Automated Reasoning 2018

Lecture 14: Integers and Simplex+Gomery cut

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2018-09-04

Topic 14.1

Total duality integrality

Integral

Definition 14.1
A polyhedron P is integral if all faces of P have integral vectors.

Faces include any thing that is facing exterior

- Vertices (minimal face)
- Edges
- Many dimensional surfaces

Some properties of faces

- Faces are obtained by converting one or more inequalities to equality.
- Faces are polyhedron themselves.
- Faces have subfaces
- There are minimal dimensional faces.
- All minimal dimensional faces must has same dimension, are subspaces and are translation of each other.

Condition for being integral

Theorem 14.1

The hyperplanes that are "touching" P

A rational polyhedron P is integral, iff each supporting hyperplane of P has integral vectors.

Proof.

(\Rightarrow) trivial.
(\Leftarrow) Assume \neg LHS. We prove \neg RHS.
Let $P=\{x \mid A x \leq b\}$ for integral A and b, and
$F=\left\{x \mid A^{\prime} x=b^{\prime}\right\}$ be a minimal face of P, where $A^{\prime} x \leq b^{\prime} \quad c x=\delta$
is a subsystem of $A x \leq b$, without integral vectors.

Due to theorem 13.2, there is a y such that $y A^{\prime}$ is integral and $y b^{\prime}$ is not. We add positive integers to components of y to make it positive. Still $y A^{\prime}$ is integral and $y b^{\prime}$ is not. Let $c=y A^{\prime}$ and $\delta=y b^{\prime}$.
Clearly, $c x=\delta$ has no integral vectors.
Since $F \subseteq c x=\delta$ and $P \subseteq c x \leq \delta($ why $), c x=\delta$ is a supporting hyperplane.

Total duality integrality(TDI)

Definition 14.2
A rational system $A x \leq b$ is totally dual integral if the minimum in the LP-duality equation

$$
\max \{c x \mid A x \leq b\}=\min \{y b \mid y \geq 0 \wedge y A=c\}
$$

has an integral optimum y for each integral c for which the minimum is finite.

Example 14.1

max reaches optima at the corner of the red polyhedron, if c is in the green cone.
TDI says that integral c is nonnegative integral combination of a_{1} and a_{2}.

Therefore, a_{1} and a_{2} form an Hilbert basis.
Exercise 14.1

TDI has integral optimum solutions

Theorem 14.2
If $A x \leq b$ is TDI and b is integral, $\{x \mid A x \leq b\}$ is integral.

Proof.

Let c be an integral row vector such that $\max \{c x \mid A x \leq b\}$ is finite.
Since $A x \leq b$ is TDI and b is integral, $\min \{y b \mid y \geq 0 \wedge y A=c\}$ is integer.(why?) $\delta=\max \{c x \mid A x \leq b\}$ is integer.
Let $H=\{x \mid c x=\delta\}$. H is a supporting hyperplane.
Wlog, we assume $\operatorname{gcd}(c)=1$. Therefore, $c x=\delta$ has integer solutions.

Due to theorem 14.1, $\{x \mid A x \leq b\}$ is integral.
Exercise 14.2
Let $A x \leq b$ be TDI. If b and c are integral, and $\max \{c x \mid A x \leq b\}$ is finite, the max achieves optima at integral x.

A face of TDI-system is TDI-system

Theorem 14.3
Let $A x \leq b \wedge a x \leq \beta$ be TDI. Then, $A x \leq b \wedge a x=\beta$ is also TDI.
Proof.
Let c be an integral vector, with

$$
\max \{c x \mid A x \leq b \wedge a x=\beta\}=\min \{y b+(\lambda-\mu) \beta \mid y, \lambda, \mu \geq 0 \wedge y A+(\lambda-\mu) a=c\} .
$$

Let $x^{*}, y^{*}, \lambda^{*}$ and μ^{*} attain the optima.

Two possibilities:

$$
\text { 1. } \lambda *-\mu * \geq 0
$$

$$
\text { 2. } \lambda *-\mu *<0
$$

The second case can be handled by rotating c. No need of cases.

