
cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 1

CS615: Formal Specification and
Verification of Programs 2019

Lecture 1: Program modeling and semantics

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2019-07-31

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 2

Programs

Our life depends on programs

I airplanes fly by wire

I autonomous vehicles

I flipkart,amazon, etc

I QR-code - our food

Programs have to work in hostile conditions

I NSA

I Heartbleed bug in SSH

I 737Max is falling from the sky

I ... etc.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 3

Verification

I Much needed technology

I Undecidable problem

I Many fragments are hard

I Open theoretical questions

I Difficult to implement algorithms
I the field is full of start-ups

Perfect field for a young bright mind to take a plunge

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 4

Topic 1.1

Course contents

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 5

The course

A course is not sufficient to cover the full breath of verification but we will try

First half (core)

1. Program semantics

2. Supporting technology

3. Theory of abstraction

4. Two methods: abstract interpretation and model checking

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 6

Lecture plan for the first half

Program

Analysis/Verification

OutputAbstract interpretation

Model Checking

Program Modeling
Semantics

Symbolic methods

Decision procedures
SAT/SMT Solving

Quantifier elimination Theory of abstraction

Foundation of formal methodsCS 719:

Lecture 1-4: Lecture 5-7:

Lecture 8-10:

Lecture 11-13:

Lecture 14-16:

Lecture 17: Tools

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 7

The course (contd.)

Second half (more stuff)

1. Program with features: functions, pointers, time, etc 6 lectures
I Exploiting structures of programs

2. Beyond safety 2 lectures
I liveness and security

3. Practical verification 2 lectures
I “limited” guarantees

4. Latest in verification 2 lectures
I Aspects of learning
I Synthesis

This part is adaptive and depends on your interest.
Please give active feedback.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 8

Logic in verification

Differential equations
are the calculus of

Electrical engineering

Logic
is the calculus of
Computer science

Logic provides tools to define/manipulate computational objects

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 9

Applications of logic in Verification

I Defining Semantics: Logic allows us to assign
“mathematical meaning” to programs

P

I Defining properties: Logic provides a language of describing the
“mathematically-precise” intended behaviors of the programs

F

I Proving properties: Logic provides algorithms that allow us to prove
the following mathematical theorem.

P |= F
The rest of the lecture is
about making sense of “|=”

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 10

Logical toolbox

We need several logical operations to implement verification methods.

Let us go over some of those.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 11

Logical toolbox : satisfiablity

s |= F ?

Example 1.1

{x 7→ 1, y 7→ 2} |= x + y = 3.

Exercise 1.1

I {x → 1} |= x > 0?

I {x → 1, y → 2} |= x + y = 3 ∧ x > 0?

I {x → 1, y → 2} |= x + y = 3 ∧ x > 0 ∧ y > 10?

Exercise 1.2
Can we say something more about the last formula?

model formula

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 12

Logical toolbox : satisfiablity
Is there any model?

|= F ?
Harder problem!

Exercise 1.3

I |= x + y = 3 ∧ x > 0?

I |= x + y = 3 ∧ x > 0 ∧ y > 10?

I |= x > 0 ∨ x < 1?

Exercise 1.4
Can we say something more about the last formula?

disjunction

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 13

Logical toolbox : validity

Is the formula true for all models?

∀s : s |= F ?
Even harder problem?

We can simply check satisfiability of ¬F .

Example 1.2

x > 0 ∨ x < 1 is valid because x ≤ 0 ∧ x ≥ 1 is unsatisfiable.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 14

Logical toolbox : implication

F ⇒ G?
We need to check F ⇒ G is a valid formula.
We check if ¬(F ⇒ G) is unsatisfiable, which is equivalent to checking if
F ∧ ¬G is unsatisfiable.

Example 1.3

Consider the following implication

x = y + 1 ∧ y ≥ z + 3⇒ x ≥ z

After negating the implication, we obtain x = y + 1 ∧ y ≥ z + 3 ∧ x < z.

After simplification, we obtain x − z ≥ 4 ∧ x − z < 0.

Therefore, the negation is unsatisfiable and the implication is valid.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 15

Logical toolbox : quantifier elimination

given F , find G such that
G (y) ≡ ∃x . F (x , y)

Is this harder problem?

Example 1.4

Consider formula ∃x . x > 0 ∧ x ′ = x + 1

After substituting x by x ′ − 1, ∃x . x ′ − 1 > 0.

