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Topic 8.1

Labeled transition system (reminder)
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labeled transition system (LTS)

Definition 8.1
A program P is a tuple (V , L, `0, `e ,E ), where

I V is a vector of variables,

I L be set of program locations,

I `0 is initial location,

I `e is error location, and

I E ⊆ L× Σ(V ,V ′)× L is a set of labeled transitions between locations.

Example 8.1 `0

`1

`e

x ′ = 1

x < 0

x ′ = x + 2

V = [x]
L = {`0, `1, `e}
E = {(`0, x

′ = 1, `1),
(`1, x

′ = x + 2, `1),
(`1, x < 0, `e)}

Notation:
If e = (`, ρ(V ,V ′), `′) ∈ E ,
then
e(V ,V ′) , ρ(V ,V ′),
e(loc) , ` and
e(loc ′) , `′
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Semantics
Consider program P = (V , L, `0, `e ,E ).

Definition 8.2
A state s = (`, v) of a program is program location ` and a valuation v of V .

Let v(x) , value of variable x in v
For state s = (`, v), let s(x) , v(x) and s(loc) , `

Definition 8.3
A path π = e1, . . . , en in P is a sequence of transitions such that, for each
0 < i < n, ei = (`i−1, , `i ) and ei+1 = (`i , , `i+1).

Definition 8.4
An execution corresponding to path e1, . . . , en is a sequence of states
(`0, v0), . . . , (`n, vn) such that ∀i ∈ 1..n, ei (vi−1, vi ) holds true.
An execution belongs to P if there is a corresponding path in P.

Definition 8.5
P is safe if there is no execution of P from `0 to `e .
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Reminder: symbolic strongest post

sp : Σ(V )× Σ(V ,V ′)→ Σ(V )

We define symbolic post over labels of P as follows.

sp(F , ρ) , (∃V : F (V ) ∧ ρ(V ,V ′))[V /V ′]
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Topic 8.2

Reachability and Abstraction
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Reachability

Consider program P = (V , L, `0, `e ,E )

We have seen in order to prove that no execution will reach `e , we need to
compute the reachable valuations for each location in L.

Earlier, we called the set of reachable valuations as invariants.
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Reachable valuations

Let X` be a variable representing the reachable valuations at location ` ∈ L

Let X denote the vector of X`s.

Example 8.2

X`0

X`1

X`e

x ′ = 1

x < 0

x ′ = x + 2

X = [X`0 ,X`1 ,X`0 ]
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Reachability as equation
We trivially know X`0 = >.

For the other location, if we know reachable states for the sources of
incoming edges we may compute the reachable states at the location.

X`′

X`1

...

X`n

ρ1

ρn

Formally, we write the relation between reachable valuations using sp

∀`′ ∈ L \ {`0}. X`′ =
∨

(`,ρ,`′)∈E

sp(X`, ρ)
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Solving reachability equation

For program P = (V , L, `0, `e ,E ), we need to solve the following reachability
equation.

X`0 = >

∀`′ ∈ L \ {`0}. X`′ =
∨

(`,ρ,`′)∈E

sp(X`, ρ)

Our goal is to show that X`e = ⊥.

If a solution of the above equations exists with X`e = ⊥, then the program is
safe.
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Example: reachability equations

Example 8.3

Consider program:

X`0

X`1

X`e

x := 0

x < 0

x + +;

Reachability equations:

X`0 = >

X`1 = sp(X`0 , x
′ = 0) ∨ sp(X`1 , x

′ = x + 1)

X`e = sp(X`1 , x < 0 ∧ x ′ = x)

Since X`1 depends on itself, we can not compute it with some sp engine.

If somehow we have X`1 , we can compute others.
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Hoare logic and invariants
We have seen guess and check methods for verification.

I Hoare logic

I Invariant checking

In the above, we do not truly compute X`s.

We guess X`s at the cut-points and check if there is a solution of the
equation compatible with the following equations.

X`0 = >

∀`′ ∈ L \ {`0}.
∨

(`,ρ,`′)∈E

sp(X`, ρ)⇒X`′

such that X`e = ⊥.

Exercise 8.1
Write the reachability equation using wp

Not equality but
implication
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What if we want to compute X without guessing?

Let us try to avoid guessing and compute X .

We need to collect the reachable valuations.
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Reachability as fixed point equation
For each `′ ∈ L, consider the following function F`′ where X is input and
return a set of valuations.

F`′(X ) = X`′︸︷︷︸
known reaching valuations in X

∨
∨

(`,ρ,`′)∈E

sp(X`, ρ)

︸ ︷︷ ︸
more reaching valuations due to neighbours

Now, let us define the following function.

F (X ) = [F`0(X ),F`1(X ), ....]

A fixed point of F may be the solution of the reachability problem.

Exercise 8.2
a. Why may?
b. Give the least fixed point of F?
c. Give the greatest fixed point of F?
d. Are the above fixed points are solutions of the reachability?
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A specific fixed point

We are interested in a specific fixed point such that

X`0 = >

X`e = ⊥

The least fixed point of F violated the first requirement.

