CS310 : Automata Theory 2019

Lecture 9: Properties of regular languages II

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2019-01-22

More Closure properties of regular languages

We have already seen a few closure properties of regular languages.

- Union
- Intersection
- Complementation
- Difference

We will see a few more such properties.

- Closure
- Concatenation
- Reversal
- Homomoprphism
- Inverse homomoprphism

Exercises : closure properties

Exercise 9.1 Is a subset of a regular language also regular?

Exercise 9.2 Is a superset of a regular language also regular?

Exercise 9.3 If L is a regular language, is L* also regular?

Exercise 9.4 If L and M are regular languages, is LM also regular?

Reversal

For word w, let w^R be the reverse word of w.

```
Let L^R \triangleq \{w^R \mid w \in L\}.
```

Theorem 9.1 If L is a regular language. L^R is also regular.

Proof.

We use regular expressions(REs) to prove this theorem.

We inductively show that for each RE E there is an RE recognizing $L(E)^R$.

base case:

All three base cases ϵ , \emptyset , and a are the reverse language of themselves.

Reversal

Proof (contd.).

induction step:

Due to induction hypothesis, we assume that E_1^R and E_2^R are the REs that recognize $L(E_1)^R$ and $L(E_2)^R$ respectively.

 $\blacktriangleright E = E_1 E_2$

claim:
$$E^R = E_2^R E_1^R$$

Let $w_1 w_2 \in E$ such that $w_1 \in E_1$ and $w_2 \in E_2$
 $\blacktriangleright E^R \ni (w_1 w_2)^R = w_2^R w_1^R = \underbrace{w_2^R}_{\in E_2^R} \underbrace{w_1^R}_{\in E_2^R} \in E_2^R E_1^R$

•
$$E = E_1 + E_2$$
, clearly $E^R = E_1^R + E_2^R$.(why?)

Reversal

Proof (contd.).

►
$$E = E_1^*$$
,
claim: $E^R = (E_1^R)^*$
Let $w_1...w_n \in E$ such that $w_i \in E_1$ for each $i \in 1...n$
► $E^R \ni (w_1...w_n)^R = w_n^R...w_1^R = \underbrace{w_n^R}_{\in E_1^R} ... \underbrace{w_1^R}_{\in E_1^R} \in (E_1^R)^*$

Exercise 9.5

Write the regular expression for the following reverse languages.

$$\blacktriangleright$$
 (01 + 11)^R =

•
$$(1(1+01)^*0)^R =$$

Homomorphisms

Definition 9.1 A word homomorphism h is a function of type $\Sigma \to \Sigma'^*$, where Σ and Σ' are alphabets.

Definition 9.2

For a given word $a_1, ... a_n \in \Sigma^*$, let us define

$$h(a_1,...a_n) \triangleq h(a_1)...h(a_n)$$

Example 9.1

Consider $h = \{0 \mapsto ab, 1 \mapsto \epsilon\}.$

▶
$$h(101) = ab$$

Homomoprphism of languages

Definition 9.3

For a given language L over Σ and word homomoprphism h, let us define

 $h(L) \triangleq \{h(w) | w \in L\}.$

Example 9.2 Consider $h = \{0 \mapsto ab, 1 \mapsto \epsilon\}$. $h(01^*0) = abab$ $h(10^*1) = (ab)^*$ Exercise 9.6 Consider $h = \{0 \mapsto a, 1 \mapsto ab\}$. $h(01^* + 0) =$

The definition can be naturally extended to the maps from REs to REs.

 $h(10^*1) =$

Closure under Homomorphisms

Theorem 9.2

Let L be a regular language and h be a word homomorphism, h(L) is a regular language.

Proof.

Let R be the RE such that L = L(R).

Let h(R) be a regular expression obtained by replacing occurrences of each letter *a* in *R* by h(a).