A face of TDI-system is TDI-system II

Proof(contd.)
Let $c^{\prime}=c+N a$ for some integer N such that $N \geq \mu *$ and $N a$ is integral.
Removes negative a component from c

Then optima

$$
\max \left\{c^{\prime} x \mid A x \leq b \wedge a x \leq \beta\right\}=\min \left\{y b+\lambda \beta \mid y, \lambda \geq 0 \wedge y A+\lambda a=c^{\prime}\right\}
$$

is finite because

- $x:=x^{*}$ satisfies $A x \leq b \wedge a x \leq \beta$
- $y:=y^{*}$, and $\lambda:=\lambda^{*}+N-\mu^{*}$ satisfies $y, \lambda \geq 0 \wedge y A+\lambda a=c^{\prime}$.

A face of TDI-system is TDI-system III

Proof(contd.)

Since $A x \leq b \wedge a x \leq \beta$ is TDI, the minimum in the above is attained by integral solution, say y_{0}, λ_{0}. Therefore, $y_{0} b+\lambda_{0} \beta \leq y^{*} b+\left(\lambda^{*}+N-\mu^{*}\right) \beta$.
claim: $y=y_{0}, \lambda=\lambda_{0}, \mu=N$ also attains minimum in $\max \{c x \mid A x \leq b \wedge a x=\beta\}=\min \{y b+(\lambda-\mu) \beta \mid y, \lambda, \mu \geq 0 \wedge y A+(\lambda-\mu) a=c\}$.

Since $y_{0} b+\lambda_{0} \beta \leq y^{*} b+\left(\lambda^{*}+N-\mu^{*}\right) \beta$, after moving $N \beta$ rhs to lhs

$$
y_{0} b+\left(\lambda_{0}-N\right) \beta \leq y^{*} b+\left(\lambda^{*}-\mu^{*}\right) \beta
$$

Since $y=y^{*}, \lambda=\lambda^{*}, \mu=\mu^{*}$ attains the minimum, therefore $y=y_{0}, \lambda=\lambda_{0}$, $\mu=N$ attains the minimum.

Hilbert basis and TDI

Theorem 14.4

> An inequality $a x \leq \delta$ of $A x \leq b$ is active in F if $F \Rightarrow a x=\delta$ Let $A x \leq b$ be TDI iff, for each face F of $\{x \mid A x \leq b\}$, the inequalities of $A x \leq b$ that are active in F form a Hilbert basis.

Proof.
(\Rightarrow)
Let $a_{1} \leq \delta_{1}, \ldots, a_{t} \leq \delta_{t}$ be active on F.
Choose an integral vector c in the cone of $\left\{a_{1}, . ., a_{t}\right\}$. The maximum attained in the following

$$
\max \{c x \mid A x \leq b\}=\min \{y b \mid y \geq 0 \wedge y A=c\}
$$

is achieved by x in $F_{\text {.(why?) }}$
Since $A x \leq b$ is TDI, the minimum is achieved by integral y.
Due to complementary slackness, the components of y for non-active rows is 0.

Hence c is nonnegative integral combination of $a_{1}, \ldots a_{t}$.

Hilbert and TDI

Proof(contd.)
(\Leftarrow)
Let c be an integral row vector for which the following is finite.

$$
\max \{c x \mid A x \leq b\}=\min \{y b \mid y \geq 0 \wedge y A=c\}
$$

Consider the largest F such that all x in F attain the maximum.(why?) Let $a_{1} \leq \delta_{1}, \ldots, a_{t} \leq \delta_{t}$ be active on F.
c must be in the cone of a_{1}, \ldots, a_{t}.
Since they form an Hilbert basis $c=\lambda_{1} a_{1}+\cdots+\lambda_{t} a_{t}$ for $\lambda_{1}, \ldots, \lambda_{t} \geq 0$.
By zero padding, we can construct integral y such that $y A=c$ and $y b=y A x=c x$ for each x in F.
Therefore, y achives the minimum. Therefore, $A x \leq b$ is TDI.

Exercise 14.3
Why we need largest face F?

There is a TDI-system for each polyhedron

Theorem 14.5
For each rational polyhedron P, there is a TDI-system $A x \leq b$ with A integral matrix and rational vector b such that $P=\{x \mid A x \leq b\}$.

