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Topic 12.1

Galois connection
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Galois connection

Definition 12.1
For posets (X ,≤) and (Y ,v), a pair of maps (α, γ) of maps α : X → Y and
γ : Y → X is a Galois connection if

∀x ∈ X∀y ∈ Y . α(x) v y ⇔ x ≤ γ(y)

which is usually written

(X ,≤) −−−→←−−−α
γ

(Y ,v)

α and γ are called upper and lower adjoints respectively.

X Y

x α(x)
α

yγ(y)
γ

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 4

Example: Galois connection

Example 12.1

The following is a Galois connection.

(X ,≤) −−−→←−−−α
γ

(Y ,v)

X Y
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Exercise: not Galois

Exercise 12.1
Why the following mappings do not satisfy the condition of Galois
connection?

(X ,≤) −−−→←−−−α
γ

(Y ,v)

X Y
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Unique adjoints

Theorem 12.1
In (X ,≤) −−−→←−−−α

γ
(Y ,v), α uniquely defines γ and vice-versa.

α(x) = u{y |x ≤ γ(y)} γ(y) = ∨{x |α(x) v y}

Proof.

I By definition of meet, u{y |α(x) v y} exists(why?) and

α(x) = u{y |α(x) v y}

I By def. of Galois connection, we may replace the set definition.

α(x) = u{y |x ≤ γ(y)}

Symmetrically for γ(x).
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Exercise: unique adjoints

Exercise 12.2
Construct γ for the following α

X Y

Exercise 12.3
Give an example α such that there is no γ?
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Exercise : unique adjoints II

Exercise 12.4
Let us suppose {x |α(x) v y} is empty for some x. What will be γ(x)? Will
α and γ form Galois connection?

Exercise 12.5
Prove or disprove: if α is monotonic, γ is monotonic.

Exercise 12.6
In (X ,≤) −−−→←−−−α

γ
(X ,≤), if α is an upper closure operator. Give γ?
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Properties of Galois connection:
extensive/reductive compose

Theorem 12.2
Let (X ,≤) −−−→←−−−α

γ
(Y ,v) then

1. ∀x ∈ X . x ≤ γ◦α(x) (γ◦α is extensive)

2. ∀y ∈ Y . α◦γ(y) v y (α◦γ is reductive)

Proof.
claim: γ◦α is extensive

1. α(x) v α(x)

2. Due to the def. of connection, x ≤ γ◦α(x).

3. γ◦α is extensive.

Symmetrically, α◦γ is reductive.
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Exercise: compose

Exercise 12.7
Consider the following Galois connection.

(X ,≤) −−−→←−−−α
γ

(Y ,v)

Draw γ◦α and α◦γ

X Y
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Properties of Galois connection : monotone

Theorem 12.3
Let (X ,≤) −−−→←−−−α

γ
(Y ,v) then

1. α is monotone

2. γ is monotone

Proof.
claim: α is monotone

1. Let x , x ′ ∈ X . Assume, x ≤ x ′.

2. Since γ◦α is extensive, x ≤ γ◦α(x ′).

3. Due to the def. of connection, α(x) v α(x ′).

Symmetrically, γ is monotone.
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Characterization of Galois connection

Theorem 12.4
Let (X ,≤) and (Y ,v) be posets. Let α : X → Y and γ : Y → X such that

1. γ◦α is extensive

2. α◦γ is reductive

3. α is monotone

4. γ is monotone

Then,
(X ,≤) −−−→←−−−α

γ
(Y ,v)

Proof.
Let x ∈ X and y ∈ Y .

1. Assume α(x) v y

2. Since γ is monotone, γ◦α(x) ≤ γ(y)

3. Since γ◦α is extensive, x ≤ γ(y).

The other direction is also symmetric.
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Exercise: violate characterization

Exercise 12.8
Let (X ,≤) and (Y ,v) be posets. For each subset of the conditions of lhs of
theorem 12.4, give an example of α : X → Y and γ : Y → X such that
exactly the condition in subset are satisfied and α and γ do not form Galois
connection.
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More properties of Galois connection

Theorem 12.5
Let (X ,≤) −−−→←−−−α

γ
(Y ,v) then

1. α◦γ◦α = α

2. γ◦α◦γ = γ

Proof.