Since x is not in the formula, we drop the quantifier and obtain x ′ > 1.

Exercise 1.5
a. Eliminate quantifiers: ∃x , y . x > 2 ∧ y > 3 ∧ y ′ = x + y
b. What do we do when ∨ in the formula?
c. How to eliminate universal quantifiers?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 16

Logical toolbox : induction principle

F (0) ∧ ∀n : F (n)⇒ F (n + 1)
⇒

∀n : F (n)
Example 1.5

We prove F (n) = (
∑n

i=0 i = n(n + 1)/2) by induction principle as follows

I F (0) = (
∑0

i=0 i = 0(0 + 1)/2)

I We show that implication F (n)⇒ F (n + 1) is valid, which is

(
n∑

i=0

i = n(n + 1)/2)⇒ (
n+1∑
i=0

i = (n + 1)(n + 2)/2).

Exercise 1.6
Show the above implication holds using a satisfiability checker.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 17

Logical toolbox : interpolation

find a simple I such that
A⇒ I and I ⇒ B

For now, no trivial to see the important of interpolation.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 18

Logical toolbox

In order to build verification tools, we need tools that automate the logical
questions/queries.

Hence CS 433: automated reasoning.

In the first four lectures, we will see the need for automation.

In this course, we will briefly review available logical tool boxes.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 19

Topic 1.2

Course Logistics

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 20

Evaluation

I Assignments : 45% (about 10% each - 4 assignments)

I Quizzes : 10% (5% each)

I Midterm : 20% (2 hour)

I Presentation: 10% (15 min)

I Final : 15% (2 hour)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 21

Website

For further information

https://www.cse.iitb.ac.in/~akg/courses/2019-cs615/

All the assignments and slides will be posted at the website.

Please carefully read the course rules at the website

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
https://www.cse.iitb.ac.in/~akg/courses/2019-cs615/
https://www.cse.iitb.ac.in/~akg/courses/2019-cs615/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 22

Topic 1.3

Program modeling

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 23

Modeling

I Object of study is often inaccessible, we only analyze its shadow

Plato’s cave

I Almost impossible to define the true semantics
of a program running on a machine

I All models (shadows) exclude many hairy details of a program

I It is almost a “matter of faith” that any result of analysis of model
is also true for the program

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 24

Topic 1.4

A simple language

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 25

A simple language : ingredients

I V , vector of rational program variables

I Exp(V) , linear expressions over V

I Σ(V) , linear formulas over V

Example 1.6

V = [x , y]

x + y ∈ Exp(V)

x + y ≤ 3 ∈ Σ(V)

But, x2 + y ≤ 3 6∈ Σ(V)(why?)

sometimes integer

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 26

A simple language: syntax

Definition 1.1
A program c is defined by the following grammar data

c ::= x := exp (assignment)

| x := havoc() (havoc)

| assume(F) (assumption)

| assert(F) (property)
control

| skip (empty program)

| c; c (sequential computation)

| c [] c (nondet composition)

| if(F) c else c (if-then-else)

| while(F) c (loop)

where x ∈ V , exp ∈ Exp(V), and F ∈ Σ(V).

Let P be the set of all programs over variables V .

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 27

Example: a simple language

Example 1.7

Let V = {r , x}.

assume(r > 0);

while(r > 0) {

x := x + x;

r := r - 1;

}

Exercise 1.7

Write a simple program equivalent of the following without using if().

if(r > 0)

x := x + x;

else

x := x - 1;

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 28

A simple language: states

Definition 1.2
A state s is a pair (v ,c), where

I v : V → Q and

I c is yet to be executed part of program.

Definition 1.3
The set of states is S , (Q|V | × P) ∪ {(Error, skip)}.

Example 1.8

The following is a state, where V = [r, x]

([2, 1], x := x + x; r := r− 1)

The purpose of this
state will be clear soon.

v c

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 29

Some supporting functions and notations

Definition 1.4
Let exp ∈ Exp(V) and v ∈ V → Q, let exp(v) denote the evaluation of exp
at v .

Example 1.9

Let V = [x]. Let exp = x + 1 and v = [2].

(x + 1)([2]) = 3

Definition 1.5
Let random() returns a random rational number.

Definition 1.6
Let f be a function and k be a value. We define f [x→ k] as follows.

for each y ∈ domain(f) f [x→ k](y) =

{
k x == y

f (y) otherwise

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 30

A simple language: semantics

Definition 1.7
The set of programs defines a transition relation T ⊆ S × S.
T is the smallest relation that contains the following transitions.

