
cbna Automated Reasoning 2018 Instructor: Ashutosh Gupta IITB, India 1

Automated Reasoning 2018

Lecture 23: Quantifiers in SMT solvers

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2018-11-05

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2018 Instructor: Ashutosh Gupta IITB, India 2

Topic 23.1

Quantified normal form

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2018 Instructor: Ashutosh Gupta IITB, India 3

Normalization steps

A modern FOL refutation prover first applies the following transformations

I Rename apart : rename variables for each quantifier

I Prenex : bringing quantifiers to front

I Skolemization: remove existential quantifiers (only sat preserving)

I CNF transformation: turn the internal quantifier free part of the formula
into CNF

I Syntactical removal of universal quantifiers: a CNF with free variables.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2018 Instructor: Ashutosh Gupta IITB, India 4

Rename apart

Definition 23.1
A formula F is renamed apart if no quantifier in F use a variable that is used
by another quantifier or occurs as free variable in F .

Due to the theorems like the following, we can safely assume that every
quantifier has different variable. If that is not the case then we can rename
quantified variables apart.

Theorem 23.1
Let F is a S-formulas and y does not occur in F .

|= ∀x .F ⇔ ∀y .F{x 7→ y}

Exercise 23.1
Rename apart the following formulas

I ¬(∃x .∀yR(x , y)⇒ ∀y .∃xR(x , y))

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2018 Instructor: Ashutosh Gupta IITB, India 5

Prenex form

Definition 23.2
A formula F is in prenex form if all the quantifiers of the formula occur as
prefix of F . The quantifier-free suffix of F is called matrix of F .

Due to the following equivalences, we can always move quantifiers to the front

I ¬(∃x .F) ≡ ∀x .¬F
I ¬(∀x .F) ≡ ∃x .¬F
I ∀x .F ∧ G ≡ ∀x .(F ∧ G)

I ∃x .F ∧ G ≡ ∃x .(F ∧ G)

I F ∧ ∀x .G ≡ ∀x .(F ∧ G)

I F ∧ ∃x .G ≡ ∃x .(F ∧ G)

I ∀x .F ∨ G ≡ ∀x .(F ∨ G)

I ∃x .F ∨ G ≡ ∃x .(F ∨ G)

I F ∨ ∀x .G ≡ ∀x .(F ∨ G)

I F ∨ ∃x .G ≡ ∃x .(F ∨ G)

I ∀x .F ⇒ G ≡ ∃x .(F ⇒ G)

I ∃x .F ⇒ G ≡ ∀x .(F ⇒ G)

I F ⇒ ∀x .G ≡ ∀x .(F ⇒ G)

I F ⇒ ∃x .G ≡ ∃x .(F ⇒ G)

Exercise 23.2
Convert ¬(∃x .∀yR(x , y)⇒ ∀y .∃xR(x , y)) into prenex form

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2018 Instructor: Ashutosh Gupta IITB, India 6

Skolemization

Theorem 23.2
Let F be a S-formula with FV (F) = {x , y1, . . . , yn}. Let G (A) be a
S-formula in which atom A occurs positively and G (∃x .F (x)) is a sentence.
Let f /n ∈ F such that f 6∈ vars(F (x),G (A)).

|= G (∃x .F (x)) iff |= G (F (f (y1, . . . , yn)))

Since all the quantifiers occur positively in prenex form, all ∃s can be
removed using skolem functions.

Skolemization is applied from out to inside, i.e., remove outermost ∃ first.

Example 23.1

After skolemization on ∀x , y . ∃z . x + y ≤ z , we obtain ∀x , y . x + y ≤ f (x , y).

Exercise 23.3
Skolemize ∃x .∀y∃z∀w . ¬(R(x , y)⇒ R(w , z))

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2018 Instructor: Ashutosh Gupta IITB, India 7

FOL CNF

Consider the following skolemized prenex formula,

∀x1, . . . , xn. F .

Since F is quantifier free, we may convert F into CNF, preferably using
Tseitin encoding(what is the quantifier over fresh booleans?) and obtain

∀x1, . . . , xn. C1 ∧ · · · ∧ Ck .

Since ∀ distributes over ∧, we may obtain

(∀x1, . . . , xn. C1) ∧ · · · ∧ (∀x1, . . . , xn. Ck).

