CS615: Formal Specification and Verification of Programs 2019

Lecture 9: Lattice

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2019-09-10

Topic 9.1

Lattice theory

Partial order and poset $\Delta_X = \{(x, x) | x \in X\}$ Definition 9.1

On a set X, $\leq \subseteq X \times X$ is a partial order if

- reflexive: $\Delta_X \subseteq \leq$
- anti-symmetric: $\leq \cap \leq^{-1} \subseteq \Delta_X$
- transitive: $\leq \circ \leq \subseteq \leq$

We will use $x \leq y$ to denote $(x, y) \in \leq$. Let $x < y \triangleq (x \leq y \land x \neq y)$. Example 0.1

Example 9.1

000

Is the following a partial order on $\{a, b, c\}$?

$$\leq = \{(a, a), (b, b), (c, c)\}$$

$$\leq = \emptyset$$

$$\leq = \{(a, a), (b, b), (c, c), (a, b)\}$$

$$\leq = \{(a, a), (b, b), (c, c), (a, b), (b, a)\}$$

$$\leq = \{(a, a), (b, b), (c, c), (a, b), (b, c)\}$$

Poset

Definition 9.2 A poset (X, \leq) is a set equipped with partial order \leq on X

Example 9.2

Is the following a partial order?

- ▶ (ℕ,≤)
- $\blacktriangleright (\mathbb{N} \times \mathbb{N}, \{((a, b), (c, d)) | a \leq c\})$
- $\blacktriangleright (\mathbb{N} \times \mathbb{N}, \{ ((a, b), (c, d)) | a \le c \land b \le d \})$
- $\blacktriangleright (\{a, b, c\}, \{(a, a), (b, b), (c, c), (a, b), (a, c)\})$

Covering relation

Definition 9.3 The covering relation \triangleleft for poset (X, \leq) is

$$x \lessdot y \triangleq (x \lt y) \land \neg (\exists z.x \lt z \land z \lt y)$$

In other words, \lessdot contains only immediate parents and has no self-edges.

Example 9.3

Consider poset ($\{a, b, c, d, e\}, \leq$), where

 $\leq = \{(a, a), (b, b), (c, c), (d, d), (e, e), (a, b), (a, c), (a, d), (b, e), (c, e), (d, e), (a, e)\}$

Therefore,

000

$$< = \{ (a, b), (a, c), (a, d), (b, e), (c, e), (d, e) \}$$

Hasse diagrams

We draw posets (X, \leq) as DAG. Nodes are from X and edges are from \ll .

DAG will be vertically aligned, i.e., if there is an edge between x and y, and x is located below y then $x \leq y$.

Example 9.4

Let us consider again our previous poset ($\{a, b, c, d, e\}, \leq$), where

$$< = \{ (a, b), (a, c), (a, d), (b, e), (c, e), (d, e) \}$$

Nodes at same level are incomparable.

Chain and antichain

Definition 9.4 For a poset (X, \leq) , $C \subseteq X$ is chain if $\forall x, y \in C$. $x \leq y \lor y \leq x$ Definition 9.5

For a poset (X, \leq) , $C \subseteq X$ is antichain if $\forall x, y \in C$. $x \leq y \Rightarrow y = x$

Example 9.5



Ascending/descending chain condition

Definition 9.6 A poset (X, \leq) satisfies ascending chain condition if for any sequence $x_0 \leq x_1 \leq x_2 \leq ..., \exists k. \forall n > k \ x_k = x_n$

Symmetrically, we define descending chain condition

Definition 9.7 A poset (X, \leq) is called well ordered if it satisfies descending chain condition

Example 9.6 (\mathbb{N}, \leq) satisfies descending chain condition but not ascending chain condition.

