
cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 1

CS615: Formal Specification and
Verification of Programs 2019

Lecture 2: Symbolic operator: strongest post

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2019-08-13

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 2

Computing reachable states

I Proving safety is computing reachable states.

I states are infinite =⇒ enumeration impossible

I To compute reachable states, we need
I finite representations of transition relation and set of states and

I For example, x > 0 represents infinite set {1, 2, 3,}
I ability to compute transitive closure of transition relation

I Idea: use logic for the above goals

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 3

Topic 2.1

Program statements as formulas

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 4

Program statements as formulas (Notation)

I In logical representation, we add a new variable err in V to represent
error state. Initially, err = 0 and err = 1 means error has occurred.

I V ′ be the vector of variables obtained by adding prime after each
variable in V .
I V denote the current value of the variables
I V ′ denote the next value of the variables

Example 2.1

Let V = [x, y, err]. Therefore, V ′ = [x′, y′, err ′].

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 5

Notation : frame

Definition 2.1

For U ⊆ V , let frame(U) ,
∧

x∈V \U

(x ′ = x)

In case of singleton U, we only write the element as parameter.

Exercise 2.1
Let V = [x, y, err]

I frame(x) :=

I frame(y) :=

I frame(∅) :=

I frame([x, y]) :=

I frame(V) :=

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 6

Program statements as formulas (contd.)
We define logical formula ρ for the data statements as follows.
I ρ(x := exp) , x′ = exp ∧ frame(x)
I ρ(x := havoc()) , frame(x)
I ρ(assume(F)) , F ∧ frame(∅)
I ρ(assert(F)) , F⇒ frame(∅)

Since control locations in a program are always finite, control statements
need not be redefined.

Example 2.2

Let V = [x , y , err].

I ρ(x := y + 1) = (x′ = y + 1 ∧ y′ = y ∧ err ′ = err)

I ρ(x := havoc()) = (y′ = y ∧ err ′ = err)

I ρ(assume(x > 0)) = (x > 0 ∧ x′ = x ∧ y′ = y ∧ err ′ = err)

I ρ(assert(x > 0)) = (x > 0⇒ (x′ = x ∧ y′ = y ∧ err ′ = err))

Exercise 2.2
Show ρ correctly models the assert statement

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 7

Executing as satisfaction

We can use ρ to execute the commands.

Give the values for the current state, get the values for the next state.

Example 2.3

Consider command ρ(x := y + 1) = (x′ = y + 1 ∧ y′ = y ∧ err ′ = err)
Consider current state: {x = 1, y = 1, err = 0}
To execute the command, we solve the following constraints

(x′ = 1 + 1 ∧ y′ = 1 ∧ err ′ = 0)

We obtain
{x′ = 2 ∧ y′ = 1 ∧ err ′ = 0}

Commentary: In the case, we have a unique solution for the primed variables. However, that may not be necessary. For some commands,
we may have multiple solutions or none.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 8

Example: executing as satisfaction

Example 2.4

Consider ρ(assert(x > 0)) = (x > 0⇒ (x′ = x ∧ y′ = y ∧ err ′ = err))
and current state {x = −1, y = 1, err = 0}.

To execute the command, we solve the following constraints

(−1 > 0⇒ (x′ = −1 ∧ y′ = 1 ∧ err ′ = 0))

If we simplify the above formula, we obtain

>

Any state can be the next state, let us choose the following.

{x = 12345, y = 100000, err = 1}

Exercise 2.3
What happens if current state is {x = 2, y = 1, err = 0}?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 9

Topic 2.2

Aggregated semantics

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 10

Aggregate

Another view of executions

sets of valuations → sets of valuations

Notation

I valuation : Q|V |

I set of valuations : p(Q|V |)
I set of valuations → set of valuations : p(Q|V |)→ p(Q|V |)

We will only refer to the set of reachable valuations/states at a location, not
at the whole program.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 11

Strongest post: set of valuations to set of valuations

Definition 2.2
Strongest post operator sp : p(Q|V |)× P → p(Q|V |) is defined as follows.

sp(X , c) , {v ′|∃v : v ∈ X ∧ (v ′, skip) ∈ T ∗((v , c))},

where X ⊆ Q|V | and c is a program.

X sp(X , c)

×

Example 2.5

Consider V = [x] and X = {[n]|n > 0}.
sp(X , x := x + 1) = {[n]|n > 1}

Exercise 2.4
Why use of word
“strongest”?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 12

Symbolic sp

We have discussed that a formula in Σ(V) represents a set of valuations.

Hence, we declare symbolic sp that transforms formulas.

sp : Σ(V)× P → Σ(V)

For data statements, the equivalent definition of symbolic sp is

sp(F , c) , (∃V : F ∧ ρ(c))[V /V ′].

