CS310 : Automata Theory 2019 IITB, India

Tutorial sheet 3 Pumping lemma and DFA minimization

Ashutosh Gupta and S. Akshay

Compile date: 2019-02-05

- 1. Prove or disprove that the following languages are regular
 - (a) $\{0^n 1^m | n \neq m\}$
 - (b) $\{0^{p^2}1^{p^2} | p \ge 0\}$
 - (c) $\{0^n 1^m | n = m \lor n = 2m\}$
 - (d) $\{w1^{|w|}|w \in \{0,1\}^*\}$
 - (e) $\{w | \exists y. |y| = 2^{2^{|w|}} \land wy \in L\}$, where L is regular language
- 2. We know that pumping lemma fails to prove that the following language is not regular.

 $L = \{ca^{n}b^{n} | n \ge 1\} \cup \{c^{n}w | n \ne 1 \text{ and } w \in \{a, b\}^{*}\}$

- a) Using other means prove that the above language is not regular.
- b) Does the generalized version of the pumping lemma prove that the above language is not regular?
- 3. Determine the residuals of the following languages over $\Sigma = \{a, b\}$
 - $(ab+ba)^*$,

•
$$(aa)^*$$
,

- $\{a^n b^n c^n \mid n \ge 0\}.$
- 4. (a) Give two languages such that L_1 and L_2 are not regular, but $L_1 \cap L_2$ is regular.
 - (b) Give two languages such that L_1 and L_2 are not regular, but $L_1 \cup L_2$ is regular.
 - (c) Give two languages such that L_1 and L_2 are not regular, but L_1L_2 is regular.
- 5. A DFA $A = (Q, \Sigma, \delta, q_0, F)$ is reversible if no letter can enter a state from two distinct states, i.e. for every $p, q \in Q$ and $\sigma \in \Sigma$, if $\delta(p, \sigma) = \delta(q, \sigma)$, then p = q.
 - (a) Give a reversible DFA recognizing $L = \{ab, ba, bb\}$
 - (b) Show that the minimal DFA recognizing L is not reversible
 - (c) Is there a unique minimal reversible DFA recognizing L (up to isomorphism)? Justify your answer
 - (d) Prove that the language $(a^*ba^*) + (b^*ab^*)$ is not recognized by any reversible DFA.
- 6. Design an efficient algorithm Res(r, a), where r is a regular expression over an alphabet Σ and $a \in \Sigma$, that returns a regular expression satisfying $L(Res(r, a)) = L(r)^a$.