We may rename apart variables in each of the above clauses and obtain

(∀x11, . . . , x1n. C
′
1) ∧ · · · ∧ (∀xk1, . . . , xkn. C

′
k).

Commentary: The last renaming step is not necessary. In a tool, the variables in each clause is considered different from the other
clauses.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2018 Instructor: Ashutosh Gupta IITB, India 8

De Bruijn indices
Renaming apart is usually not a real operation, since tools may not have
explicit names for quantified variables.

Each occurrence of quantified variable is represented by a natural number,
which is the number of quantifiers that are in scope between the occurrence
and its corresponding quantifier.

De Bruijn indices uniquely identifies its quantifier.

Example 23.2

I ∀x . ∃z . x + y ≤ z is represented by ∀. ∃. ?2 + y ≤ ?1

I ∀x . x ≤ 3⇒ ∃z . x + y ≤ z is represented by ∀. ?1 ≤ 1⇒ ∃. ?2 + y ≤ ?1

Exercise 23.4
Write the following formulas using De Bruijn indices
I R(x , y)

I ∀x , y . ∃z . x + y ≤ z

I ∃y∀z . ∃x . x + y ≤ z + 2

I ∀x . x ≤ 3⇒ ∃x . x − y ≤ 6

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2018 Instructor: Ashutosh Gupta IITB, India 9

Solving quantified formulas
We may have two kinds of clauses in input formula

I Quantifier-free or ground clauses

I Quantified clauses

Consider clause ∀x . f (x) ≤ g(3, x).

Let S be the set of substitutions, i.e., mappings from the quantified variables
in the clause to the ground terms in the theory.

The clause represents infinite conjunctions
∧
σ∈S (f (x) ≤ g(3, x))σ︸ ︷︷ ︸

instantiations

.

Example 23.3

Let σ = {x 7→ f (a)}.

(f (x) ≤ g(3, x))σ := f (f (a)) ≤ g(3, f (a))

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2018 Instructor: Ashutosh Gupta IITB, India 10

The generic solving strategy for quantified formulas

1. Ground clauses are solved using an SMT solver.

2. Quantified clauses are instantiated with some strategy.

3. The generated ground clauses are added to the SMT solver

4. If SMT solver says unsatisfiable, return unsatisfiable.

5. If instantiations are reached the limit, return satisfiable.

6. goto 2.
Depending on the underlying theory/logic, a
stopping criteria is used to limit instantiations

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2018 Instructor: Ashutosh Gupta IITB, India 11

Example: quantified reasoning

Example 23.4

∀x .f (g(x , c)) = a︸ ︷︷ ︸
Quantified clauses

∧ b = c ∧ g(c , b) = c ∧ f (b) 6= a︸ ︷︷ ︸
Ground clauses

We can instantiate the quantified clause by replacing any ground term at x .

Let us choose x = b, which introduces ground clause f (g(b, c)) = a.

The formula becomes unsatisfiable.

How can we find the right instantiation?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2018 Instructor: Ashutosh Gupta IITB, India 12

Substitutions

We will denote the instantiations by substitutions that are mappings from
quantified variables to ground terms

Example 23.5

Consider quantified clause ∀x , y . f (g(x , c)) = a ∨ x 6= f (y).

Substitution σ = {x 7→ f (a), y 7→ a} denotes the following instantiation.

f (g(f (a), c)) = a ∨ f (a) 6= f (a)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2018 Instructor: Ashutosh Gupta IITB, India 13

E-matching

The set of relevant terms is maintained by the congruence classes of QF EUF.

We need to match terms in the quantified formula to the ground terms such
that we can produce relevant instantiations.

E-matching takes

I a pattern(non-ground term) p and

I a ground term t

as input and finds if there is σ such that pσ = t.

We use the learned σs to instantiate the quantified clauses.

Efficient E-matching for SMT Solvers Leonardo de Moura and Nikolaj Bjorner

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2018 Instructor: Ashutosh Gupta IITB, India 14

E-matching as an equation

Concretely, ematch takes three parameters

I pattern p to match

I term t to match and

I the set of valid substitutions constructed so far

and returns the set of valid substitutions.

