Automated Reasoning 2018

Lecture 14: Integers and Simplex+Gomery cut

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2018-09-04

Topic 14.1

Total duality integrality

Integral

Definition 14.1

A polyhedron P is integral if all faces of P have integral vectors.

Faces include any thing that is facing exterior

- Vertices (minimal face)
- Edges

Many dimensional surfaces
 Automated Reasoning 2018

Some properties of faces

- Faces are obtained by converting one or more inequalities to equality.
- Faces are polyhedron themselves.
- Faces have subfaces
- There are minimal dimensional faces.
- All minimal dimensional faces must has same dimension, are subspaces and are translation of each other.

Condition for being integral The hyperplanes that are "touching" *P*

Theorem 14.1

A rational polyhedron P is integral, iff each supporting hyperplane of P has integral vectors.

 $\stackrel{\mathsf{Proof.}}{(\Rightarrow) \text{ trivial.}}$

(\Leftarrow) Assume \neg LHS. We prove \neg RHS. Let $P = \{x | Ax \le b\}$ for integral A and b, and $F = \{x | A'x = b'\}$ be a minimal face of P, where $A'x \le b'$ is a subsystem of $Ax \le b$, without integral vectors.

Due to theorem 13.2, there is a y such that yA' is integral and yb' is not. We add positive integers to components of y to make it positive. Still yA' is integral and yb' is not. Let c = yA' and $\delta = yb'$. Clearly, $cx = \delta$ has no integral vectors. Since $F \subseteq cx = \delta$ and $P \subseteq cx \le \delta_{(why?)}$, $cx = \delta$ is a supporting hyperplane.

Commentary: Theorem 22.1 in Schrijver

Total duality integrality(TDI)

Definition 14.2

A rational system $Ax \leq b$ is totally dual integral if the minimum in the LP-duality equation

$$max{cx|Ax \le b} = min{yb|y \ge 0 \land yA = c}$$

has an integral optimum y for each integral c for which the minimum is finite.

 a_2

Example 14.1

max reaches optima at the corner of the red polyhedron, if c is in the green cone.

TDI says that integral c is nonnegative integral combination of a_1 and a_2 .

Therefore, a_1 and a_2 form an Hilbert basis.

Exercise 14.1

Prove: If $Ax \leq b$ is TDI, and $Ax \leq b \Rightarrow ax \leq \beta$, $Ax \leq b \land ax \leq \beta$ is a TDI. $\bigcirc 0 \land 0 \land 0$ Automated Reasoning 2018
Instructor: Ashutosh Gupta
IITB, India

TDI has integral optimum solutions

Theorem 14.2

If $Ax \leq b$ is TDI and b is integral, $\{x | Ax \leq b\}$ is integral.

Proof.

Let c be an integral row vector such that $max\{cx|Ax \le b\}$ is finite. Since $Ax \le b$ is TDI and b is integral, $min\{yb|y \ge 0 \land yA = c\}$ is integer. $\delta = max\{cx|Ax \le b\}$ is integer. Let $H = \{x|cx = \delta\}$. H is a supporting hyperplane. Wlog, we assume gcd(c) = 1. Therefore, $cx = \delta$ has integer solutions.

Due to theorem 14.1, $\{x | Ax \leq b\}$ is integral.

Exercise 14.2

Let $Ax \le b$ be TDI. If b and c are integral, and $max\{cx|Ax \le b\}$ is finite, the max achieves optima at integral x.

Commentary: Theorem 22.1a-c in Schrijver				
©()(\$0)	Automated Reasoning 2018	Instructor: Ashutosh Gupta	IITB, India	7

A face of TDI-system is TDI-system

Theorem 14.3 Let $Ax \leq b \land ax \leq \beta$ be TDI. Then, $Ax \leq b \land ax = \beta$ is also TDI. Proof.

Let c be an integral vector, with

 $max\{cx|Ax \leq b \land ax = \beta\} = min\{yb + (\lambda - \mu)\beta|y, \lambda, \mu \geq 0 \land yA + (\lambda - \mu)a = c\}.$

Let x^* , y^* , λ^* and μ^* attain the optima.

