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Programs

Our life depends on programs

I airplanes fly by wire

I autonomous vehicles

I flipkart,amazon, etc

I QR-code - our food

Programs have to work in hostile conditions

I NSA

I Heartbleed bug in SSH

I 737Max is falling from the sky

I ... etc.
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Verification

I Much needed technology

I Undecidable problem

I Many fragments are hard

I Open theoretical questions

I Difficult to implement algorithms
I the field is full of start-ups

Perfect field for a young bright mind to take a plunge
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Topic 1.1

Course contents
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The course

A course is not sufficient to cover the full breath of verification but we will try

First half (core)

1. Program semantics

2. Supporting technology

3. Theory of abstraction

4. Two methods: abstract interpretation and model checking

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Lecture plan for the first half

Program

Analysis/Verification

OutputAbstract interpretation

Model Checking

Program Modeling
Semantics

Symbolic methods

Decision procedures
SAT/SMT Solving

Quantifier elimination Theory of abstraction

Foundation of formal methodsCS 719:

Lecture 1-4: Lecture 5-7:

Lecture 8-10:

Lecture 11-13:

Lecture 14-16:

Lecture 17: Tools
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The course (contd.)

Second half (more stuff)

1. Program with features: functions, pointers, time, etc 6 lectures
I Exploiting structures of programs

2. Beyond safety 2 lectures
I liveness and security

3. Practical verification 2 lectures
I “limited” guarantees

4. Latest in verification 2 lectures
I Aspects of learning
I Synthesis

This part is adaptive and depends on your interest.
Please give active feedback.
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Logic in verification

Differential equations
are the calculus of

Electrical engineering

Logic
is the calculus of
Computer science

Logic provides tools to define/manipulate computational objects
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Applications of logic in Verification

I Defining Semantics: Logic allows us to assign
“mathematical meaning” to programs

P

I Defining properties: Logic provides a language of describing the
“mathematically-precise” intended behaviors of the programs

F

I Proving properties: Logic provides algorithms that allow us to prove
the following mathematical theorem.

P |= F
The rest of the lecture is
about making sense of “|=”

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Logical toolbox

We need several logical operations to implement verification methods.

Let us go over some of those.
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Logical toolbox : satisfiablity

s |= F ?

Example 1.1

{x 7→ 1, y 7→ 2} |= x + y = 3.

Exercise 1.1

I {x → 1} |= x > 0?

I {x → 1, y → 2} |= x + y = 3 ∧ x > 0?

I {x → 1, y → 2} |= x + y = 3 ∧ x > 0 ∧ y > 10?

Exercise 1.2
Can we say something more about the last formula?

model formula

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Logical toolbox : satisfiablity
Is there any model?

|= F ?
Harder problem!

Exercise 1.3

I |= x + y = 3 ∧ x > 0?

I |= x + y = 3 ∧ x > 0 ∧ y > 10?

I |= x > 0 ∨ x < 1?

Exercise 1.4
Can we say something more about the last formula?

disjunction
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Logical toolbox : validity

Is the formula true for all models?

∀s : s |= F ?
Even harder problem?

We can simply check satisfiability of ¬F .

Example 1.2

x > 0 ∨ x < 1 is valid because x ≤ 0 ∧ x ≥ 1 is unsatisfiable.

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Logical toolbox : implication

F ⇒ G?
We need to check F ⇒ G is a valid formula.
We check if ¬(F ⇒ G ) is unsatisfiable, which is equivalent to checking if
F ∧ ¬G is unsatisfiable.

Example 1.3

Consider the following implication

x = y + 1 ∧ y ≥ z + 3⇒ x ≥ z

After negating the implication, we obtain x = y + 1 ∧ y ≥ z + 3 ∧ x < z.

After simplification, we obtain x − z ≥ 4 ∧ x − z < 0.

Therefore, the negation is unsatisfiable and the implication is valid.
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Logical toolbox : quantifier elimination

given F , find G such that
G (y) ≡ ∃x . F (x , y)

Is this harder problem?

Example 1.4

Consider formula ∃x . x > 0 ∧ x ′ = x + 1

After substituting x by x ′ − 1, ∃x . x ′ − 1 > 0.

Since x is not in the formula, we drop the quantifier and obtain x ′ > 1.

