
cbna CS310 : Automata Theory 2019 Instructor: Ashutosh Gupta IITB, India 1

CS310 : Automata Theory 2019

Lecture 15: Parse tree

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2019-02-05

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://www.cse.iitb.ac.in/~akg/

cbna CS310 : Automata Theory 2019 Instructor: Ashutosh Gupta IITB, India 2

Words extending at many places

In regular languages, words are extended at the end depending on the finite
information collected on the word so far.

In CFLs, words are extended at unboundedly many points, which gives CFLs
more power.

To understand the above intuition, we view the words in derivations as tree.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS310 : Automata Theory 2019 Instructor: Ashutosh Gupta IITB, India 3

Parse tree

Definition 15.1
For a grammar G = (N,T ,P, S), a parse tree for G is a labelled tree with
the following conditions

I leaf label is X ∈ N ∪ T ∪ {ε}. If X = ε, the leaf has no siblings.

I internal node label is A ∈ N

I If an internal node label is A ∈ N and its children labels are

A

X1
... Xn,

then A→ X1...Xn ∈ P.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS310 : Automata Theory 2019 Instructor: Ashutosh Gupta IITB, India 4

Example : parse tree

Example 15.1

The following are parse trees for Garith.

E

E + E

B

B

B

1

0

I Parse tree need not be fully expanded, i.e., may be nonterminal leafs

I Parse tree root need not be the start symbol

Due to
E → E + E

Due to
E → B

Due to
B → B0

Due to
B → 1

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS310 : Automata Theory 2019 Instructor: Ashutosh Gupta IITB, India 5

Yield of a parse tree

Definition 15.2
The yield of a parse tree is the word formed by all the leaves from left to right

Example 15.2

The yield of the following parse tree is E + B

E

E + E

B

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS310 : Automata Theory 2019 Instructor: Ashutosh Gupta IITB, India 6

Example : parse tree full

Example 15.3
The yield of the following parse tree
is 10× 1 + 11.

E

E

E

B

B

1

0

× E

B

1

+ E

B

B

1

1

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS310 : Automata Theory 2019 Instructor: Ashutosh Gupta IITB, India 7

Projected derivations lemma

Theorem 15.1
Let G = (N,T ,P,S) be a CFG. Let Xi ∈ (N ∪ T).

If X1....Xk
∗

=⇒ α︸ ︷︷ ︸
n steps

, then α = α1 . . . αk such that Xi
∗

=⇒ αi︸ ︷︷ ︸
≤n steps

for each i ∈ 1..k .

Proof.
We argue this via induction on the number of derivations.
base case:
After zero derivations, αi = Xi .
induction step:
Let X1....Xk

∗
=⇒ α1...αk in n steps. Due to induction hypothesis, Xi

∗
=⇒ αi︸ ︷︷ ︸

≤n steps

.

In the next derivation, let α` be expanded to α′` (no other αi will change).

Therefore, X1....Xk
∗

=⇒ α1...α`−1α
′
`α`+1..αk

Therefore, X`
∗

=⇒ α′`︸ ︷︷ ︸
≤n+1 steps

. For i 6= `, the goal trivially holds.(why?)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS310 : Automata Theory 2019 Instructor: Ashutosh Gupta IITB, India 8

Example : projection derivation

Example 15.4

Consider the following three derivations

E + E×E ⇒ E + E×B ⇒ E + E × E×B ⇒ B + E × E×B

The following are the projected derivations
for each symbol in the initial word.

I E ⇒ E ⇒ E ⇒ B

I +⇒ +⇒ +⇒ +

I E ⇒ E ⇒ E × E ⇒ E × E

After removing
redundant steps

I E ⇒ B

I +

I E ⇒ E × E

Exercise 15.1
Give projected derivations of symbols E and × from the initial word

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS310 : Automata Theory 2019 Instructor: Ashutosh Gupta IITB, India 9

Derivations ⇒ parse tree

Theorem 15.2
Let G = (N,T ,P,S) be a CFG. Let α ∈ (N ∪ T)∗ and A ∈ N.

If A
∗

=⇒ α, then there is a parse tree with root A and the yield of the tree is α.