A face of TDI-system is TDI-system II

Proof(contd.)

Let c' = c + Na for some integer N such that $N \ge \mu *$ and Na is integral.

Then optima

$$max\{c'x|Ax \leq b \land ax \leq \beta\} = min\{yb + \lambda\beta|y, \lambda \geq 0 \land yA + \lambda a = c'\}$$

is finite because

 Θ

•
$$x := x^*$$
 satisfies $Ax \leq b \land ax \leq \beta$

▶ $y := y^*$, and $\lambda := \lambda^* + N - \mu^*$ satisfies $y, \lambda \ge 0 \land yA + \lambda a = c'$.

Commentary: N can vary well be $|max(0, \lambda^* - \mu^*)|$

A face of TDI-system is TDI-system III

Proof(contd.)

Since $Ax \leq b \wedge ax \leq \beta$ is TDI, the minimum in the above is attained by integral solution, say y_0, λ_0 . Therefore, $y_0b + \lambda_0\beta \leq y^*b + (\lambda^* + N - \mu^*)\beta$.

claim: $y = y_0$, $\lambda = \lambda_0$, $\mu = N$ also attains minimum in

 $max\{cx|Ax \leq b \land ax = \beta\} = min\{yb + (\lambda - \mu)\beta|y, \lambda, \mu \geq 0 \land yA + (\lambda - \mu)a = c\}.$

Since $y_0b + \lambda_0\beta \leq y^*b + (\lambda^* + N - \mu^*)\beta$, after moving $N\beta$ rhs to lhs

$$y_0b + (\lambda_0 - N)\beta \leq y^*b + (\lambda^* - \mu^*)\beta$$

Since $y = y^*$, $\lambda = \lambda^*$, $\mu = \mu^*$ attains the minimum, therefore $y = y_0$, $\lambda = \lambda_0$, $\mu = N$ attains the minimum.

Hilbert basis and TDI

Theorem 14.4

Let $Ax \leq b$ be TDI iff, for each face F of $\{x | Ax \leq b\}$, the inequalities of $Ax \leq b$ that are active in F form a Hilbert basis.

Proof.
(
$$\Rightarrow$$
)
Let $a_1 \leq \delta_1, \dots, a_t \leq \delta_t$ be active on F .
Choose an integral vector c in the cone of $\{a_1, \dots, a_t\}$
The maximum attained in the following

$$max\{cx|Ax \le b\} = min\{yb|y \ge 0 \land yA = c\}$$

is achieved by x in $F_{.(why?)}$

Since $Ax \leq b$ is TDI, the minimum is achieved by integral y.

Due to complementary slackness, the components of y for non-active rows is 0.

Hence c is nonnegative integral combination of $a_1, ..., a_t$.

An inequality $ax \le \delta$ of $Ax \le b$ is active in F if $F \Rightarrow ax = \delta$

11

Hilbert and TDI

- Proof(contd.)
- (⇔)

Let c be an integral row vector for which the following is finite.

$$max{cx|Ax \leq b} = min{yb|y \geq 0 \land yA = c}$$

Consider the largest F such that all x in F attain the maximum._(why?) Let $a_1 \leq \delta_1, \ldots, a_t \leq \delta_t$ be active on F.

c must be in the cone of $a_1, ..., a_t$.

Since they form an Hilbert basis $c = \lambda_1 a_1 + \cdots + \lambda_t a_t$ for $\lambda_1, ..., \lambda_t \ge 0$. By zero padding, we can construct integral y such that yA = c and yb = yAx = cx for each x in F. Therefore, y achives the minimum. Therefore, Ax < b is TDI.

Exercise 14.3

Why we need largest face F?

Automated Reasoning 2018

There is a TDI-system for each polyhedron

Theorem 14.5

For each rational polyhedron P, there is a TDI-system $Ax \le b$ with A integral matrix and rational vector b such that $P = \{x | Ax \le b\}$.

