CS310 : Automata Theory 2019 IITB, India Tutorial sheet 3 Properties of regular languages

Ashutosh Gupta and S. Akshay

Compile date: 2019-01-29

- 1. Prove or disprove:
 - (a) $L^*L^* = L^*$
 - (b) $(L^*)^* = L^*$
 - (c) If $L_1^* = L_2^*$ then $L_1 = L_2$
 - (d) $(L^*)^R = (L^R)^*$, where L^R denotes the language containing the reverse of all words in L.
 - (e) $(RS + R)^*R = R(SR + R)^*$
- 2. Regular expressions do not include intersection operator. If we introduce the operator in regular expression, what is the cost of checking emptiness of regular expressions?
- 3. What is the runtime cost of checking if Σ^* is recognized by a DFA?, an NFA?, or a RE?
- 4. We know that $\{0^n 1^n | n > 0\}$ is not regular. Since we know homomorphisms and inverse homomorphisms preserves regularity, prove

$$\{(ab)^m a^n e(cd)^m d^n | \text{for } m, n \ge 0\}$$

is not regular.

- 5. Write regular expressions in Python syntax that match with
 - lines containing two articles
 - sentences that do not start with capital letters (a sentence may span multiple lines)
 - lines where a word repeats twice (Is it a regular language?)
 - strong passwords that have at least eight characters and one or more of each of the following:
 - lower-case letter
 - upper-case letter
 - number
 - punctuation mark
- 6. Let L be a regular language. Prove that the following derived languages are also regular:
 - (a) $\{w \in \Sigma^* | ww \in L\}$
 - (b) $\{uv \in \Sigma^* | vu \in L\}$