1. Since γ◦α is extensive, x ≤ γ◦α(x).

2. Since α is monotone, α(x) v α◦γ◦α(x).

3. Since α◦γ is reductive, α◦γ◦α(x) v α(x).

Therefore, α◦γ◦α = α.

Symmetrically, γ◦α◦γ = γ.

Exercise 12.9
a. γ◦α is an upper-closure operator.
b. α◦γ is a lower-closure operator.
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Onto/into Galois connections

Theorem 12.6
Let (X ,≤) −−−→←−−−α

γ
(Y ,v) then

1. α is onto ⇔ γ is one-to-one ⇔ α◦γ = ∆X

2. γ is onto ⇔ α is one-to-one ⇔ γ◦α = ∆Y

Proof.
Assume α is onto.
claim: γ is one-to-one

1. Let y , y ′ ∈ Y such that γ(y) = γ(y ′).

2. Since α is onto, there are x , x ′ ∈ X such that
α(x) = y and α(x ′) = y ′

3. Therefore, γ◦α(x) = γ◦α(x ′)

4. Since γ◦α is extensive, x ≤ γ◦α(x ′).

5. Due to the def. of connection, α(x) v α(x ′).

6. Therefore, y v y ′. Symmetrically, y ′ v y

7. Therefore, y = y ′ ...

Y
y

y ′

X

x ′

x
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Onto/into Galois connections

Proof.
Assume γ is one-to-one.
claim: α◦γ = ∆X

1. We know γ◦α◦γ = γ.

2. Let y ∈ Y . So, γ◦α◦γ(y) = γ(y)

3. After rewrite, γ(α◦γ(y)) = γ(y)

4. Since γ is one-to-one, α◦γ(y) = y

α◦γ = ∆X

claim: α is onto

1. For each y ∈ Y , we have α◦γ(y) = y .

2. Therefore, for each y , there is an x ∈ X such that α(x) = y .
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Topic 12.2

Abstraction and Galois connection
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Abstract interpretation

Definition 12.2
Concrete objects of analysis or domain — C = p(QV )

I not all sets are concisely representable in computer

I too (infinitely) many of them

Definition 12.3
Abstract domain — only simple to represent sets D ⊆ C

I D should allow efficient algorithms for desired operations

I far fewer, but possibly infinitely many

I Sets in C \ D are not precisely representable in D

How to use D to capture semantics of a program?

Note: C naturally forms a complete lattice

(C ,⊆, ∅,QV ,∪,∩)
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Abstracting and concretization function

Definition 12.4
An abstraction function α : C → D maps each set c ∈ C to α(c) ⊇ c.

Definition 12.5
A concretization function γ : D → C maps each set d ∈ D to d.

The above definitions become more meaningful, if we think of D as the
representation of sets on a computer instead of the sets themselves.

Lemma 12.1
D contains QV

This is not the most general definition!
Any partial order can replace ⊇.
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Example: abstraction – intervals

Example 12.2

Let us assume V = {x}

Consider D = {⊥,>} ∪ {[a, b]|a, b ∈ Q}.

Ordering among elements of D are defined as follows:
⊥ v [a, b] v > and [a1, b1] v [a2, b2]⇔ a2 ≤ a1 ∧ b1 ≤ b2

Let α(c) , [inf (c), sup(c)] and γ([a, b]) , [a, b]

Exercise 12.10
Give the following value
I α({0, 3, 5}) =

I α((0, 3)) =

I α([0, 3] ∪ [5, 6]) =

I α({1/x |x ≥ 1}) =

Exercise 12.11
Is D a complete lattice?

D forms a lattice.
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Choices for α: minimal abstraction principle

It is always better to choose smaller abstraction.

Choose α(c) as small as possible, therefore more precise abstraction

Therefore, if d ∈ D then α(d) = d and α must be monotonic

There may be multiple minimal abstractions.