Proof.
Consider a minimal face F of P.
Let C_{F} be the cone of vectors c such that $\max \{c x \mid x \in P\}$ is attained by $x \in F$ Let a_{1}, \ldots, a_{t} be integral Hilbert basis of C_{F}.
Let $x_{0} \in F$. Therefore, for $1 \leq i \leq t, P \Rightarrow a_{i} x \leq a_{i} x_{0}$.
Let $A_{F}=\left\{a_{1} x \leq a_{1} x_{0}, \ldots, a_{t} x \leq a_{t} x_{0}\right\}$.

Let $A x \leq b$ be union of inequalities A_{F} for each minimal F.
$A x \leq b$ defines $P_{\text {(why? }}$ and is TDI due to theorem 14.4.
Exercise 14.4
a. Why we need minimal face F ?
b. Give algorithm for transforming $A x \leq b$ into a TDI-system?

Topic 14.2

Cutting planes

Cutting half spaces

Let $H=\{x \mid c x \leq \beta\}$ be half space, where $\operatorname{gcd}(c)=1$.
Definition 14.3
For a polyhedron P. Let

$$
P^{\prime}=\bigcap_{P \Longrightarrow H} H_{l}
$$

Clearly, $P \supseteq P^{\prime} \supseteq P^{\prime \prime} \ldots \supseteq P^{t} \supseteq \ldots \supseteq P_{l} . \quad\left\{\begin{array}{l}\text { We will show that the chain } \\ \text { will saturate in finite steps. }\end{array}\right.$
Exercise 14.5 Give a P such that the saturation takes take multiple steps.

TDI-systems quickly finds P^{\prime}

Theorem 14.6
Let $A x \leq b$ be TDI and A is integral. Let $P=\{x \mid A x \leq b\}$.

Proof.

$$
P^{\prime}=\{x \mid A x \leq\lfloor b\rfloor\}
$$

If $P=\emptyset$, trivial.(why?)

Let us assume $P \neq \emptyset$.
Clearly, $P^{\prime} \subseteq\{x \mid A x \leq\lfloor b\rfloor\}$.(why?)
claim: $P^{\prime} \supseteq\{x \mid A x \leq\lfloor b\rfloor\}$

Let $H=\{x \mid c x \leq \delta\}$ be a rational half-space such that $P \subseteq H$.
Wlog we assume $\operatorname{gcd}(c)=1$. Then, $H_{l}=\{x \mid c x \leq\lfloor\delta\rfloor\}$.
We have $\delta \geq \max \{c x \mid A x \leq b\}=\min \{y b \mid y \geq 0 \wedge y A=c\}$.
Since $A x \leq b$ is TDI, the above min is attained by an integral y_{0}.
Chose x such that $A x \leq\lfloor b\rfloor$. Therefore, $c x=y_{0} A x \leq y_{0}\lfloor b\rfloor \leq\left\lfloor y_{0} b\right\rfloor \leq\lfloor\delta\rfloor$.
So $\{x \mid A x \leq\lfloor b\rfloor\} \subseteq H_{l}$.
As this is true for each rational half-space, the claim holds.

P^{\prime} carries over to faces

Theorem 14.7
Let F be face of a rational polyhedron P. Then $F^{\prime}=P^{\prime} \cap F$
Proof.
Let $P=\{x \mid A x \leq b\}$, with A integral and $A x \leq b$ TDI.
Let $F=\{x \mid A x \leq b \wedge a x=\beta\}$ for integral a and β and $P \Rightarrow a x \leq \beta$.(why?)
Since $A x \leq b \wedge a x \leq \beta$ is $\operatorname{TDI}_{\text {(why?), }} A x \leq b \wedge a x=\beta$ is TDI.
Therefore,

$$
P^{\prime} \cap F=\{x \mid A x \leq\lfloor b\rfloor \wedge a x=\beta\}=\{x \mid A x \leq\lfloor b\rfloor \wedge a x \leq\lfloor\beta\rfloor \wedge a x \geq\lfloor\beta\rfloor\}=F^{\prime}
$$

$P^{t}=P_{I}$

Theorem 14.8
For each rational polyhedron P, there exists a number t such that $P^{t}=P_{1}$.
Proof.
We apply induction over dimension d of P.