Example 2.6

Let V = [x, y, err] and c = x := y + 1.
ρ(c) = x′ = y + 1 ∧ y′ = y ∧ err ′ = err
sp(y > 2, c) = (∃x, y, err . (y > 2 ∧ x′ = y + 1 ∧ y′ = y ∧ err ′ = err))[V /V ′]
= (y′ > 2 ∧ x′ = y′ + 1)[V /V ′]
= (y > 2 ∧ x = y + 1)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 13

Exercise : symbolic sp

Exercise 2.5

I sp(y > 2 ∧ err = 0, x := havoc()) =

I sp(y > 2 ∧ err = 0, assume(y < 10)) =

I sp(y > 2 ∧ err = 0, assert(y < 0)) =

I sp(⊥, c) =

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 14

Exercise: simplfy sp

Exercise 2.6
Show that

I sp(F , x := havoc()) = ∃x .F
I sp(F , assume(G)) = F ∧ G

I sp(F , assert(G)) = F ∨ ∃V .(F ∧ ¬G)︸ ︷︷ ︸
No free variables

Exercise 2.7
Why not simplify wp(F , x := exp) like above?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 15

Symbolic sp for control statements (other than while)

For control statements, the equivalent definitions of symbolic sp are

sp(F , c1; c2) , sp(sp(F , c1), c2)

sp(F , c1[]c2) , sp(F , c1) ∨ sp(F , c2)

sp(F , if(F1) c1 else c2) , sp(F , assume(F1); c1) ∨ sp(F , assume(¬F1); c2)

Example 2.7

sp(x = 0, if(y > 0) x := x + 1 else x := x− 1) =
sp(x = 0, assume(y > 0); x := x + 1)∨ sp(x = 0, assume(y ≤ 0); x := x− 1)
= sp(x = 0 ∧ y > 0, x := x + 1) ∨ sp(x = 0 ∧ y ≤ 0, x := x− 1)
= (y > 0 ∧ x = 1 ∨ y ≤ 0 ∧ x = −1)

Exercise 2.8

1. sp(x + y > 0, assume(x > 0); y := y + 1)

2. sp(x + y > 0, assume(x > 0)[]y := y + 1)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 16

Topic 2.3

Some math: least fixed point

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 17

Least fixed point (lfp)

Definition 2.3
For a function f , x is a fixed point of f if f (x) = x.

Definition 2.4
For a function f , ` = lfpx(f (x)) is the least fixed point of f if

I f (`) = ` and

I ∀y < `. f (y) 6= y.

Definition 2.5
For a function f , ` = gfpx(f (x)) is the greatest fixed point of f if

I f (`) = ` and

I ∀y > `. f (y) 6= y.

Example 2.8

Consider function f (x) = 2/x.
√

2 and −
√

2 are the fixed points of f .
Therefore,

lfpx(2/x) = −
√

2 gfpx(2/x) =
√

2

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 18

Example: fixed-points

Exercise 2.9
Give least fixed point and greatest fixed point of the following functions.

I f (x) = x + 1

I f (x) = x

I f (x) = x2

I f (x) = x2 + x − 1

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 19

Notation: least/greatest fixed point

lfpx(f (x)︸ ︷︷ ︸)

There can be other variables in the function that are assumed to be fixed with
respect to the analysis and the answer is parameterized by the free variable.

Example 2.9

Consider

lfpx(x2 + y) =
−1−

√
1− 4y

2

Function under
analysis

Variable
to vary

Same variable
at subscript

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 20

Functions for formula

Consider a function like the following

f : Σ→ Σ

Example 2.10

Strongest post sp(F , c)takes two parameters. If we fix c, the function takes a
formula as input and returns an output.

I sp(x = 0, x := havoc()) = >
I sp(y > 2, x := havoc()) = y > 2 (fixed point!!)

I sp(y + x > 2, x := havoc()) = >

Exercise 2.10
a. What is the greatest fixed point for gfpF (sp(F , x := havoc()))?
b. What is the least fixed point for lfpF (sp(F , x := havoc()))?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 21

Topic 2.4

sp for loops

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 22

Handling while loop

F ′ are set of reachable states at loop head after some number of iterations.

Initial states

States after loop

assume(¬G)

F ′∨

assume(¬G)

assume(G); c

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 23

Symbolic for control statements (while)

sp(F , while(G) c) , sp(lfpF ′(F ∨ sp(F ′ ∧ G, c)), assume(¬G))

Exercise 2.11
a. What is the return type of lfp in the above?
b. What is the meaning of sp in the lfp?
c. What is the meaning of the whole function in the lfp?
c. What will happen if we remove ‘F ∨’ inside the lfp?
e. What is the purpose of outside sp?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 24

Exercise: symbolic sp for control statements

Exercise 2.12 (Give intuitive answers!)

1. sp(x + y > 0, assume(x > 0); y := y + 1)

2. sp(y < 2, while(y < 10) y := y + 1)

3. sp(y > 2, while(y < 10) y := y + 1)

4. sp(y = 0, while(>) y := y + 1)

We have not yet learned
an algorithm for sp

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 25

Safety and symbolic sp

Theorem 2.1
For a program c, if 6|= sp(err = 0, c) ∧ err = 1 then c is safe.

Exercise 2.13
Prove the above lemma.

We need two key tools from logic to use sp as verification engine.

I quantifier elimination (for data statements)

I lfp computation (for loop statement)

There are quantifier elimination algorithms for many logical theories, e.g.,
integer arithmetic.

However, there is no general algorithm for computing lfp. Otherwise, the
halting problem is decidable.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 26

Field of verification

This course is all about developing

incomplete but sound methods for lfp

that work for

some of the programs of our interest.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 27

End of Lecture 2

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

	Program statements as formulas
	Aggregated semantics
	Some math: least fixed point
	sp for loops