((v , x := exp), (v [x 7→ exp(v)], skip)) ∈ T

((v , x := havoc()), (v [x 7→ random()], skip)) ∈ T

((v , assume(F)), (v , skip)) ∈ T if v |= F

((v , assert(F)), (v , skip)) ∈ T if v |= F

((v , assert(F)), (Error, skip)) ∈ T if v 6|= F

((v , c1; c2), (v ′, c′1; c2)) ∈ T if ((v , c1), (v ′, c′1)) ∈ T

((v , skip; c2), (v , c2)) ∈ T

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 31

A simple language: semantics (contd.)

((v , c1[]c2), (v , c1)) ∈ T

((v , c1[]c2), (v , c2)) ∈ T

((v , if(F) c1 else c2), (v , c1)) ∈ T if v |= F

((v , if(F) c1 else c2), (v , c2)) ∈ T if v 6|= F

((v , while(F) c1), (v , c1; while(F) c1)) ∈ T if v |= F

((v , while(F) c1), (v , skip)) ∈ T if v 6|= F

T contains the meaning of all programs.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 32

Executions and reachability

Definition 1.8
A (in)finite sequence of states (v0, c0), (v1, c1),, (vn, cn) is an execution of
program c if c0 = c and ∀i ∈ 1..n, ((vi−1, ci−1), (vi , ci)) ∈ T.

Definition 1.9
For a program c, the reachable states are T ∗(Q|V | × {c})

Definition 1.10
c is safe if (Error, skip) 6∈ T ∗(Q|V | × {c})

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 33

Example execution

Example 1.10
assume(r > 0);

while(r > 0) {

x := x + x;

r := r - 1

}

V = [r, x]
An execution:
([2, 1], assume(r > 0); while(r > 0){x := x + x; r := r− 1; })
([2, 1], while(r > 0){x := x + x; r := r− 1; })
([2, 1], x := x + x; r := r− 1; while(r > 0){x := x + x; r := r− 1; })
([2, 2], r := r− 1; while(r > 0){x := x + x; r := r− 1; })
([1, 2], while(r > 0){x := x + x; r := r− 1; })
...
([0, 4], while(r > 0){x := x + x; r := r− 1; })
([0, 4], skip)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 34

Exercise: executions

Exercise 1.8
Execute the following code.
Let v = [x]. Initial value v = [1].
assume(x > 0);

x := x - 1 [] x := x + 1;

assert(x > 0);

Now consider initial value v = [0].

Exercise 1.9
Execute the following code.
Let v = [x , y].
Initial value v = [−1000, 2].
x := havoc();

y := havoc();

assume(x+y > 0);

x := 2x + 2y + 5;

assert(x > 0)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 35

Trailing code == program locations

Example 1.11
L1: assume(r > 0);

L2: while(r > 0) {

L3: x := x + x;

L4: r := r - 1

}

L5:
V = [r, x]
An execution:
([2, 1], L1)
([2, 1], L2)
([2, 1], L3)
([2, 2], L4)
([1, 2], L2)
...
([0, 4], L2)
([0, 4], L5)

We need not carry around trailing pro-
gram. Program locations are enough.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 36

Stuttering, non-termination, and non-determinism

The programs allow the following not so intuitive behaviors.

I Stuttering

I Non-termination

I Non-determinism

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 37

Stuttering

Example 1.12

The following program will get stuck if the initial value of x is negative.

assume(x > 0);

x = 2

Exercise 1.10
Do real world programs have stuttering?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 38

Non-termination

Example 1.13

The following program will not finish if the initial value of x is negative.

while(x < 0) {

x = x - 1;

}

Exercise 1.11
Do real world programs have non-termination?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 39

Non-termination

Example 1.14

The following program can execute in two ways for each initial state.

x = x - 1 [] x = x + 1

Exercise 1.12
Do real world programs have non-determinism?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 40

Expressive power of the simple language

Exercise 1.13
Which details of real programs are ignored by this model?

I heap and pointers

I numbers with fixed bit width

I functions and stack memory

I recursion

I other data types, e.g., strings, integer, etc.

Iany thing else?

We will live with these limitations in the first of the course.
Relaxing any of the above restrictions is a whole field on its own.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 41

End of Lecture 1

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

	Course contents
	Course Logistics
	Program modeling
	A simple language