Exercise 9.1 Prove (X, \leq) has no infinite chains if it satisfies both ascending and descending chain condition

Minimal and Maximal elements

Definition 9.8 For poset (X, \leq) and $S \subseteq X$, minimal $(S) \triangleq \{x \in S | \neg \exists y \in S. y < x\}$

 $maximal(S) \triangleq \{x \in S | \neg \exists y \in S. \ y > x\}$

Exercise 9.2 Consider poset $\mathbb{N}^2 = \{\mathbb{N} \times \mathbb{N}, \{((a, b), (c, d)) | a \le c \land b \le d\}\}$

Give the following sets

• $minimal(\mathbb{N} \times \mathbb{N}) =$

• $minimal(\{(a, b)|b \ge 2 \lor (a \ge 1 \land b \ge 1)\}) =$

Exercise 9.3

Give a subset S of the above poset such that |minimal(S)| is infinite.

Minimum and maximum

Definition 9.9 For poset (X, \leq) and $S \subseteq X$, $min(S) \triangleq x$ if $\{x\} = minimal(S) //min(S)$ may not exist

 $max(S) \triangleq x \text{ if } \{x\} = maximal(S)$

Exercise 9.4 Consider poset \mathbb{N}^2

000

Give the following sets

- $minimum(\mathbb{N} \times \mathbb{N}) =$
- $minimum(\{(a, b)|b \ge 2 \lor (a \ge 1 \land b \ge 1)\}) =$

Top and bottom

Consider poset (X, \leq)

If min(X) exists, we denote min(X) by \perp

If max(X) exists, we denote max(X) by op

```
Example 9.7
For poset (\mathbb{N}, \leq), min(\mathbb{N}) = 0.
```

Exercise 9.5

Give a poset that has no minimum?

Upper bound and lower bound

Definition 9.10 For poset (X, \leq) and $S \subseteq X$,

- $x \in X$ is upper bound of S if $\forall y \in S$. $y \leq x$
- $x \in X$ is lower bound of S if $\forall y \in S$. $x \leq y$

Exercise 9.6

Is the following lower bound of $\{(a, b)|b \ge 2 \lor (a \ge 1 \land b \ge 1)\} \subset \mathbb{N}^2$?

- ▶ (0,0)
- ► (0,2)
- ▶ (1,1)
- ▶ (0,1)

Least upper bound and greatest upper bound

Definition 9.11

 $x \in X$ is least upper bound(lub) of S if x is upper bound of S and

$$\forall u. \ (\forall y \in S. \ y \leq u) \Rightarrow x \leq u$$

lub is usually denoted by \lor , \sqcup (called join).

Definition 9.12 $x \in X$ is greatest lower bound(glb) of S if x is lower bound of S and

$$\forall u. (\forall y \in S. \ u \leq y) \Rightarrow u \leq x$$

lub is usually denoted by \land, \sqcap (called meet).

Note: lub and glb may not exist.

Example:

Least upper bound(\Box) and greatest lower bound(\Box)

Exercise 9.7

Is the following \sqcap of $\{(a, b) | b \ge 2 \lor (a \ge 1 \land b \ge 1)\} \subset \mathbb{N}^2$?

- ▶ (0,0)
- ► (0,2)
- ▶ (1,1)
- ▶ (0,1)

Exercise 9.8 Give \Box / \Box for the following subsets of poset \mathbb{N}^2 .

- $\blacktriangleright \ \sqcup\{(a,b)|a^2+b^2\leq 16\}$
- $\blacktriangleright \ \sqcup\{(a,b)|a+2b\leq 20\}$
- $\blacktriangleright \ \sqcap\{(a,b)|a+2b \ge 20\}$

Uniqueness of lub an glb

Note that the uniqueness is not obvious by the definition of \hdots

Theorem 9.1

For poset (X, \leq) and $S \subseteq X$, if $\sqcup S$ exists then it is unique.

Proof.

000

- Suppose x and y are $\sqcup S$.
- By definition of \Box , x and y both are upper bounds of S.
- Since x is upper bound and y is $\sqcup S$, therefore $y \le x$.
- Symmetrically, $x \leq y$.
- Due to anti-symmetry, x = y.

