some row vector y, $yAx_0 = yb$. Since $x_0 \ge 0$, if $yA \ge 0$ then $yb \ge 0$.

(\Leftarrow) Let us suppose there is no such x. Let a_1, \ldots, a_n be columns of A. Therefore, $b \notin cone\{a_1, \ldots, a_n\}$.^(why?) Due to Theorem 10.1, there is a y such that $yA \ge 0$ and yb < 0.

Farkas lemma (version II)

Theorem 10.3

Let A be a matrix and b be a vector. Then, there is a vector x such that $Ax \le b$ iff

for all
$$y$$
, $y \ge 0 \land yA = 0 \Rightarrow yb \ge 0$.

Proof.

Consider matrix $A' = [I \ A \ -A]$. A'x' = b with $x' \ge 0$ has a solution iff $Ax \le b$ has._(why?) Due to theorem 10.2, The left hand side is equivalent to

$$\text{for all } y, \quad y[I \ A \ -A] \geq 0 \Rightarrow yb \geq 0.$$

Therefore, for all y, $y \ge 0 \land yA \ge 0 \land -yA \ge 0 \Rightarrow yb \ge 0$. Therefore, for all y, $y \ge 0 \land yA = 0 \Rightarrow yb \ge 0$.

Exercise 10.3

Find the relation between solutions of $A'x' = b \land x' \ge 0$ and $Ax \le b$.

Farkas lemma (version III)

Exercise 10.4

Prove that:

Let A be a matrix and b be a vector. Then, there is a vector $x \geq 0$ such that $Ax \leq b$ iff

$$\textit{for all } y, \quad y \geq 0 \land yA \geq 0 \Rightarrow yb \geq 0.$$

Linear programming problem

Definition 10.6

Linear programming (LP) is the problem of maximizing or minimizing linear functions over a polyhedron. For example,

 $min\{cx|Ax \leq b\}$

Duality theorem

Theorem 10.4

Let A be a matrix, and let b and c be vectors. Then,

 $max\{cx|Ax \le b\} = min\{yb|y \ge 0 \land yA = c\}$

provided both sets are nonempty.

Proof.

claim: max will be less than or equal to min Let us suppose $Ax \le b$, $y \ge 0$, and yA = c. After multiply x in yA = c, we obtain yAx = cx. Since $y \ge 0$ and $Ax \le b$, $yb \ge cx$.

We need to show that the following is nonempty.

$$Ax \leq b \land y \geq 0 \land yA = c \land cx \geq yb$$

makes min and max equal

Duality theorem (contd.)

Proof.

Writing $Ax \leq b \land y \geq 0 \land yA = c \land cx \geq yb$ as follows.

To show the above is nonempty, we apply theorem 10.3. Now we need to show that for each $u, t, v, w, \lambda \ge 0$

$$uA - \lambda c = 0 \wedge \lambda b^{T} + (v - w)A^{T} - t = 0 \Rightarrow ub + (v - w)c^{T} \ge 0.$$

After simplifications, we need to show that for each $u, \lambda \ge 0$ and v'

$$uA = \lambda c \wedge \lambda b^{T} + v'A^{T} \ge 0 \Rightarrow ub + v'c^{T} \ge 0.$$

Duality theorem (contd.)

Proof.

We need to show that for each $u, \lambda \ge 0$ and v'

$$uA = \lambda c \wedge \lambda b^{T} + v'A^{T} \ge 0 \Rightarrow ub + v'c^{T} \ge 0.$$

We assume left hand side and case split on number λ .

case
$$\lambda > 0$$
:
Consider $\lambda b^T + v'A^T \ge 0 \quad \rightsquigarrow \quad b^T + v'A^T/\lambda \ge 0 \quad \rightsquigarrow \quad b + Av'^T/\lambda \ge 0$
 $\rightsquigarrow \quad ub + \lambda cv'^T/\lambda \ge 0 \quad \rightsquigarrow \quad ub + cv'^T \ge 0 \quad \rightsquigarrow \quad ub + v'c^T \ge 0_{(why?)}$

case $\lambda = 0$: Left hand side reduces to $uA = 0 \land v'A^T \ge 0$.

claim: $ub \ge 0$ There is a x_0 such that $Ax_0 \le b$. Therefore, $ub \ge uAx_0 = 0$. Therefore, $v'c^T \ge 0$ Therefore, $v'c^T \ge 0 \land y_0A = c$. $y_0^T \ge 0 \land v'A^Ty_0^T = v'c^T$. Therefore, $v'c^T \ge 0$.

Emptiness of dual space

Definition 10.7

For an LP problem $max\{cx|Ax \leq b\}$, the set $\{y|y \geq 0 \land yA = c\}$ is called dual space.

Theorem 10.5

If the dual space of LP problem $max\{cx|Ax \le b\}$ is empty. Then, the maximum vaule is unbounded.

Proof.

Let us suppose the dual space $y \ge 0 \land yA = c$ is empty. Due to theorem 10.2, there is a z such that

$$Az \ge 0 \wedge cz < 0.$$

We can use -z to arbitrarily increase the value of cx. Therefore, the max value is unbounded.

Farkas lemma (Affine version)

Theorem 10.6

Let the system $Ax \le b$ is nonempty and let c be a row vector and δ be a number. Let us suppose for each x

$$Ax \leq b \Rightarrow cx \leq \delta.$$

Then there exists $\delta' \leq \delta$ such that $cx \leq \delta'$ is a nonnegative linear combination of the inequalities in $Ax \leq b$.

Proof.

Since the max is bounded, the dual space is nonempty and let the max be δ' .

Since both the spaces are nonempty and due to the duality theorem,

$$max\{cx|Ax \le b\} = min\{yb|y \ge 0 \land yA = c\}$$

Therefore, there exists y_0 , such that $y_0b = \delta' \wedge y_0 \ge 0 \wedge y_0A = c_{(why?)}$

Therefore, $cx \leq \delta'$ is nonnegative linear combination of $Ax \leq c_{(why?)}$

End of Lecture 10

