# CS615: Formal Specification and Verification of Programs 2019

#### Lecture 12: Galois connection and abstraction

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2019-09-27



## Topic 12.1

#### Galois connection

#### Galois connection

#### Definition 12.1

For posets  $(X, \leq)$  and  $(Y, \sqsubseteq)$ , a pair of maps  $(\alpha, \gamma)$  of maps  $\alpha : X \to Y$  and  $\gamma : Y \to X$  is a Galois connection if

$$\forall x \in X \forall y \in Y. \ \alpha(x) \sqsubseteq y \Leftrightarrow x \leq \gamma(y)$$

which is usually written

$$(X, \leq) \xrightarrow{\gamma} (Y, \sqsubseteq)$$

 $\alpha$  and  $\gamma$  are called upper and lower adjoints respectively.





## Example: Galois connection

Example 12.1

The following is a Galois connection.





## Exercise: not Galois

Exercise 12.1

Why the following mappings do not satisfy the condition of Galois connection?





## Unique adjoints

Theorem 12.1  
In 
$$(X, \leq) \xrightarrow{\gamma} (Y, \sqsubseteq)$$
,  $\alpha$  uniquely defines  $\gamma$  and vice-versa.  
 $\alpha(x) = \sqcap \{y | x \leq \gamma(y)\}$   $\gamma(y) = \lor \{x | \alpha(x) \sqsubseteq y\}$ 

Proof.

• By definition of meet, 
$$\sqcap \{y | \alpha(x) \sqsubseteq y\}$$
 exists<sub>(why?)</sub> and  
 $\alpha(x) = \sqcap \{y | \alpha(x) \sqsubseteq y\}$ 

▶ By def. of Galois connection, we may replace the set definition.

$$\alpha(x) = \sqcap \{ y | x \le \gamma(y) \}$$

6

Symmetrically for  $\gamma(x)$ .

Exercise: unique adjoints

Exercise 12.2 Construct  $\gamma$  for the following  $\alpha$ 



#### Exercise 12.3

Give an example  $\alpha$  such that there is no  $\gamma$ ?  $\Theta$ 

CS615: Formal Specification and Verification of Programs 2019

Instructor: Ashutosh Gupta

IITB, India

#### Exercise : unique adjoints II

#### Exercise 12.4

Let us suppose  $\{x | \alpha(x) \sqsubseteq y\}$  is empty for some x. What will be  $\gamma(x)$ ? Will  $\alpha$  and  $\gamma$  form Galois connection?

#### Exercise 12.5 Prove or disprove: if $\alpha$ is monotonic, $\gamma$ is monotonic.

Exercise 12.6 In  $(X, \leq) \xrightarrow{\gamma} (X, \leq)$ , if  $\alpha$  is an upper closure operator. Give  $\gamma$ ?



Properties of Galois connection: extensive/reductive compose

Theorem 12.2  
Let 
$$(X, \leq) \xrightarrow{\gamma} (Y, \sqsubseteq)$$
 then  
1.  $\forall x \in X. \ x \leq \gamma \circ \alpha(x)$   
2.  $\forall y \in Y. \ \alpha \circ \gamma(y) \sqsubseteq y$ 

#### Proof.

000

claim:  $\gamma \circ \alpha$  is extensive

1. 
$$\alpha(x) \sqsubseteq \alpha(x)$$

- 2. Due to the def. of connection,  $x \leq \gamma \circ \alpha(x)$ .
- 3.  $\gamma \circ \alpha$  is extensive.

Symmetrically,  $\alpha \circ \gamma$  is reductive.

 $(\gamma \circ \alpha \text{ is extensive})$  $(\alpha \circ \gamma \text{ is reductive})$ 

#### Exercise: compose

Exercise 12.7 Consider the following Galois connection.

$$(X,\leq) \stackrel{\gamma}{\underset{\alpha}{\longleftarrow}} (Y,\sqsubseteq)$$

Draw  $\gamma \circ \alpha$  and  $\alpha \circ \gamma$ 





#### Properties of Galois connection : monotone

Theorem 12.3  
Let 
$$(X, \leq) \xrightarrow{\gamma}_{\alpha} (Y, \sqsubseteq)$$
 then  
1.  $\alpha$  is monotone

2.  $\gamma$  is monotone

#### Proof.

000

claim:  $\alpha$  is monotone

- 1. Let  $x, x' \in X$ . Assume,  $x \leq x'$ .
- 2. Since  $\gamma \circ \alpha$  is extensive,  $x \leq \gamma \circ \alpha(x')$ .
- 3. Due to the def. of connection,  $\alpha(x) \sqsubseteq \alpha(x')$ .