Exercise 1.5
a. Eliminate quantifiers: ∃x , y . x > 2 ∧ y > 3 ∧ y ′ = x + y
b. What do we do when ∨ in the formula?
c. How to eliminate universal quantifiers?

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Logical toolbox : induction principle

F (0) ∧ ∀n : F (n)⇒ F (n + 1)
⇒

∀n : F (n)
Example 1.5

We prove F (n) = (
∑n

i=0 i = n(n + 1)/2) by induction principle as follows

I F (0) = (
∑0

i=0 i = 0(0 + 1)/2)

I We show that implication F (n)⇒ F (n + 1) is valid, which is

(
n∑

i=0

i = n(n + 1)/2)⇒ (
n+1∑
i=0

i = (n + 1)(n + 2)/2).

Exercise 1.6
Show the above implication holds using a satisfiability checker.

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Logical toolbox : interpolation

find a simple I such that
A⇒ I and I ⇒ B

For now, no trivial to see the important of interpolation.

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Logical toolbox

In order to build verification tools, we need tools that automate the logical
questions/queries.

Hence CS 433: automated reasoning.

In the first four lectures, we will see the need for automation.

In this course, we will briefly review available logical tool boxes.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 19

Topic 1.2

Course Logistics
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Evaluation

I Assignments : 45% (about 10% each - 4 assignments)

I Quizzes : 10% (5% each)

I Midterm : 20% (2 hour)

I Presentation: 10% (15 min)

I Final : 15% (2 hour)
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Website

For further information

https://www.cse.iitb.ac.in/~akg/courses/2019-cs615/

All the assignments and slides will be posted at the website.

Please carefully read the course rules at the website
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Topic 1.3

Program modeling
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Modeling

I Object of study is often inaccessible, we only analyze its shadow

Plato’s cave

I Almost impossible to define the true semantics
of a program running on a machine

I All models (shadows) exclude many hairy details of a program

I It is almost a “matter of faith” that any result of analysis of model
is also true for the program
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Topic 1.4

A simple language
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A simple language : ingredients

I V , vector of rational program variables

I Exp(V ) , linear expressions over V

I Σ(V ) , linear formulas over V

Example 1.6

V = [x , y ]

x + y ∈ Exp(V )

x + y ≤ 3 ∈ Σ(V )

But, x2 + y ≤ 3 6∈ Σ(V )(why?)

sometimes integer

http://creativecommons.org/licenses/by-nc-sa/4.0/
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A simple language: syntax

Definition 1.1
A program c is defined by the following grammar data

c ::= x := exp (assignment)

| x := havoc() (havoc)

| assume(F) (assumption)

| assert(F) (property)
control

| skip (empty program)

| c; c (sequential computation)

| c [] c (nondet composition)

| if(F) c else c (if-then-else)

| while(F) c (loop)

where x ∈ V , exp ∈ Exp(V ), and F ∈ Σ(V ).

Let P be the set of all programs over variables V .

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Example: a simple language

Example 1.7

Let V = {r , x}.

assume( r > 0 );

while( r > 0 ) {

x := x + x;

r := r - 1;

}

Exercise 1.7

Write a simple program equivalent of the following without using if().

if( r > 0 )

x := x + x;

else

x := x - 1;

http://creativecommons.org/licenses/by-nc-sa/4.0/
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A simple language: states

Definition 1.2
A state s is a pair (v ,c), where

I v : V → Q and

I c is yet to be executed part of program.

Definition 1.3
The set of states is S , (Q|V | × P) ∪ {(Error, skip)}.

Example 1.8

The following is a state, where V = [r, x]

([2, 1], x := x + x; r := r− 1)

The purpose of this
state will be clear soon.

v c

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 29

Some supporting functions and notations

Definition 1.4
Let exp ∈ Exp(V ) and v ∈ V → Q, let exp(v) denote the evaluation of exp
at v .

Example 1.9

Let V = [x]. Let exp = x + 1 and v = [2].

(x + 1)([2]) = 3

Definition 1.5
Let random() returns a random rational number.

Definition 1.6
Let f be a function and k be a value. We define f [x→ k] as follows.

for each y ∈ domain(f ) f [x→ k](y) =

{
k x == y

f (y) otherwise

http://creativecommons.org/licenses/by-nc-sa/4.0/
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A simple language: semantics

Definition 1.7
The set of programs defines a transition relation T ⊆ S × S.
T is the smallest relation that contains the following transitions.