Proof.
We will use induction on the length of derivations.
base case:
Consider a single step derivation. A⇒ X1...Xk due to production rule
A→ X1...Xk . By the definition of the parse tree, the following is a parse tree.

A

X1
... Xk ,

...
Exercise 15.2
Why is base case chosen to be one but not zero derivation?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS310 : Automata Theory 2019 Instructor: Ashutosh Gupta IITB, India 10

Derivations ⇒ parse tree II

Proof(contd.).

induction step:
Consider derivation A⇒ X1....Xk

∗
=⇒ α︸ ︷︷ ︸

n steps

Due to projected derivation lemma,
α = α1 . . . αk such that Xi

∗
=⇒ αi︸ ︷︷ ︸

≤n steps

for each i ∈ 1..k. ...

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS310 : Automata Theory 2019 Instructor: Ashutosh Gupta IITB, India 11

Derivations ⇒ parse tree II

Proof(contd.).

Due to induction hypothesis for each i ∈ 1..k , there is a parse tree with Xi

root and it yields αi .

We can construct a parse tree for derivation A
∗

=⇒ α as follows

A

X1

αi

...

. . .

Xk

αi

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS310 : Automata Theory 2019 Instructor: Ashutosh Gupta IITB, India 12

Parse tree ⇒ derivation

Theorem 15.3
Let G = (N,T ,P,S) be a CFG. Let α ∈ (N ∪ T)∗ and A ∈ N. If there is a

parse tree with root A and the yield of the tree is α, then A
∗

=⇒ α.

Proof.
We will prove again by induction over height of the parse tree.
base case:
For the height zero, A = α. Trivially, A

∗
=⇒ A.

induction step:
Root of the tree is A and its children X1, ...,Xk . Therefore, A⇒ X1...Xk .
Xi is root of a parse tree with yield αi such that α = α1...αk .

A

X1

αi

...

. . .

Xk

αi

...

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS310 : Automata Theory 2019 Instructor: Ashutosh Gupta IITB, India 13

Parse tree ⇒ derivation

Proof(contd.).

Due to the induction hypothesis for each i ∈ 1..k , Xi
∗

=⇒ αi , which we can
embed in the following derivation.

α1...αi−1XiXi+1...Xk
∗

=⇒ α1...αi−1αiXi+1...Xk

By stitching the above(how?), we obtain A⇒ X1....Xk
∗

=⇒ α1...αk .

Exercise 15.3
Let α ∈ T ∗ in the above proof. Prove that there exists A

lm∗
==⇒ α.

Exercise 15.4
Let α ∈ T ∗ in the above proof. Prove that there exists A

rm∗
==⇒ α.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS310 : Automata Theory 2019 Instructor: Ashutosh Gupta IITB, India 14

Parse tree to interpretation
Looks like parse trees are doing the same job as derivations

Actually, they fully record the “understanding” of the word under a grammar.

Example 15.5

Consider the grammar of linear expressions. We may be interested in
interpreting 1 + 1 as sum of two 1s.

E

E

1

+ E

1

In the parse tree we have the information. We can apply the addition.

For brevity, we show no
expansions due to B

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS310 : Automata Theory 2019 Instructor: Ashutosh Gupta IITB, India 15

Example: parse tree to interpretation

Example 15.6

The following is a parse tree for word 10× 11 + 1.

E

E

E

10

× E

11

+ E

1

The parse tree tells us first multiply 10 and 11, which is 110.
Afterwards add 1, which results in 111.

Parse tree are used to
evaluate the expressions

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS310 : Automata Theory 2019 Instructor: Ashutosh Gupta IITB, India 16

Ambiguity
Sometimes a word may have more than one parse trees.

Example 15.7

In Garith, 10× 11 + 1 has following two parse trees.

E

E

E

10

× E

11

+ E

1

E

E

11

× E

10 + E

1

Multiply first Add first

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS310 : Automata Theory 2019 Instructor: Ashutosh Gupta IITB, India 17

Ambiguity and interpretation

Definition 15.3
A CFG G is called ambiguous if there is a word w ∈ L(G) such that there are
two parse trees that yield w .

Ambiguity leads to multiple interpretations of the word.

Not good for building compilers.