Even worse, there may be no minimal approximation,
e. g., approximating a circle with a polytope
(In this lecture, we assume minimal abstractions exist.)
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Properties of D, α, and γ
Now on we will ignore that D is set of sets. We assume D is a topped poset

(D,v,>)

I α is monotone (due to minimality principle)

I γ is monotone

I c ⊆ γ◦α(c)

I α◦γ(d) v d (due to minimality principle)

Therefore,
(C ,⊆) −−−→←−−−α

γ
(D,v)

We always choose D, α, and γ such that the above Galois connection holds
and usually referred

abstract domain.
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Onto abstraction

Due to the principle of minimal abstraction, α must be onto

∀p ∈ D. α(p) = p (assuming D ⊆ C )

Therefore, one-to-one γ

However, in practice we may relax the onto condition on α. A set can be
represented multiple ways on a computer.

Therefore, multiple abstract objects may have same concretization.

Example 12.3

BDDs and clauses both can be used to represent set of states.
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Topic 12.3

Examples of abstract domains
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Sign abstract domain

Sign abstraction
C = p(Q)
D = {+,−, 0,⊥,>}
α(p) = + if min(p) > 0
α(p) = − if max(p) < 0
α(0) = 0
α(∅) = ⊥
α(p) = >, otherwise

>

0+ −

⊥

Exercise 12.12
Give the following value
I α({0.1, 0.3}) =

I α({0}) =

I α({0.1, 0}) =

I α({−1/x |x ≥ 1}) =
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Congruence abstraction domain

A domain may be parameterized.

Congruence abstraction

For some n ∈ N,
C = Z
D = {0, . . . , n − 1}
α(c) = c mod n

Exercise 12.13
Give the following value for n = 11
I α(6) =

I α(−1) =

I α(3000) =

I α({0, 4, 5}) =

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 27

Cartesian predicate abstraction
Let V be a vector of variables. Cartesian predicate abstraction is defined by a
set of predicates

P = {p1, . . . , pn}

over variables V . Naturally, C = p(Q|V |)

Let D = ⊥ ∪ p(P). // ∅ represents >

Ordering over the elements of S1, S2 ∈ D is as follows.

⊥ v S1 v S2 if S2 ⊆ S1

Example 12.4

Let V = {x, y}. Let P = {x ≤ 1,−x− y ≤ −1, y ≤ 5}

Exercise 12.14
Does the following hold?
I {x ≤ 1} v {x ≤ 1,−x− y ≤ −1}
I {x ≤ 1,−x− y ≤ −1} v {x ≤ 1}

I {x ≤ 1,−x− y ≤ −1} v ∅
I {x ≤ 1} v ⊥
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Cartesian predicate abstraction II

Let us define the abstraction and concretization functions

α(c) = {p ∈ P|c ⇒ p} γ(S) =
∧
S

Example 12.5

Let V = {x, y} and P = {x ≤ 1,−x− y ≤ −1, y ≤ 5}.

α({(0, 0)}) = {x ≤ 1, y ≤ 5}
α((x− 1)2 + (y− 3)2 = 1) ={−x− y ≤ −1, y ≤ 5}

Exercise 12.15
Give the following value
I α({(8, 8)}) =

I α({(0, 0), (8, 8)}) =

I α({(0, 2)}) =

I α(∅) =
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Topic 12.4

Some properties of abstract domains
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Best approximation

Definition 12.6
α performs best approximation if ∀c ∈ C , d ∈ D. c ⊆ γ(d)⇒ α(c) v d .

The above is one of the Galois conditions. So, α(c) = u{d ∈ D|c ⊆ γ(d)}.

Theorem 12.7
An abstract domain is complete lattice iff best approximations exists.

Proof.
If abstract domain is complete lattice then u{d ∈ D|c ⊆ γ(d)} always exists.
For the other direction, consider S ⊆ D.

1. Since
⋂
γ(S) and best approximations exists, α(

⋂
γ(S)) = u{d |

⋂
γ(S) ⊆ γ(d)}

2. (∀c ∈ S . c ∈ {d |
⋂
γ(S) ⊆ γ(d)}) ⇒ α(

⋂
γ(S)) ∈ lb(S)

3. Assume d ∈ lb(S). Due to monotone γ, γ(d) ∈ lb(γ(S)). Therefore, γ(d) ⊆
⋂
γ(S)

4. Due to monotone α, α◦γ(d) v α(
⋂
γ(S))

5. Since α◦γ = 1D , d v α(
⋂
γ(S)). Therefore,α(

⋂
γ(S)) = uS

Note: If we do not have best approximation then we are breaking conditions of Galois

connection, namely monotone α.
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End of Lecture 12
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