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Non-regular languages

Are there languages that are not regular?

Yes!
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Example: non-regular languages

Example 10.1
Consider the following language

Leg = {0"17|n > 0}

Theorem 10.1
Leq is not a regular language.

Proof.
Let us suppose Leg is regular. So, there is a DFA A such that L(A) = Leg.

Since A has finite states and due to the pigeonhole principle,
there must be different 7 and j such that 0’ and /' bring A to the same state.
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Jargon alert: pigeonhole principle

Pigeonhole principle states that if n items are put into m containers, with
n > m, then at least one container must contain more than one item.
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Example: non-regular languages Il

Proof(contd.)

Afterwords, let us feed 1’ to the automaton.

Since the automaton is deterministic, 01’ and 1/ will land on same state.

Oi
1i
o

Since 0’1" € Leg, ¢’ is accepting.

Therefore, /1" € L(A). Contradiction.
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Proving some language is not regular

The argument in the previous theorem appears to be the language specific.

However, the argument can be generalized, which is called

pumping lemma.
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Pumping lemma

Theorem 10.2

Let L be a regular language. Then there exists a constant n such that for
every word w € L such that |w| > n, we can break w into three words

w = xyz, such that

L. y#e
2. |xy| < n, and
3. forall k >0, xykz € L.

Let us write the above lemma as a logical statement .

In.Yw e L. (Jw| > n= 3xyz. (xyz = wAy # eAlxy| < nA(Vk. xy*z € L)))

Before proving this lemma let us understand the lemma.
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Understanding pumping lemma

We call it pumping lemma because we can “pump” y any number of times
including 0.

Exercise 10.1
How many quantifier alternations are there in the lemma?

Exercise 10.2
Show pumping lemma holds on the finite languages.

Exercise 10.3
For a given n, how many xyz breaks of w are possible?

Exercise 10.4
Why y = € is disallowed?
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Proving pumping lemma

Proof ( of Theorem 10.2).

Let us suppose L is regular. Let A be a DFA such that L = L(A).
Let us suppose A has n states.

Now consider a word w = a1 ...am, € L such that m > n.

Let po, ..., pm be the run of A on w. Therefore, p,, is an accepting state.
By the pigeonhole principle, at least two states in py, ..., p, should be equal.
1
n+

Therefore, there are i and j such that 0 </ < j < nand p; = p;.
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Proving pumping lemma I

Proof (contd.).

Let us propose the break of w = xyz as follows.
> x =a1a...a3;
> vy = Aj+13i+42...3j
» 7 =aj113j42.--dm

By construction, y # € and |xy| < n.why?)

(e ()

y

Now it is clear for any k > 0, xy¥~ takes A to pp,, which is accepting.

Therefore, xyk> € L.
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Example: pumping words
r

Example 10.2

Consider DFA
(o] o

The size of DFA is n = 3. Let us choose a word longer than n and accepting.
w = ereere

The run on the word is q;q+q;q: Grq:qr.
——

n+1
We have q; repeated in the first four states. Therefore,

» x=e
>y:re
» z = ere

Therefore, e(re)kere € L.
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Use of pumping lemma

Pumping lemma is very useful in proving that a language is not regular.
We apply contrapositive of the pumping lemma.

Recall the condition of pumping lemma.

In.¥w e L. (Jw| > n= Ixyz. (xyz = wAy # eAl|xy| < nA(Yk. xy*z € L)))

The negation of the above condition is

Vn. 3w € L. (|w| > nAVxyz. (xyz = wAy # eAl|xy| < n = (3k. xy*z € L)))
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Contrapositive of pumping lemma

We can turn the formula into words.

Theorem 10.3

Let L be a language. L is not regular if, for each n, there is a word w € L
such that |w| > n and for each breakup of w into three words w = xyz such
that

1. y #¢€and
2. |xy| <n,
then there is a k > 0 such that xy¥z & L.

We will see how to apply the above lemma.

To be continued...
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End of Lecture 10

@O0

CS310 : Automata Theory 2019

Instructor: Ashutosh Gupta

IITB, India

14


http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