Therefore, \sqcup and \sqcap are partial functions : $2^X \hookrightarrow X$

- If $S = \{x, y\}$, we will write $x \sqcup y$
- The infix usage usually means, lub of finite elements

Semi-lattice

Definition 9.13 A join semi-lattice (X, \sqsubseteq, \sqcup) is a poset (X, \sqsubseteq) such that

 $\forall x, y \in X. x \sqcup y \text{ exists.}$

Definition 9.14 A meet semi-lattice (X, \sqsubseteq, \sqcap) is a poset (X, \sqsubseteq) such that

 $\forall x, y \in X. x \sqcap y \text{ exists.}$

Example 9.8

 \mathbb{N}^2 is a meet semi-lattice.

Exercise 9.9

a. Is \mathbb{N}^2 is a join semi-lattice?

b. Give a poset that is not a meet semi-lattice?

Properties of semi-lattice

Theorem 9.2 A join semi-lattice (X, \sqsubseteq, \sqcup) satisfies

(associativity) (commutativity) (idempotence)

Exercise 9.10 Prove 9.2

Exercise 9.11 For a join semi-lattice (X, \sqsubseteq, \sqcup) , show that $\sqcup S$ exists for each finite set $S \subseteq X$.

Equivalent definition of semi-lattice

Theorem 9.3 Let X be a set with function $\sqcup : X \times X \to X$ satisfying

 $(a \sqcup b) \sqcup c = a \sqcup (b \sqcup c),$ $(a \sqcup b) = (b \sqcup a),$ and $(a \sqcup a) = a.$

Let $a \sqsubseteq b \triangleq (a \sqcup b) = b$.

Then, (X, \sqsubseteq, \sqcup) is a join semi-lattice.

Proof.

We need to show that \Box is a partial order, i.e.,

- Is reflexive.
- Is transitive, and
- Is anti-symmetric.

We also	need to show \sqcup is lub with respect to \sqsubseteq .		
Commentary: Please read the theorem carefully. It says that the three conditions characterizes semi-lattices.			
© () \$0	CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITE	8, India 18	

Equivalent definition of semi-lattice II

- Proof(contd.)
- claim: \Box is reflexive
 - $a \sqsubseteq a$ holds because $(a \sqcup a) = a$.

claim: \Box is transitive

1. Assume $a \sqsubseteq b$ and $b \sqsubseteq c$

2. def of \sqsubseteq ,

$$(a \sqcup b) = b$$
 and $(b \sqcup c) = c$.

- 3. By substitution, $((a \sqcup b) \sqcup c) = c$.
- 4. Due to associativity, $a \sqcup (b \sqcup c) = c$.
- 5. Due to 4, $a \sqcup c = c_{(why?)}$
- 6. Therefore $a \sqsubseteq c$.

Equivalent definition of semi-lattice III

- Proof(contd.)
- claim: \sqsubseteq is anti-symmetric
 - 1. Assume $a \sqsubseteq b$ and $b \sqsubseteq a$
 - 2. By def of \sqsubseteq , $(a \sqcup b) = b$ and $(b \sqcup a) = a$
 - 3. By commutativity, a = b
- claim: ⊔ is lub

000

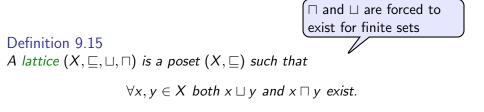
- 1. $b \sqsubseteq a \sqcup b$, because $a \sqcup (a \sqcup b) = (a \sqcup a) \sqcup b = a \sqcup b$.
- 2. Similarly, $a \sqsubseteq a \sqcup b$.
- 3. Let x be such that $a \sqsubseteq x$ and $b \sqsubseteq x$.
- 4. Therefore, $(a \sqcup x) = x = (b \sqcup x)$
- 5. After substitution, $(a \sqcup (b \sqcup x)) = x$
- 6. Apply associativity, $((a \sqcup b) \sqcup x) = x$, which is $(a \sqcup b) \sqsubseteq x$

7. Therefore,
$$a \sqcup b = lub(\{a, b\})$$

Notational redundancy in semi-lattice

- We write (X, \sqsubseteq, \sqcap) to describe a semi-lattice.
- Due to the previous theorem, if we know something is a semi-lattice, we need not write both the second and third component.
- One defines the other.
- We may only write (X, \sqcap) .