Initial call, ematch(p, t, {∅})

Matching with term pattern:

ematch(f (p1, ..., pn), t, S) :=
⋃
f (t1,...,tn)∈class(t)

ematch(pn, tn, .., ematch(p1, t1, S))

Commentary: Matched with every ground f-term that is congruent with t. Subterms are matched one after another and substitutions
are extended.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2018 Instructor: Ashutosh Gupta IITB, India 15

E-matching as an equation II

Matching with a variable:

ematch(x , t, S) :={σ[x 7→ t] | σ ∈ S ∧ x 6∈ dom(σ)}∪
{σ | σ ∈ S ∧ x ∈ dom(σ) ∧ xσ ∈ class(t)}

Matching with a constant:

ematch(c, t, S) :=

{
S if c ∈ class(t)

∅ otherwise.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2018 Instructor: Ashutosh Gupta IITB, India 16

Example: ematch

Example 23.6

Let us match pattern p = f (x , g(x , c)) with ground term t = f (b, g(a, c)).

Let {{a, b}, {c}, ...} be the current congruence classes.

ematch(p, t, {∅}) :
Does f (b, g(a, c)) have an congruent term with top symbol f ? yes, itself!.

ematch(g(x , c), g(a, c), ematch(x , b, {∅})):
Match subterms and aggregate the results!

ematch(x , b, {∅}) := {{x 7→ b}}

ematch(g(x , c), g(a, c), {{x 7→ b}}) := {{x 7→ b}} :
needed a check if map of x is congruent to a.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2018 Instructor: Ashutosh Gupta IITB, India 17

Efficient pattern matching

We need to apply same sequence of operations to match with a pattern.

We translate matching with a given pattern into code.

We can use the code to repeatedly match with many ground terms.

Example 23.7

Again consider pattern f (x , g(x , c)). We need the following actions to match.

pc0 : f (x , g(x , c)) Is top f ? If yes, check subterms.
pc1 : g(x , c) Is top g? If yes, check subterms.
pc2 : x Map x
pc3 : c Is congruent to c?
pc4 : x Is congruent with existing map for x?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2018 Instructor: Ashutosh Gupta IITB, India 18

Matching code with two stacks

We need two stacks for the matching.

I tstack : stack for storing the matched subterms so far

I bstack: Stack for alternate choices; popped each time when a match
fails and backtracks.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2018 Instructor: Ashutosh Gupta IITB, India 19

Matching as code

We can translate matching as a sequence of the following instructions.

I init : initiating the term matching by copying the ground term to
tstack

I bind : match head and populate tstack with subterms
I Due to congruence there can be multiple ground term matches
I the choices are pushed in the bstack

I compare : if a variable is repeated check congruence with the past
matching

I check : check if congruent with a constant

I yield : report the σ.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2018 Instructor: Ashutosh Gupta IITB, India 20

Matching as code : handling multiple choices

I backtrack: executed upon failure of the conditions in the instructions
I pop bstack and execute according to available choices
I There can be two kinds of choices

I choose-app : called by backtrack, if we need to replay bind with
another congruent ground term (first kind of choice)

I choose : choose a sub-pattern to match (introduces the second kind of
choice in the stack)
not yet explained!!

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2018 Instructor: Ashutosh Gupta IITB, India 21

Example: matching with code

Example 23.8

Again consider pattern f (x , g(x , c)). We need the following actions to match.

pc0 : init(0,pc1)

pc1 : bind(f,0,[1-2],pc2)

pc2 : bind(g,2,[3-4],pc3)

pc3 : check(c,4,pc4)

pc4 : compare(3,1,pc5)

pc5 : yield([1],backtrack)

Exercise 23.5
Write code to match with pattern f (x , g(x , a), h(y), b).

positions in tstack

position in tstack where
map of x is stored

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2018 Instructor: Ashutosh Gupta IITB, India 22

Example: running the matching code

Example 23.9

Let us match ground term f (h(a), g(b, c)) with f (x , g(x , c)).

pc0 : init(0,pc1) tstack[0] := f (h(a), g(b, c))
pc1 : bind(f,0,[1-2],pc2) tstack[1] := h(a) tstack[2] := g(b, c)
pc2 : bind(g,2,[3-4],pc3) tstack[3] := b tstack[4] := c
pc3 : check(c,4,pc4) Since tstack[4] == c , 3

pc4 : compare(3,1,pc5) Since tstack[1] 6= tstack[3], 7. backtrack

pc5 : yield([1],backtrack)