We will inductively show that h(L(R)) = L(h(R)).

base case:

Three cases

$$R = \epsilon, \ h(L(\epsilon)) = h(\{\epsilon\}) = \{\epsilon\} = L(\epsilon) = L(h(\epsilon))$$

$$R = \emptyset, \ h(L(\emptyset)) = h(\emptyset) = \emptyset = L(\emptyset) = L(h(\emptyset))$$

$$R = a, \ h(L(a)) = h(\{a\}) = \{h(a)\} = L(h(a)) = L(h(a))$$

Closure under Homomorphisms II

Proof(contd.).

induction step:

Due to induction hypothesis we assume $h(L(E_1)) = L(h(E_1))$ and $h(L(E_2)) = L(h(E_2))$

►
$$R = E_1 + E_2$$
,
 $h(L(R)) = h(L(E_1 + E_2))$
 $= h(L(E_1) + L(E_2))$
 $= h(L(E_1)) + h(L(E_2))$
 $= L(h(E_1)) + L(h(E_2))$
 $= L(h(E_1) + h(E_2))$
 $= L(h(E_1 + E_2)) = L(h(R))$

• $R = E_1 E_2$ and $R = E_1^*$ are proven similarly.

Exercise 9.7

Complete the above proof.

CS310 : Automata Theory 2019

Inverse homomorphisms

Definition 9.4

Let L be a language. Let $h^{-1}(L) \triangleq \{w | h(w) \in L\}$.

Not all elements of L are mapped from $h^{-1}(L)$.

Example 9.3

Consider
$$L = (00 + 1)^*$$
 and $h = \{a \mapsto 01, b \mapsto 10\}$.

In L, Os occur in even numbers.

For any w, h(w) cannot have 0s longer than two.(why?)

Therefore, only words that are mapped to L by h are from $(ba)^*$.

Exercise 9.8 Give a word w in L such that for each w', $h(w') \neq w$.

11

Colusre under inverse homomorphisms

Theorem 9.3

If L is a regular language and word homomorphism $h: \Sigma' \to \Sigma^*$, $h^{-1}(L)$ is also a regular language.

Proof.

Let DFA $A = (Q, \Sigma, \delta, q_0, F)$ recognize L.

Let DFA
$$A' = (Q, \Sigma', \delta', q_0, F)$$
, where $\delta'(q, a) \triangleq \hat{\delta}(q, h(a))$.

claim: $L(A') = h^{-1}(A)$ Using induction on |w|, we can show $\hat{\delta}'(q_0, w) = \hat{\delta}(q_0, h(w))$. Since acceptance condition has not changed. A' accepts w iff A accepts h(w).

Example: inverse homomoprphism

Example 9.4

Consider again $L = (00 + 1)^*$ and $h = \{a \mapsto 01, b \mapsto 10\}$.

$$\begin{split} \hat{\delta}(q_0, h(a)) &= \hat{\delta}(q_0, 01) = q_2 \\ \hat{\delta}(q_1, h(a)) &= \hat{\delta}(q_1, 01) = q_0 \\ \hat{\delta}(q_2, h(a)) &= \hat{\delta}(q_2, 01) = q_2 \end{split} \qquad \begin{aligned} \hat{\delta}(q_0, h(b)) &= \hat{\delta}(q_0, 10) = q_1 \\ \hat{\delta}(q_1, h(b)) &= \hat{\delta}(q_1, 10) = q_2 \\ \hat{\delta}(q_2, h(b)) &= \hat{\delta}(q_2, 10) = q_2 \end{aligned}$$

Topic 9.1

Regular languages decision problems

Decision problems

- Is a language empty?
- Is a word belongs to a language?
- Does a language contain another language?

Difficulty of the question depends on the representation of the language.

Is L empty?

L is given as

- ► DFA or NFA
 - Check if reachable states from the initial state include any accepting state
 - Cost of finding reachable states $O(n^2)$, where *n* is the number of states

► RE

Traverse RE bottom up and apply the following rules.

- ▶ Ø is empty.
- e and a are not empty.
- $L_1 + L_2$ is empty if both L_1 and L_2 are empty.
- L_1L_2 is empty if either L_1 or L_2 are empty.
- L^{*}₁ is not empty.(why?)

Cost of deciding the emptiness O(n), n is the size of RE.

Exercise 9.9

Why is there a the gap in the computational cost?

Is $w \in L$?

Language given as

DFA

- run it on w and check if an accepting state is reached
- Cost or running DFA O(|w|)

NFA

- compute reachable states on w
- Cost or running NFA $O(|w|n^2)$, where *n* is the number of states

Exercise 9.10

What is cost of checking membership if L is given as RE?

End of Lecture 9