Proof.

- Consider a minimal face F of P.
- Let C_F be the cone of vectors c such that $max\{cx|x \in P\}$ is attained by $x \in F$ Let a_1, \ldots, a_t be integral Hilbert basis of C_F . Let $x_0 \in F$. Therefore, for $1 \le i \le t$, $P \Rightarrow a_i x \le a_i x_0$. Let $A_F = \{a_1 x \le a_1 x_0, ..., a_t x \le a_t x_0\}$.
 - Let $Ax \leq b$ be union of inequalities A_F for each minimal F. $Ax \leq b$ defines $P_{(why?)}$ and is TDI due to theorem 14.4.

Exercise 14.4

- a. Why we need minimal face F?
- b. Give algorithm for transforming $Ax \leq b$ into a TDI-system?

Commentary: Theorem 22.6 in Schrijver

Topic 14.2

Cutting planes

Cutting half spaces

Let $H = \{x | cx \leq \beta\}$ be half space, where gcd(c) = 1.

Definition 14.3

 Θ

For a polyhedron P. Let

15

TDI-systems quickly finds P'

Theorem 14.6 Let $Ax \le b$ be TDI and A is integral. Let $P = \{x | Ax \le b\}$.

$$\mathcal{D}' = \{x | Ax \le \lfloor b \rfloor\}$$

Proof. If $P = \emptyset$, trivial.(why?)

Let us assume $P \neq \emptyset$. Clearly, $P' \subseteq \{x | Ax \leq \lfloor b \rfloor\}$.(why?) claim: $P' \supseteq \{x | Ax \leq \lfloor b \rfloor\}$

Let $H = \{x | cx \le \delta\}$ be a rational half-space such that $P \subseteq H$. Wlog we assume gcd(c) = 1. Then, $H_I = \{x | cx \le \lfloor \delta \rfloor\}$. We have $\delta \ge max\{cx | Ax \le b\} = min\{yb | y \ge 0 \land yA = c\}$. Since $Ax \le b$ is TDI, the above min is attained by an integral y_0 . Chose x such that $Ax \le \lfloor b \rfloor$. Therefore, $cx = y_0Ax \le y_0\lfloor b \rfloor \le \lfloor y_0b \rfloor \le \lfloor \delta \rfloor$. So $\{x | Ax \le \lfloor b \rfloor\} \subseteq H_I$.

As this is true for each rational half-space, the claim holds.

Commentary: Theorem 23.1 in Schrijver

P' carries over to faces

Theorem 14.7 Let F be face of a rational polyhedron P. Then $F' = P' \cap F$

Proof. Let $P = \{x | Ax \le b\}$, with A integral and $Ax \le b$ TDI. Let $F = \{x | Ax \le b \land ax = \beta\}$ for integral a and β and $P \Rightarrow ax \le \beta$.(why?)

Since
$$Ax \leq b \land ax \leq \beta$$
 is $TDI_{(why?)}$, $Ax \leq b \land ax = \beta$ is TDI .

Therefore,

$$\mathsf{P}' \cap \mathsf{F} = \{x | Ax \leq \lfloor b \rfloor \land \mathsf{ax} = \beta\} = \{x | Ax \leq \lfloor b \rfloor \land \mathsf{ax} \leq \lfloor \beta \rfloor \land \mathsf{ax} \geq \lfloor \beta \rfloor\} = \mathsf{F}'$$

Commentary: Lemma of Theorem 23.1 in Schrijver

Automated Reasoning 2018

Instructor: Ashutosh Gupta

$P^t = P_l$

Theorem 14.8

For each rational polyhedron P, there exists a number t such that $P^t = P_I$.

Proof. We apply induction over dimension d of P.

The case $P = \emptyset$ and d = 0 are trivial.

case: Let us suppose affine.Hull(P) has no integers.