Since nothing was pushed in bstack, backtrack terminates with no match.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2018 Instructor: Ashutosh Gupta IITB, India 23

Example: running the matching code

Example 23.10

Let us match ground term f (h(a), g(h(a), c)) with f (x , g(x , c)).

pc0 : init(0,pc1) tstack[0] := f (h(a), g(h(a), c))
pc1 : bind(f,0,[1-2],pc2) tstack[1] := h(a) tstack[2] := g(h(a), c)
pc2 : bind(g,2,[3-4],pc3) tstack[3] := h(a) tstack[4] := c
pc3 : check(c,4,pc4) Since tstack[4] == c , 3

pc4 : compare(3,1,pc5) Since tstack[1] == tstack[3], 3

pc5 : yield([1],backtrack) return σ = {x 7→ h(a)}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2018 Instructor: Ashutosh Gupta IITB, India 24

Code tree: matching with multiple patterns via choose

I We can match with multiple patterns (not simultaneous) that have
common prefix of code.

I At the point of divergence, we have instruction choose that pushes the
available choices on bstack and calls backtrack .

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2018 Instructor: Ashutosh Gupta IITB, India 25

Example: matching code for multiple patterns

Example 23.11

Again consider patterns {f (x , g(x , c)), f (x , g(y , c))}. We need the following
actions to match to any one of the patterns.

pc0 : init(0,pc1)

pc1 : bind(f,0,[1-2],pc2)

pc2 : bind(g,2,[3-4],pc3)

pc3 : check(c,4,pc4)

pc4 : choose([pc5,pc7])

pc5 : compare(3,1,pc6)

pc6 : yield([1],backtrack)

pc7 : yield([1,3],backtrack)

Exercise 23.6
Write code to match the following patterns

I {g(f (x), f (x)), g(f (g(x , c)), y)}
I {f (x , g(a, y)), f (x , g(x , y)), f (h(x , y), b), f (h(x , g(x , y)), b)}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2018 Instructor: Ashutosh Gupta IITB, India 26

Incremental e-matching

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2018 Instructor: Ashutosh Gupta IITB, India 27

Incomplete and non-terminating method

I E-matching is incomplete

Example 23.12

Consider ∀x . f (x) > 0 ∧ ∀x . f (x) < 0.
Since there are no ground terms, no instantiations.

I E-matching may lead to non-terminating sequence of instantiations.

Example 23.13

Consider ∀x . f (x) = g(f (x)) ∧ ∀x . g(x) = f (g(x))
Since no ground terms, no instantiations.

The complete version of E-matching is called superposition calculus. There
are solver based on those, not covered in this course.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2018 Instructor: Ashutosh Gupta IITB, India 28

Eager vs. lazy instantiations

I A solver may eagerly introduce instantiations using E-matching as we
learn more equivalences over ground terms.
I Sometimes assisted by additional patterns given in the input

I The solvers may also choose lazy instantiations, i.g., on demand.
I Next we will see an example of such strategy

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2018 Instructor: Ashutosh Gupta IITB, India 29

Model-based quantifier instantiations

Algorithm 23.1: MBQI(F: quantified clauses, G: ground clauses)

1 while m |= G do
2 if there is ∀x . C ∈ F such that m′ |= ¬Cm(x) then

3 find ground term t such that tm
′

= xm
′
;

4 G := G ∧ C{x 7→ t}
5 else
6 return sat

7 return unsat

I There can be many t that match the requirement
I Finding t appears to be an art?

I If the number of potential ts is finite, the above is very effective
I If no function symbols in the theory (effectively propositional (EPR))
I Array property fragment (seen in theory of arrays!)
I Some classes of synthesis problem

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2018 Instructor: Ashutosh Gupta IITB, India 30

Topic 23.2

Problems

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2018 Instructor: Ashutosh Gupta IITB, India 31

Translating to prenex form

Exercise 23.7
Let us suppose a formula is given in De Bruijn indicies. Give an algorithm to
convert the formula into prenex form.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna Automated Reasoning 2018 Instructor: Ashutosh Gupta IITB, India 32

End of Lecture 23

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

	Quantified normal form
	Problems

