CS310 : Automata Theory 2019 IITB, India

Tutorial sheet 6 Pumping lemma for CFG, and applications of CFG

Ashutosh Gupta and S. Akshay

Compile date: 2019-02-21

- 1. Prove or disprove that ϵ rule elimination may introduce useless symbols
- 2. Prove the following is not a CFL using pumping lemma
 - $\{1^{n!} | n \ge 0\}$
 - $\{1^{n^2}0^n | n \ge 0\}$
- 3. Write the CYK parsing algorithm if the RHS of the rules may have more than two nonterminals
- 4. Recall that in the case of regular languages, we have a generalized version of the pumping lemma. In the case of CFLs, do we have a similar generalization? If yes, write down the generalized version of the pumping lemma.
- 5. Let L be any language (not necessarily regular) over a unary alphabet, i.e., $L \subseteq a^*$. Show that L^* is regular.
- 6. Prove or disprove the following: any context-free language L that does not contain ϵ , there is a grammar G = (V, T, P, S) such that G generates L and every production rule in G has form $A \to BCD$ or $A \to a$, where $A, B, C, D \in V$ and $a \in T$.