The greatest fixed point of F violated the last requirement.
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Iterative fixed point computation

(source: wikipedia)

Solving x = cos(x)

Start with initial guess x = −1, keep applying cos, and hope for convergence

cos(cos(....cos(−1)...))
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Similarly we may compute fixed point iteratively

Initial assignment to variables and iteratively compute the fixed point

Let X i
` , value of X` at ith iteration. As a vector, X i ,[X i

`0
, ...]

Initially:
X 0
`0
,> and X 0

` ,⊥

for each ` 6= `0.

At kth iteration, we compute X k

∀`′ ∈ L. X k
`′ = X k−1

`′ ∨
∨

(`,ρ,`′)∈E

sp(X k−1
` , ρ)
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Convergence of fixed-point iterations

If X k = X k+1, then we say that the iterations have converged at iteration k
and we have computed the fixed point.

We can prove that the fixed point obtained by the iterative method is a least
fixed point of the following function.

F (X ) = [> ∨ F`0(X ),F`1(X ), ....]

We will get to the proof later.
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Example: Fixed-point equations

Example 8.4

Consider program:

X`0

X`1

X`e

x := 0

x < 0

x + +;

Fixed-point equations:

X`0 = X`0

X`1 = X`1 ∨ sp(X`0 , x
′ = 0) ∨ sp(X`1 , x

′ = x + 1)

X`e = X`e ∨ sp(X`1 , x < 0 ∧ x ′ = x)
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Example: Iterative fixed point with sp

Example 8.5

Consider program:

X`0

X`1

X`e

x := 0

x < 0

x + +;

Initial value:

X 0
`0

:= >
X 0
`1

:= ⊥
X 0
`e

:= ⊥

Iteration 1

X 1
`0

:= >
X 1
`1

:= X 0
`1
∨ sp(X 0

`1
, x ′ = x + 1) ∨ sp(X 0

`0
, x ′ = 0)

:= ⊥ ∨ sp(⊥, x ′ = x + 1) ∨ sp(>, x ′ = 0)
:= ⊥ ∨⊥ ∨ sp(>, x ′ = 0)
:= ⊥ ∨⊥ ∨ x = 0 := (x = 0)

X 1
`e

:= sp(X 0
`1
, x < 0 ∧ x ′ = x)

:= sp(⊥, x < 0 ∧ x ′ = x) := ⊥
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Example: Iterative fixed point with sp

Consider program:

X`0

X`1

X`e

x := 0

x < 0

x + +;

Iteration 2

X 2
`0

:= >

X 2
`1

:= X 1
`1
∨ sp(X 1

`1
, x ′ = x + 1) ∨ sp(X 1

`0
, x ′ = 0)

:= (x = 0)∨ sp(x = 0, x ′ = x + 1)∨ sp(>, x ′ = 0)
:= (x = 0 ∨ x = 1 ∨ x = 0)
:= (0 ≤ x ≤ 1)

X 2
`e

:= sp(X 1
`1
, x < 0 ∧ x ′ = x)

:= sp(x = 0, x < 0 ∧ x ′ = x) := ⊥
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Example: diverging analysis with sp(contd.)

`0

`1

`e

x := 0

x < 0

x + +;

Iterates(contd.):

X 3
`0

:= >,X 3
`1

:= (0 ≤ x ≤ 2),X 3
`e

:= ⊥
...
X n
`0

:= >,X n
`1

:= (0 ≤ x ≤ n − 1),X n
`e

:= ⊥

...will never converge

How to compute fixed point effectively?
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Abstract post sp#

Now we introduce the key method of
verification

Let us define abstract post.

sp# : Σ(V )× Σ(V ,V ′)→ Σ(V )

Abstract post must satisfy the following condition

sp(F , ρ)⇒ sp#(F , ρ)

It is up to us how we choose sp# that satisfies the above condition
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Example: abstract post

Example 8.6
Consider the following widening function

wideOne(X ) = {n + 1, n|n ∈ X}

We may define the following abstract post

sp#(F , ρ) = wideOne(sp(F , ρ))

Exercise 8.3
Apply the above abstract post on the following formulas

I sp#(x > 0, x > 1 ∧ x ′ = x)

I sp#(x > 0, x < 10 ∧ x ′ = x)

I sp#(x > 0, x ′ = x + 1)

I sp#(x < 5, x ′ = x + 1)
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Abstract Fixed point

Replace sp by sp# for faster convergence

initially: X 0
`0
, > and X 0

` , ⊥ for each ` 6= `0

and at each iteration

X k+1
`0

= >

∀`′ ∈ L \ {`0}. X k+1
`′ = X k

`′ ∨
∨

(`,ρ,`′)∈E

sp#(X k
` , ρ)

After convergence, X` will be a superset of reachable states at `.
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Example: Abstract fixed-point equation

Example 8.7

Consider program:

X`0

X`1

X`e

x := 0

x < 0

x + +;

Fixed-point equations:

X`0 = X`0

X`1 = X`1 ∨ sp#(X`0 , x
′ = 0) ∨ sp#(X`1 , x

′ = x + 1)