Symmetrically,  $\gamma$  is monotone.

## Characterization of Galois connection

Theorem 12.4 Let  $(X, \leq)$  and  $(Y, \subseteq)$  be posets. Let  $\alpha : X \to Y$  and  $\gamma : Y \to X$  such that

- 1.  $\gamma \circ \alpha$  is extensive
- 2.  $\alpha \circ \gamma$  is reductive
- 3.  $\alpha$  is monotone
- 4.  $\gamma$  is monotone

Then.

$$(X, \leq) \xrightarrow{\gamma} (Y, \sqsubseteq)$$

Proof.

Let  $x \in X$  and  $y \in Y$ .

- 1. Assume  $\alpha(x) \sqsubseteq y$
- 2. Since  $\gamma$  is monotone,  $\gamma \circ \alpha(x) \leq \gamma(y)$
- 3. Since  $\gamma \circ \alpha$  is extensive,  $x \leq \gamma(y)$ .

The other direction is also symmetric.  $\Theta \oplus \Theta$ 

#### Exercise: violate characterization

#### Exercise 12.8

Let  $(X, \leq)$  and  $(Y, \sqsubseteq)$  be posets. For each subset of the conditions of lhs of theorem 12.4, give an example of  $\alpha : X \to Y$  and  $\gamma : Y \to X$  such that exactly the condition in subset are satisfied and  $\alpha$  and  $\gamma$  do not form Galois connection.

## More properties of Galois connection

Theorem 12.5 Let  $(X, \leq) \xrightarrow{\bar{\gamma}} (Y, \sqsubseteq)$  then 1.  $\alpha \circ \gamma \circ \alpha = \alpha$ 2.  $\gamma \circ \alpha \circ \gamma = \gamma$ 

#### Proof.

- 1. Since  $\gamma \circ \alpha$  is extensive,  $x < \gamma \circ \alpha(x)$ .
- 2. Since  $\alpha$  is monotone,  $\alpha(x) \sqsubseteq \alpha \circ \gamma \circ \alpha(x)$ .
- 3. Since  $\alpha \circ \gamma$  is reductive,  $\alpha \circ \gamma \circ \alpha(x) \sqsubseteq \alpha(x)$ .

Therefore,  $\alpha \circ \gamma \circ \alpha = \alpha$ .

Symmetrically,  $\gamma \circ \alpha \circ \gamma = \gamma$ .

#### Exercise 12.9

- a.  $\gamma \circ \alpha$  is an upper-closure operator.
- b.  $\alpha \circ \gamma$  is a lower-closure operator.  $\Theta \oplus \Theta$

CS615: Formal Specification and Verification of Programs 2019

Instructor: Ashutosh Gupta

IITB. India

## Onto/into Galois connections

Theorem 12.6 Let  $(X, \leq) \xrightarrow{\gamma} (Y, \sqsubseteq)$  then 1.  $\alpha$  is onto  $\Leftrightarrow \gamma$  is one-to-one  $\Leftrightarrow \alpha \circ \gamma = \Delta_X$ 2.  $\gamma$  is onto  $\Leftrightarrow \alpha$  is one-to-one  $\Leftrightarrow \gamma \circ \alpha = \Delta_Y$ 

#### Proof.

 $\Theta$ 

Assume  $\alpha$  is onto.

claim:  $\gamma$  is one-to-one

Therefore, y = y'

1. Let  $y, y' \in Y$  such that  $\gamma(y) = \gamma(y')$ .

2. Since  $\alpha$  is onto, there are  $x, x' \in X$  such that  $\alpha(x) = y$  and  $\alpha(x') = y'$ 

3. Therefore, 
$$\gamma \circ \alpha(x) = \gamma \circ \alpha(x')$$

- 4. Since  $\gamma \circ \alpha$  is extensive,  $x \leq \gamma \circ \alpha(x')$ .
- 5. Due to the def. of connection,  $\alpha(x) \sqsubseteq \alpha(x')$ .
- 6. Therefore,  $y \sqsubseteq y'$ . Symmetrically,  $y' \sqsubseteq y$



## Onto/into Galois connections

#### Proof.

Assume  $\gamma$  is one-to-one.

- claim:  $\alpha \circ \gamma = \Delta_X$ 
  - 1. We know  $\gamma \circ \alpha \circ \gamma = \gamma$ .
  - 2. Let  $y \in Y$ . So,  $\gamma \circ \alpha \circ \gamma(y) = \gamma(y)$
  - 3. After rewrite,  $\gamma(\alpha \circ \gamma(y)) = \gamma(y)$
  - 4. Since  $\gamma$  is one-to-one,  $\alpha \circ \gamma(y) = y$

 $\alpha \circ \gamma = \Delta_X$ claim:  $\alpha$  is onto

000

- 1. For each  $y \in Y$ , we have  $\alpha \circ \gamma(y) = y$ .
- 2. Therefore, for each y, there is an  $x \in X$  such that  $\alpha(x) = y$ .