The case $P=\emptyset$ and $d=0$ are trivial.
case: Let us suppose affine. $H u l l(P)$ has no integers.
Therefore, there is integral vector c and non-integer δ such that affine. $\operatorname{Hull}(P) \subseteq\{x \mid c x=\delta\}$. Hence,

$$
P^{\prime} \subseteq\{x \mid c x \leq\lfloor\delta\rfloor \wedge c x \geq\lceil\delta\rceil\}=\emptyset
$$

Therefore, $P^{\prime}=P_{l}$.
$P^{t}=P_{l} \quad$ II
Proof(contd).
case: Let us suppose affine. Hull (P) has integers.
If affine. Hull(P) is not full dimensional, we project it to lower dimensions using Hermite Normal form and apply induction hypothesis.(how?)

Therefore, we may assume affine. $\mathrm{Hull}(P)$ is full dimensional.
Due to theorem 13.5, we know $P_{I}=\left\{c x \mid x \leq b^{\prime}\right\}$ and $P=\{A x \leq b\}$.

Let $a x \leq \beta^{\prime}$ in $A x \leq b^{\prime}$, and there is a corresponding $a x \leq \beta$ in $A x \leq b$.
Let $H=\left\{x \mid a x \leq \beta^{\prime}\right\}$.

$P^{t}=P_{l} \quad$ III
Proof(contd.)
claim: $P^{s} \subseteq H$ for some s
Let us suppose for each s, we have $P^{s} \nsubseteq H$.
Therefore, there is an integer $\beta^{\prime \prime}$ and an integer r such that $\beta^{\prime}<\beta^{\prime \prime} \leq\lfloor\beta\rfloor$.

$$
\left\{x \mid a x \leq \beta^{\prime \prime}-1\right\} \nsupseteq P^{s} \subseteq\left\{x \mid a x \leq \beta^{\prime \prime}\right\} \quad \text { for each } s \geq r
$$

Let $F=P^{r} \cap\left\{x \mid a x=\beta^{\prime \prime}\right\}$.
Due to $\operatorname{dim}(F)<\operatorname{dim}(P), F$ does not contain any integer(why?), and induction hypothesis, $F^{u}=\emptyset$ for some u.
Therefore,

$$
\emptyset=F^{u}=P^{(r+u)} \cap F=P^{(r+u)} \cap\left\{x \mid a x=\beta^{\prime \prime}\right\}
$$

Therefore, $P^{(r+u)} \subseteq\left\{x \mid a x<\beta^{\prime \prime}\right\}$.

Cutting plane proofs

Let $A x \leq b$ be a system of inequalities, and let $c x \leq \delta$ be an inequality.
Definition 14.4
A sequence of inequalities $c_{1} x \leq \delta_{1}, \ldots, c_{m} x \leq \delta_{m}$ is a cutting plane proof of $c x \leq \delta$ from $A x \leq b$ if

- $c_{m}=c, \delta_{m}=\delta$,
- $c_{1}, \ldots . c_{m}$ are integral,
- $c_{i}=\Lambda A+\lambda_{1} c_{1}+\cdots+\lambda_{i-1} c_{i-1}$, and
- $\delta_{i} \geq\left\lfloor\Lambda \delta+\lambda_{1} \delta_{1}+\cdots+\lambda_{i-1} \delta_{i-1}\right\rfloor$, where $\Lambda, \lambda_{1}, \ldots, \lambda_{i-1} \geq 0$.
m is the length of the proof.

Cutting plane proofs always exist

Theorem 14.9
Let $P=\{x \mid A x \leq b\}$ be a nonempty rational polyhedron.

- If $P_{I} \neq \emptyset$ and $P_{I} \Rightarrow c x \leq \delta$, then there is a cutting plane proof of $c x \leq \delta$ from $A x \leq b$.
- If $P_{I}=\emptyset$, then there is a cutting plane proof of $0 \leq-1$ from $A x \leq b$.

Proof.
Let t be such that $P^{t}=P_{l}$.
For each $i \geq 1$, there is a system $A_{i} x \leq b_{i}$ that defines P^{i} such that

- For each $\alpha x \leq \beta$ in $A_{i} x \leq b_{i}$, there is $y A_{i-1}=\alpha$ and $\beta=\left\lfloor y b_{i-1}\right\rfloor$.
- $A_{0}=A$ and $b_{0}=b$.