Lattice



Exercise 9.12 Is \mathbb{N}^2 a lattice?

Properties of lattice

Properties of lattice

1. $(a \sqcap b) \sqcap c = a \sqcap (b \sqcap c)$	(associativity)
2. $(a \sqcup b) \sqcup c = a \sqcup (b \sqcup c)$	
3. $(a \sqcap b) = (b \sqcap a)$	(commutativity)
4. $(a \sqcup b) = (b \sqcup a)$	
5. $(a \sqcap a) = a$	(idempotence)
6. $(a \sqcup a) = a)$	
7. $a\sqcap(a\sqcup b)=a$	(absorption)
8. $b \sqcup (a \sqcap b) = b$	

Properties 1-6 were already present in semi-lattices.

The above properties are axiomatization of lattice

Observe that distributivity is missing!!!

Exercise

Exercise 9.13 a. Prove absorption.

 $a \sqcap (a \sqcup b) = a$

b. Show that semi-lattices $(X, \sqsubseteq_1, \sqcup)$ and $(X, \sqsubseteq_2, \sqcap)$, and absorption properties imply $(X, \sqsubseteq_1, \sqcup, \sqcap)$ is a lattice.

Due to the above exercise, the properties 1-8 characterizes lattice.

Complete partial order/lattice

Definition 9.16 A complete partial order(cpo) is a poset (X, \sqsubseteq) such that every increasing chain in X has a lub in X

Definition 9.17 A complete lattice is a poset (X, \sqsubseteq) such that for all $S \subseteq X$ has $\sqcup S$ in X.

Example 9.9 \mathbb{N}^2 is not a complete lattice.

Complete lattice properties

Theorem 9.4

- Let (X, \sqsubseteq) be a complete lattice.
- a. complete lattice has \perp
- b. complete lattice has \top

Proof.

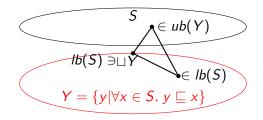
- a. $\bot = \sqcup \emptyset_{(why?)}$
- b. $\bot = \sqcup X_{(why?)}$

Complete lattice properties II

Theorem 9.5 Let (X, \sqsubseteq) be a complete lattice. For all $S \subseteq X$, $\sqcap S$ exists.

Proof.

claim: $\Box S = \sqcup \{ y | \forall x \in S. y \sqsubseteq x \}$



Exercise: complete lattices

Exercise 9.14

- a. Finite lattices are complete
- b. Show if $(X, \sqsubseteq, \sqcup, \sqcap)$ satisfies ACC and has \bot then it is a complete lattice.

Moore family

Definition 9.18

For a poset (X, \sqsubseteq) with \top element, a moore family $M \subseteq X$ is such that

- \blacktriangleright $\top \in M$
- ▶ $\forall S \subseteq M$. $\sqcap S$ exists and $\sqcap S \in M$

Theorem 9.6

Let (X, \leq) be a poset with \top element. If $M \subseteq X$ is a moore family then $(M, \subseteq, \top, \sqcap M)$ is a complete lattice.

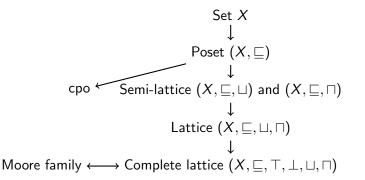
Proof.

- 1. (X, \leq) is poset then (M, \leq) is a poset
- 2. Since $\forall S \subseteq M$. $\sqcap S$ exists, M is a complete lattice due to Theorem 9.4.

Hierarchy of objects

000

We have seen the following objects



Topic 9.2

Exercises

Exercise 9.15

Show inverse of a partial order is a partial order.

Exercise 9.16

Let (X, \leq) be a partially ordered set. Let $S : A \hookrightarrow A$ be a partial function, such that a < b iff $S(a) \leq b$ for each $a \in dom(S)$ and $b \in A$. Show that there is a total order \sqsubseteq that is extension of \leq and $a \sqsubset b$ iff $S(a) \sqsubseteq b$ for each $a \in dom(S)$ and $b \in A$.

End of Lecture 9