## Topic 12.2

#### Abstraction and Galois connection



## Abstract interpretation

Definition 12.2

Concrete <u>objects of analysis</u> or domain —  $C = \mathfrak{p}(\mathbb{Q}^V)$ 

- not all sets are concisely representable in computer
- too (infinitely) many of them

Definition 12.3

Abstract domain — only simple to represent sets  $D \subseteq C$ 

- D should allow efficient algorithms for desired operations
- far fewer, but possibly infinitely many
- Sets in  $C \setminus D$  are not precisely representable in D

How to use D to capture semantics of a program?

Note: C naturally forms a complete lattice

$$(C, \subseteq, \emptyset, \mathbb{Q}^V, \cup, \cap)$$

#### Abstracting and concretization function

This is not the most general definition! Any partial order can replace ⊇.

Definition 12.4

An abstraction function  $\alpha : C \to D$  maps each set  $c \in C$  to  $\alpha(c) \supseteq c$ .

Definition 12.5 A concretization function  $\gamma : D \to C$  maps each set  $d \in D$  to d.

The above definitions become more meaningful, if we think of D as the representation of sets on a computer instead of the sets themselves.

Lemma 12.1 D contains  $\mathbb{Q}^V$ 



#### Example: abstraction - intervals

Example 12.2

Let us assume  $V = \{x\}$ 

Consider  $D = \{\perp, \top\} \cup \{[a, b] | a, b \in \mathbb{Q}\}.$ 

Ordering among elements of D are defined as follows:  $\perp \sqsubseteq [a, b] \sqsubseteq \top$  and  $[a_1, b_1] \sqsubseteq [a_2, b_2] \Leftrightarrow a_2 \le a_1 \land b_1 \le b_2$ 

Let  $\alpha(c) \triangleq [inf(c), sup(c)]$  and  $\gamma([a, b]) \triangleq [a, b]$ 

Exercise 12.10 Give the following value  $\alpha(\{0,3,5\}) =$  $\alpha((0,3)) =$ 

•  $\alpha([0,3] \cup [5,6]) =$ •  $\alpha(\{1/x | x > 1\}) =$ 

Exercise 12.11

Is D a complete lattice?

#### Choices for $\alpha$ : minimal abstraction principle

It is always better to choose smaller abstraction.

Choose  $\alpha(c)$  as small as possible, therefore more precise abstraction

Therefore, if  $d \in D$  then  $\alpha(d) = d$  and  $\alpha$  must be monotonic

There may be multiple minimal abstractions.

Even worse, there may be no minimal approximation, *e. g.*, approximating a circle with a polytope (In this lecture, we assume minimal abstractions exist.)

## Properties of D, $\alpha$ , and $\gamma$

000

Now on we will ignore that D is set of sets. We assume D is a topped poset

 $(D, \sqsubseteq, \top)$ 



# abstract domain.

#### Onto abstraction

Due to the principle of minimal abstraction,  $\boldsymbol{\alpha}$  must be onto

$$\forall p \in D. \ \alpha(p) = p \qquad (\text{assuming } D \subseteq C)$$

Therefore, one-to-one  $\gamma$ 

However, in practice we may relax the onto condition on  $\alpha$ . A set can be represented multiple ways on a computer.

Therefore, multiple abstract objects may have same concretization.

#### Example 12.3

BDDs and clauses both can be used to represent set of states.



## Topic 12.3

#### Examples of abstract domains

## Sign abstract domain

#### Sign abstraction

$$C = \mathfrak{p}(\mathbb{Q})$$
  

$$D = \{+, -, 0, \bot, \top\}$$
  

$$\alpha(p) = + \text{ if } \min(p) > 0$$
  

$$\alpha(p) = - \text{ if } \max(p) < 0$$
  

$$\alpha(0) = 0$$
  

$$\alpha(\emptyset) = \bot$$
  

$$\alpha(p) = \top, \text{ otherwise}$$



# Exercise 12.12 Give the following value $\blacktriangleright \alpha(\{0.1, 0.3\}) =$

• 
$$\alpha(\{0.1, 0\}) =$$
  
•  $\alpha(\{-1/x | x \ge 1\}) =$ 

## Congruence abstraction domain

A domain may be parameterized.