Example 15.8

10× 11 + 1 can have the following two interpretations

I 111 (binary 7) multiply first

I 101 (binary 5) add first

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS310 : Automata Theory 2019 Instructor: Ashutosh Gupta IITB, India 18

Ambiguity and derivations

Having multiple derivations does not imply ambiguity.

Example 15.9

Consider the following derivations

I E ⇒ E + E ⇒ E + B ⇒ E + 1⇒ B + 1⇒ 1 + 1

I E ⇒ E + E ⇒ B + E ⇒ 1 + E ⇒ 1 + B ⇒ 1 + 1

Both the derivations result in same parse tree.

Exercise 15.5
Give another derivation of 1 + 1?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS310 : Automata Theory 2019 Instructor: Ashutosh Gupta IITB, India 19

Causes of ambiguity

There are two kinds of choices in derivations

1. Order of expansions

2. Choice of production rules

The order does not cause ambiguity.

The choice of production rules to expand a symbol causes the ambiguity.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS310 : Automata Theory 2019 Instructor: Ashutosh Gupta IITB, India 20

Leftmost derivations and ambiguity
The leftmost derivations eliminates the order issues.

Theorem 15.4
A grammar is ambiguous iff there are multiple leftmost derivations.

Proof.
(⇐)
If we have two different leftmost derivations, there must be a leftmost
symbol in an intermediate word that was expanded two different ways.
Due to the translation in theorem 15.2 to parse trees, we will have a path in
the two parse trees that lead to two different symbols.(why?)

(⇒)
Theorem 15.3 presented construction of leftmost derivations from parse trees.
Two different parse trees will lead to two different leftmost derivations.

Exercise 15.6
Formally write (why?)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS310 : Automata Theory 2019 Instructor: Ashutosh Gupta IITB, India 21

Removing ambiguity

Can we remove ambiguity from a grammar?

The problem is impossible to solve.

In some cases, we can remove ambiguity with specialized observations.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS310 : Automata Theory 2019 Instructor: Ashutosh Gupta IITB, India 22

Removing ambiguity in arithmetic expressions

There are two sources of ambiguity in our Garith.

1. Associativity of × and +

E

E

11

+ E

10 + E

1

2. Precedence between × and +

E

E

11

× E

10 + E

1

In the grammar we need to say what to process first.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS310 : Automata Theory 2019 Instructor: Ashutosh Gupta IITB, India 23

Making operators left associative
Consider multiplication operation first.

Let us suppose we have multiple multiplications in a row

E × E × E

We need to somehow disqualify one of the following parse tree.

E

E × E

E × E

E

E

E × E

× E

We can resolve the ambiguity by giving preference to left most multiplication,
which is called left associative operation.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS310 : Automata Theory 2019 Instructor: Ashutosh Gupta IITB, India 24

Production rules for left associative multiplication
The following productions rules make × left associative.

M → E | M × E

M is multiplications of expressions that can only be extended from right.

Example 15.10

E × E × E is parsed as follows.
M

M

M

E

× E

× E

Exercise 15.7
Give production rules that make × right associative.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS310 : Automata Theory 2019 Instructor: Ashutosh Gupta IITB, India 25

Production rules for left associative sum of products
The following productions rules make + left associative.

S → M | S + M

Only sums of multiplications are allowed
(Therefore, multiplication of sums are disallowed).

Example 15.11

M + M + M is parsed as follows.
S

S

S

M

+ M

+ M

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS310 : Automata Theory 2019 Instructor: Ashutosh Gupta IITB, India 26

Unambiguous arithmetic expressions

Putting it all together

G ′arith = ({B,M, S ,E}, {+,×, 0, 1, (,)},P, S), where P consists of

B → 1 | B0 | B1

M → E | M × E

S → M | S + M

E → B | (S).

E ties all back, which is either a binary number or parenthesized expression,
which are unambiguous subwords.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS310 : Automata Theory 2019 Instructor: Ashutosh Gupta IITB, India 27

Inherently ambiguous languages

There are CFLs that have only ambiguous grammars

For example,

{anbmc`dk |(n = m ∧ ` = k) ∨ (n = k ∧m = `)}

Hard to prove and we will not cover this in the course!

Our first encounter with impossible problems and very hard proofs!

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS310 : Automata Theory 2019 Instructor: Ashutosh Gupta IITB, India 28

End of Lecture 15

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