Therefore, there is integral vector c and non-integer δ such that affine. $Hull(P) \subseteq \{x | cx = \delta\}$. Hence,

$$\mathsf{P}' \subseteq \{x | \mathsf{c} \mathsf{x} \le \lfloor \delta \rfloor \land \mathsf{c} \mathsf{x} \ge \lceil \delta \rceil\} = \emptyset.$$

Therefore, $P' = P_I$.

Commentary: Theorem 23.2 in Schrijver

. . .

 $P^t = P_I \quad \text{II}$

Proof(contd).

case: Let us suppose affine.Hull(P) has integers.

If *affine*.Hull(P) is not full dimensional, we project it to lower dimensions using Hermite Normal form and apply induction hypothesis._(how?)

Therefore, we may assume affine.Hull(P) is full dimensional.

Due to theorem 13.5, we know $P_I = \{cx | x \le b'\}$ and $P = \{Ax \le b\}$.

Let $ax \leq \beta'$ in $Ax \leq b'$, and there is a corresponding $ax \leq \beta$ in $Ax \leq b$.

$P^t = P_I$ III

Proof(contd.)

claim: $P^s \subseteq H$ for some *s*

Let us suppose for each s, we have $P^s \not\subseteq H$.

Therefore, there is an integer β'' and an integer r such that $\beta' < \beta'' \le \lfloor \beta \rfloor$.

$$\{x|ax \leq \beta'' - 1\} \not\supseteq P^{s} \subseteq \{x|ax \leq \beta''\} \qquad \text{for each } s \geq r$$

Let $F = P^r \cap \{x | ax = \beta''\}$. Due to dim(F) < dim(P), F does not contain any integer(why?), and induction hypothesis, $F^u = \emptyset$ for some u. Therefore,

$$\emptyset = F^u = P^{(r+u)} \cap F = P^{(r+u)} \cap \{x | ax = \beta''\}$$

Therefore, $P^{(r+u)} \subseteq \{x | ax < \beta''\}$. Therefore, $P^{(r+u+1)} \subseteq \{x | ax \le \beta'' - 1\}$. Contradiction.

Cutting plane proofs

Let $Ax \leq b$ be a system of inequalities, and let $cx \leq \delta$ be an inequality.

Definition 14.4

A sequence of inequalities $c_1 x \leq \delta_1, \ldots, c_m x \leq \delta_m$ is a cutting plane proof of $cx \leq \delta$ from $Ax \leq b$ if

• $c_m = c, \ \delta_m = \delta,$ • $c_1, \dots c_m$ are integral, • $c_i = \Lambda A + \lambda_1 c_1 + \dots + \lambda_{i-1} c_{i-1}, \text{ and}$ • $\delta_i \ge \lfloor \Lambda \delta + \lambda_1 \delta_1 + \dots + \lambda_{i-1} \delta_{i-1} \rfloor, \text{ where } \Lambda, \lambda_1, \dots, \lambda_{i-1} \ge 0.$

m is the length of the proof.

Cutting plane proofs always exist

Theorem 14.9

Let $P = \{x | Ax \le b\}$ be a nonempty rational polyhedron.

- If $P_I \neq \emptyset$ and $P_I \Rightarrow cx \leq \delta$, then there is a cutting plane proof of $cx \leq \delta$ from $Ax \leq b$.
- ▶ If $P_I = \emptyset$, then there is a cutting plane proof of $0 \le -1$ from $Ax \le b$.

Proof.

Let t be such that $P^t = P_I$.

For each $i \ge 1$, there is a system $A_i x \le b_i$ that defines P^i such that

• For each
$$\alpha x \leq \beta$$
 in $A_i x \leq b_i$, there is $yA_{i-1} = \alpha$ and $\beta = \lfloor yb_{i-1} \rfloor$.

►
$$A_0 = A$$
 and $b_0 = b$.

Commentary: Theorem 23.2b in Schrijver

. . .

Cutting plane proofs always exist

Proof(contd.)

If $P_I \neq \emptyset$ and $P_I \Rightarrow cx \leq \delta$, due to the Farkas lemma (affine form) $yA_t = c$ and $\delta \geq yb_t$.