((v , x := exp), (v [x 7→ exp(v)], skip)) ∈ T

((v , x := havoc()), (v [x 7→ random()], skip)) ∈ T

((v , assume(F)), (v , skip)) ∈ T if v |= F

((v , assert(F)), (v , skip)) ∈ T if v |= F

((v , assert(F)), (Error, skip)) ∈ T if v 6|= F

((v , c1; c2), (v ′, c′1; c2)) ∈ T if ((v , c1), (v ′, c′1)) ∈ T

((v , skip; c2), (v , c2)) ∈ T

http://creativecommons.org/licenses/by-nc-sa/4.0/
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A simple language: semantics (contd.)

((v , c1[]c2), (v , c1)) ∈ T

((v , c1[]c2), (v , c2)) ∈ T

((v , if(F) c1 else c2), (v , c1)) ∈ T if v |= F

((v , if(F) c1 else c2), (v , c2)) ∈ T if v 6|= F

((v , while(F) c1), (v , c1; while(F) c1)) ∈ T if v |= F

((v , while(F) c1), (v , skip)) ∈ T if v 6|= F

T contains the meaning of all programs.
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Executions and reachability

Definition 1.8
A (in)finite sequence of states (v0, c0), (v1, c1), ...., (vn, cn) is an execution of
program c if c0 = c and ∀i ∈ 1..n, ((vi−1, ci−1), (vi , ci )) ∈ T.

Definition 1.9
For a program c, the reachable states are T ∗(Q|V | × {c})

Definition 1.10
c is safe if (Error, skip) 6∈ T ∗(Q|V | × {c})
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Example execution

Example 1.10
assume( r > 0 );

while( r > 0 ) {

x := x + x;

r := r - 1

}

V = [r, x]
An execution:
([2, 1], assume(r > 0); while(r > 0){x := x + x; r := r− 1; })
([2, 1], while(r > 0){x := x + x; r := r− 1; })
([2, 1], x := x + x; r := r− 1; while(r > 0){x := x + x; r := r− 1; })
([2, 2], r := r− 1; while(r > 0){x := x + x; r := r− 1; })
([1, 2], while(r > 0){x := x + x; r := r− 1; })
...
([0, 4], while(r > 0){x := x + x; r := r− 1; })
([0, 4], skip)
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Exercise: executions

Exercise 1.8
Execute the following code.
Let v = [x ]. Initial value v = [1].
assume( x > 0 );

x := x - 1 [] x := x + 1;

assert( x > 0 );

Now consider initial value v = [0].

Exercise 1.9
Execute the following code.
Let v = [x , y ].
Initial value v = [−1000, 2].
x := havoc();

y := havoc();

assume( x+y > 0 );

x := 2x + 2y + 5;

assert( x > 0 )

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Trailing code == program locations

Example 1.11
L1: assume( r > 0 );

L2: while( r > 0 ) {

L3: x := x + x;

L4: r := r - 1

}

L5:
V = [r, x]
An execution:
([2, 1], L1)
([2, 1], L2)
([2, 1], L3)
([2, 2], L4)
([1, 2], L2)
...
([0, 4], L2)
([0, 4], L5)

We need not carry around trailing pro-
gram. Program locations are enough.
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Stuttering, non-termination, and non-determinism

The programs allow the following not so intuitive behaviors.

I Stuttering

I Non-termination

I Non-determinism
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Stuttering

Example 1.12

The following program will get stuck if the initial value of x is negative.

assume( x > 0 );

x = 2

Exercise 1.10
Do real world programs have stuttering?
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Non-termination

Example 1.13

The following program will not finish if the initial value of x is negative.

while( x < 0 ) {

x = x - 1;

}

Exercise 1.11
Do real world programs have non-termination?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 39

Non-termination

Example 1.14

The following program can execute in two ways for each initial state.

x = x - 1 [] x = x + 1

Exercise 1.12
Do real world programs have non-determinism?
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Expressive power of the simple language

Exercise 1.13
Which details of real programs are ignored by this model?

I heap and pointers

I numbers with fixed bit width

I functions and stack memory

I recursion

I other data types, e.g., strings, integer, etc.

I ....any thing else?

We will live with these limitations in the first of the course.
Relaxing any of the above restrictions is a whole field on its own.
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End of Lecture 1
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