X`e = X`e ∨ sp#(X`1 , x < 0 ∧ x ′ = x)

Let us use the following abstract post

sp#(F , ρ) = wideOne(sp(F , ρ))

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 27

Example: Iterative fixed point with sp#

Example 8.8

Consider program:

X`0

X`1

X`e

x := 0

x < 0

x + +;

Initial value:

X 0
`0

:= >
X 0
`1

:= ⊥
X 0
`e

:= ⊥

Iteration 1

X 1
`0

:= >
X 1
`1

:= X 0
`1
∨ sp#(X 0

`1
, x ′ = x + 1) ∨ sp#(X 0

`0
, x ′ = 0)

:= ⊥ ∨ sp#(⊥, x ′ = x + 1) ∨ sp#(>, x ′ = 0)
:= ⊥ ∨⊥ ∨ 0 ≤ x ≤ 1 := 0 ≤ x ≤ 1

X 1
`e

:= sp#(X 0
`1
, x < 0 ∧ x ′ = x)

:= sp#(⊥, x < 0 ∧ x ′ = x) := ⊥

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 28

Example: Iterative fixed point with sp#

Consider program:

X`0

X`1

X`e

x := 0

x < 0

x + +;

Iteration 2

X 2
`0

:= >

X 2
`1

:= X 1
`1
∨ sp#(X 1

`1
, x ′ = x + 1) ∨ sp#(X 1

`0
, x ′ = 0)

:= (0 ≤ x ≤ 1) ∨ sp#(0 ≤ x ≤ 1, x ′ = x + 1)∨
sp#(>, x ′ = 0)

:= (0 ≤ x ≤ 1 ∨ 1 ≤ x ≤ 3 ∨ 0 ≤ x ≤ 1)
:= (0 ≤ x ≤ 3)

X 2
`e

:= sp#(X 1
`1
, x < 0 ∧ x ′ = x)

:= sp#(0 ≤ x ≤ 1, x < 0 ∧ x ′ = x) := ⊥
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Example: diverging analysis with sp#(contd.)

`0

`1

`e

x := 0

x < 0

x + +;

Iterates(contd.):

X 3
`0

:= >,X 3
`1

:= (0 ≤ x ≤ 5),X 3
`e

:= ⊥
...
X n
`0

:= >,X n
`1

:= (0 ≤ x ≤ 2n − 1),X n
`e

:= ⊥

...will never converge
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Example: another abstract post

Example 8.9
Consider the following widening function

wideAny(X ) = {n + j |n ∈ X , j ≥ 0}

Let us define the following abstract post

sp#(F , ρ) = wideAny(sp(F , ρ))

Exercise 8.4
Apply the above abstract post on the following formulas

I sp#(x > 0, x > 1 ∧ x ′ = x)

I sp#(x > 0, x < 10 ∧ x ′ = x)

I sp#(x > 0, x ′ = x + 1)

I sp#(x < 5, x ′ = x + 1)
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Example: Iterative fixed point with another sp#

Example 8.10

Now we are using sp#(F , ρ) = wideAny(sp(F , ρ))

Consider program:

X`0

X`1

X`e

x := 0

x < 0

x + +;

Initial value: usual

X 0
`0

:= >, X 0
`1

:= ⊥, X 0
`e

:= ⊥

Iteration 1

X 1
`0

:= >
X 1
`1

:= X 0
`1
∨ sp#(X 0

`1
, x ′ = x + 1) ∨ sp#(X 0

`0
, x ′ = 0)

:= ⊥ ∨ sp#(⊥, x ′ = x + 1) ∨ sp#(>, x ′ = 0)
:= ⊥ ∨⊥ ∨ 0 ≤ x := 0 ≤ x

X 1
`e

:= sp#(X 0
`1
, x < 0 ∧ x ′ = x)

:= sp#(⊥, x < 0 ∧ x ′ = x) := ⊥
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Example: Iterative fixed point with another sp#

Consider program:

X`0

X`1

X`e

x := 0

x < 0

x + +;

Iteration 2

X 2
`0

:= >

X 2
`1

:= X 1
`1
∨ sp#(X 1

`1
, x ′ = x + 1) ∨ sp#(X 1

`0
, x ′ = 0)

:= (0 ≤ x)∨sp#(0 ≤ x , x ′ = x+1)∨sp#(>, x ′ = 0)
:= (0 ≤ x ∨ 1 ≤ x ∨ 0 ≤ x)
:= (0 ≤ x)

X 2
`e

:= sp#(X 1
`1
, x < 0 ∧ x ′ = x)

:= sp#(0 ≤ x , x < 0 ∧ x ′ = x) := ⊥

We have converged. Congratulations!!

Exercise 8.5
Let wideNAny(X ) = {x − j |n ∈ X ∧ j ≥ 0}.
What will happen if we choose sp#(F , ρ) = wideNAny(sp(F , ρ))?
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How do we choose sp#?

We will learn lattice theory to guide us in choosing sp# such
that we have better guarantee of convergence.
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End of Lecture 8
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