Therefore, the following is the cutting proof of $cx \leq b$ from $Ax \leq b$,

$$A_1x \leq b_1, \ldots, A_tx \leq b_t, cx \leq b.$$

If $P_I = \emptyset$, then $yA_t = 0$ and $yb_t = -1$ for some $y \ge 0$. Therefore, the following is the cutting proof of $0 \le -1$ from $Ax \le b$.

$$A_1x \leq b_1, \dots, A_tx \leq b_t, 0x \leq -1.$$

Length of cutting plane proofs

The number of cutting planes depends on the size of numbers!

The following will trigger at least k cuts.

Topic 14.3

Theory of integer linear arithmetic

Integer linear arithmetic(QF_LIA)

Syntax is same as rational integer linear arithmetic with a different axiom set.

We will discuss a number of methods to find satisfiability of conjunction of linear inequalities.

- Cooper's method
- Branch and Bound
- Gomery Cut
- Omega test method

Topic 14.4

Gomery cut

Simplex for integers

Recall our normal form for the input problem

$$Ax = 0 \text{ and } \bigwedge_{i=1}^{m+n} I_i \leq x_i \leq u_i.$$

 l_i and u_i are $+\infty$ and $-\infty$ if there is no lower and upper bound, respectively.

In the following presentation of Gomery cut, we assume that

- at least one bound is finite for each variable and
- all finite bounds are integral.

Simplex+Gomery cut

Gomery cut chips away non-integer parts of the solution space.

The algorithm proceeds as follows

- 1. Run simplex as if all variables are rationals and find an assignment \boldsymbol{v}
- 2. if v is integral, return v
- 3. if for some $i \in B$, $v(x_i)$ is not integer then add a constraint to eliminate the neighbouring non-integer space.

Consider the row
$$k_i$$
 of A , $x_i = \sum_{j \in NB} a_{k_i j} x_j$. An integer solution must satisfy the equality

Wlog, we assume all upper bounds are active for the nonbasic variables.

$$v(x_i) := \sum_{j \in NB} a_{k_i j} u_j$$

After a rewrite,

$$v(x_i) = x_i + \sum_{j \in NB} a_{k_i j} (u_j - x_j).$$

Instructor: Ashutosh Gupta

Simplex+Gomery cut (II)

Consider the following inequality

nequality

$$\{\delta\} = \delta - \lfloor \delta \rfloor$$

$$\{v(x_i)\} \leq \sum_{j \in NB} \{a_{k_i j}\}(u_j - x_j)$$

- **claim:** *v* does not satisfy the above inequality.
 - Since v(x_i) is not an integer, {v(x_i)} is positive.
 - Under v the rhs is 0.(why?)

claim: Any integer solution of the input satisfies the above inequality.

An integer solution x must satisfy

$$v(x_i) = x_i + \sum_{j \in NB} a_{k_i j} (u_j - x_j).$$

Therefore,

∑_{j∈NB} {a_{kij}} (u_j - x_j) ≥ 0_(why?)
 {v(x_i)} = {∑_{j∈NB} {a_{kij}} (u_j - x_j)}
 {v(x_i)} ≤ ∑_{j∈NB} {a_{kij}} (u_j - x_j)

Therefore, the inequality separates v from the integer solutions.

We push the above inequality in simplex and run it again.

Branch and bound: Unbounded cases

Let us suppose there is a nonbasic variable that has no bounds.

We can not apply Gomery cut. We may need to case split.

We generate two simplex problems with the following two inequalities respectively.

$$\begin{array}{c|c} \mathbf{x}_i \leq \lfloor \mathbf{v}(x_i) \rfloor \\ \mathbf{x}_i \geq \lceil \mathbf{v}(x_i) \rceil \end{array} \end{array} \xrightarrow{ \left[\begin{array}{c} \text{We have removed space} \\ \lceil \mathbf{v}(x_i) \rceil > x_i > \lfloor \mathbf{v}(x_i) \rfloor \end{array} } \end{array}$$

Solve the two problems separately.

The splits are called branch and bound method.

End of Lecture 14