#### **Congruence** abstraction

For some 
$$n \in \mathbb{N}$$
,  
 $C = \mathbb{Z}$   
 $D = \{0, \dots, n-1\}$   
 $\alpha(c) = c \mod n$ 

Exercise 12.13 Give the following value for n = 11  $\triangleright \alpha(6) = \qquad \qquad \triangleright \alpha(30)$  $\triangleright \alpha(-1) = \qquad \qquad \triangleright \alpha(40)$ 

#### Cartesian predicate abstraction

Let  ${\cal V}$  be a vector of variables. Cartesian predicate abstraction is defined by a set of predicates

$$P = \{p_1, \ldots, p_n\}$$

over variables V. Naturally,  $C = \mathfrak{p}(\mathbb{Q}^{|V|})$ 

Let 
$$D = \bot \cup \mathfrak{p}(P)$$
. //  $\emptyset$  represents  $\top$ 

Ordering over the elements of  $S_1, S_2 \in D$  is as follows.

$$\bot \sqsubseteq S_1 \sqsubseteq S_2$$
 if  $S_2 \subseteq S_1$ 

Example 12.4  
Let 
$$V = \{x, y\}$$
. Let  $P = \{x \le 1, -x - y \le -1, y \le 5\}$   
Exercise 12.14  
Does the following hold?  
 $\downarrow \{x \le 1\} \sqsubseteq \{x \le 1, -x - y \le -1\}$   $\downarrow \{x \le 1, -x - y \le -1\} \sqsubseteq \emptyset$   
 $\downarrow \{x \le 1, -x - y \le -1\} \sqsubseteq \{x \le 1\}$   $\downarrow \{x \le 1\} \sqsubseteq \bot$   
(2000) Collis Formal Societation and Verifection of Program 2010. Instructor, Abutch Gurda ..., UTB. India

#### Cartesian predicate abstraction II

Let us define the abstraction and concretization functions

$$\alpha(c) = \{ p \in P | c \Rightarrow p \} \qquad \gamma(S) = \bigwedge S$$

Example 12.5  
Let 
$$V = \{x, y\}$$
 and  $P = \{x \le 1, -x - y \le -1, y \le 5\}$ .

$$\begin{array}{l} \alpha(\{(0,0)\}) = \{\mathtt{x} \leq 1, \mathtt{y} \leq 5\} \\ \alpha((\mathtt{x}-1)^2 + (\mathtt{y}-3)^2 = 1) = \{-\mathtt{x}-\mathtt{y} \leq -1, \mathtt{y} \leq 5\} \end{array}$$

Exercise 12.15 Give the following value  $\alpha(\{(8,8)\}) =$ 

 $\blacktriangleright \alpha(\{(0,0),(8,8)\}) =$ 

• 
$$\alpha(\{(0,2)\}) =$$
  
•  $\alpha(\emptyset) =$ 

## Topic 12.4

#### Some properties of abstract domains



## Best approximation

Definition 12.6

 $\alpha$  performs best approximation if  $\forall c \in C, d \in D. \ c \subseteq \gamma(d) \Rightarrow \alpha(c) \sqsubseteq d.$ 

The above is one of the Galois conditions. So,  $\alpha(c) = \sqcap \{d \in D | c \subseteq \gamma(d)\}.$ 

Theorem 12.7

An abstract domain is complete lattice iff best approximations exists. Proof.

If abstract domain is complete lattice then  $\sqcap \{d \in D | c \subseteq \gamma(d)\}$  always exists. For the other direction, consider  $S \subseteq D$ .

- 1. Since  $\bigcap \gamma(S)$  and best approximations exists,  $\alpha(\bigcap \gamma(S)) = \sqcap \{d \mid \bigcap \gamma(S) \subseteq \gamma(d)\}$
- 2.  $(\forall c \in S. \ c \in \{d | \bigcap \gamma(S) \subseteq \gamma(d)\}) \Rightarrow \alpha(\bigcap \gamma(S)) \in Ib(S)$
- 3. Assume  $d \in lb(S)$ . Due to monotone  $\gamma$ ,  $\gamma(d) \in lb(\gamma(S))$ . Therefore,  $\gamma(d) \subseteq \bigcap \gamma(S)$
- 4. Due to monotone  $\alpha$ ,  $\alpha \circ \gamma(d) \sqsubseteq \alpha(\bigcap \gamma(S))$
- 5. Since  $\alpha \circ \gamma = 1_D$ ,  $d \sqsubseteq \alpha (\bigcap \gamma(S))$ . Therefore, $\alpha (\bigcap \gamma(S)) = \sqcap S$

Note: If we do not have best approximation then we are breaking conditions of Galois connection, namely monotone  $\alpha$ .

# End of Lecture 12