Cutting plane proofs always exist

Proof(contd.)
If $P_{I} \neq \emptyset$ and $P_{I} \Rightarrow c x \leq \delta$, due to the Farkas lemma (affine form) $y A_{t}=c$ and $\delta \geq y b_{t}$.
Therefore, the following is the cutting proof of $c x \leq b$ from $A x \leq b$,

$$
A_{1} x \leq b_{1}, \ldots ., A_{t} x \leq b_{t}, c x \leq b
$$

If $P_{I}=\emptyset$, then $y A_{t}=0$ and $y b_{t}=-1$ for some $y \geq 0$.
Therefore, the following is the cutting proof of $0 \leq-1$ from $A x \leq b$.

$$
A_{1} x \leq b_{1}, \ldots ., A_{t} x \leq b_{t}, 0 x \leq-1
$$

Length of cutting plane proofs

The number of cutting planes depends on the size of numbers!
The following will trigger at least k cuts.

Topic 14.3

Theory of integer linear arithmetic

Integer linear arithmetic(QF_LIA)

Syntax is same as rational integer linear arithmetic with a different axiom set.
We will discuss a number of methods to find satisfiability of conjunction of linear inequalities.

- Cooper's method
- Branch and Bound
- Gomery Cut
- Omega test method

Topic 14.4

Gomery cut

Simplex for integers

Recall our normal form for the input problem

$$
A x=0 \text { and } \bigwedge_{i=1}^{m+n} l_{i} \leq x_{i} \leq u_{i}
$$

I_{i} and u_{i} are $+\infty$ and $-\infty$ if there is no lower and upper bound, respectively.

In the following presentation of Gomery cut, we assume that

- at least one bound is finite for each variable and
- all finite bounds are integral.

Simplex+Gomery cut

Gomery cut chips away non-integer parts of the solution space.

The algorithm proceeds as follows

1. Run simplex as if all variables are rationals and find an assignment v
2. if v is integral, return v
3. if for some $i \in B, v\left(x_{i}\right)$ is not integer then add a constraint to eliminate the neighbouring non-integer space.

Consider the row k_{i} of $A, x_{i}=\sum_{j \in N B} a_{k_{i} j} x_{j} .\left\{\begin{array}{l}\text { An integer solution must } \\ \text { satisfy the equality }\end{array}\right.$
Wlog, we assume all upper bounds are active for the nonbasic variables.

$$
v\left(x_{i}\right):=\sum_{j \in N B} a_{k_{i j}} u_{j}
$$

After a rewrite,

$$
v\left(x_{i}\right)=x_{i}+\sum_{j \in N B} a_{k_{i} j}\left(u_{j}-x_{j}\right)
$$

Simplex+Gomery cut (II)

Consider the following inequality

$$
\left\{v\left(x_{i}\right)\right\} \leq \sum_{j \in N B}\left\{a_{k_{i} j}\right\}\left(u_{j}-x_{j}\right)
$$

claim: $\quad v$ does not satisfy the above inequality.
claim: Any integer solution of the input satisfies the above inequality.
An integer solution x must satisfy $v\left(x_{i}\right)=x_{i}+\sum_{j \in N B} a_{k_{i} j}\left(u_{j}-x_{j}\right)$. Therefore,

- $\sum_{j \in N B}\left\{a_{k_{i}}\right\}\left(u_{j}-x_{j}\right) \geq 0_{(\text {why? })}$
- $\left\{v\left(x_{i}\right)\right\}=\left\{\sum_{j \in N B}\left\{a_{k_{i j}}\right\}\left(u_{j}-x_{j}\right)\right\}$
- $\left\{v\left(x_{i}\right)\right\} \leq \sum_{j \in N B}\left\{a_{k_{i j}}\right\}\left(u_{j}-x_{j}\right)$
- Since $v\left(x_{i}\right)$ is not an integer, $\left\{v\left(x_{i}\right)\right\}$ is positive.
- Under v the rhs is 0 .(why?)

Branch and bound: Unbounded cases

Let us suppose there is a nonbasic variable that has no bounds.
We can not apply Gomery cut. We may need to case split.

We generate two simplex problems with the following two inequalities respectively.

Solve the two problems separately.
The splits are called branch and bound method.

End of Lecture 14

