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Topic 13.1

Abstract fixed point
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Abstract operations

Let us suppose we have the following Galois connection

(C ,⊆) −−−→←−−−α
γ

(D,v).

Let us suppose we also have a function f : Cn → C in concrete domain C .

Definition 13.1
We define an abstract operation f # : Dn → D as follows

f #(d1, . . . , dn) = α◦f (γ(d1), . . . , γ(dn))

C D

d1...
dn

. . . γ

γf

f #(d1, . . . , dn)
α
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Example: abstract operation

We use f , α, and γ to implement f #.

For example,

I We may implement t as follows

x t y = α(γ(x) ∪ γ(y))

I We may implement u as follows

x u y = α(γ(x) ∩ γ(y))

Example 13.1

Consider interval domain. Let us compute [0, 3] t [8, 11].

I [0, 3] t [8, 11] = α(γ([0, 3]) ∪ γ([8, 11])) = α([0, 3] ∪ [8, 11]) = [0, 11]

Why would this
be correct?

Commentary: The t computation may look a simple thing made complex. However, the above captures the idea that the function
calculation
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Abstract strongest post
Recall from earlier lecture, we discussed abstract post. Now we have the
formal definition.

sp#(d , ρ) = α◦sp(γ(d), ρ)

Example 13.2 (Reminder)

Recall the following abstraction function

wideOne(X ) = {n + 1, n|n ∈ X}

We defined the following abstract post

sp#(F , ρ) = wideOne︸ ︷︷ ︸
α

(sp( F︸︷︷︸
γ is identity

, ρ))
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Abstract reachability equations

For program P = (V , L, `0, `e ,E ), we solve the following reachability
equation in the abstract domain.

X`0 = α(>)

∀`′ ∈ L \ {`0}. X`′ =
⊔

(`,ρ,`′)∈E

sp#(X`, ρ)

Our goal is to show that X`e = ⊥.

If a solution of the above equations exists with X`e = ⊥, then the program is
safe.
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Abstract fixed-point equations

For each `′ ∈ L, consider the following function F#
`′ where X is input and

return a set of valuations.

F#
`′ (X ) = X`′︸︷︷︸

known reaching abstract state

t
⊔

(`,ρ,`′)∈E

sp#(X`, ρ)

︸ ︷︷ ︸
more reaching abstract state due to neighbours

Now, let us define the following function.

F#(X ) = [F#
`0

(X ),F#
`1

(X ), ....]

A fixed point of F# approximates the reachable states.
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Computing approximate least fixed point

We know F : C → C is a monotonic operator.

Our goal is to compute lfpa(F ), which is in general impossible, where
a = [>,⊥, ...,⊥].

Notation recall: lfpa(F ) is a fixed point of f that is greater than a.

We compute an approximation of lfpa(f ), i.e.,

lfpα(a)(F
#).
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Computing lfpα(a)(F
#)

Both
⊔

and sp# can be implemented using

1. α,

2. ∪, and

3. γ.

If we have algorithms to implement the above three operations, we can
implement fixed-point iterations.

Convergence/termination is still not guaranteed.

At least, we can implement.
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Approximation guarantees

Theorem 13.1
Let (C ,⊆, ∅,QV ,∪,∩) and (D,v,⊥,>,t,u) are complete lattices,

(C ,⊆) −−−→←−−−α
γ

(D,v),

and f : C → C and f # are continuous operators then

lfpa(f ) ⊆ γ(lfpα(a)(f #))

Exercise 13.1
Prove the above theorem Hint: First show iterates on both the sides are related
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Example : abstract fixed point computation

Example 13.3
Consider program:

`0

`1

`e

x := 1

x < 0

x = x + 2

Let us use sign abstraction to analyze the program
D = {>,+,−, 0,⊥}

Initial abstract state:
X 0
`0

:= α(>) = >,

X 0
`1

:= α(⊥) = ⊥,
X 0
`e

:= α(⊥) = ⊥

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Example : abstract fixed point computation (contd.) II

Consider program:

`0

`1

`e

x := 1

x < 0

x = x + 2

First iteration:

X 1
`0

= X 0
`0

= >

X 1
`1

= X 0
`1
t sp#(x ′ = 1,X 0

`0
) t sp#(x ′ = x + 2,X 0

`1
)

= ⊥tα(sp(x ′ = 1, γ(X 0
`0

)))tα(sp(x ′ = x+2, γ(X 0
`1

)))

= α(sp(x ′ = 1, γ(>))) t α(sp(x ′ = x + 2, γ(⊥)))

= α(sp(x ′ = 1, γ(>))) t α(⊥)

= α(x = 1) t α(⊥) = + tα(⊥) = +

X 1
`e

:= X 0
`e
t sp#(x < 0,X 0

`1
) = ⊥

= ⊥ t α(sp(x < 0, γ(X 0
`0

)))
= ⊥ t α(sp(x < 0, γ(⊥)))
= ⊥ t α(sp(x < 0,⊥)) = ⊥ t α(⊥) = ⊥
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Example : abstract fixed point computation (contd.) III

Consider program:

`0

`1

`e

x := 1

x < 0

x = x + 2

Second iteration:

X 2
`0

= X 1
`0

= >

X 2
`1

= X 1
`1
t sp#(x ′ = 1,X 1

`0
) t sp#(x ′ = x + 2,X 1

`1
)

= +tα(sp(x ′ = 1, γ(X 1
`0

)))tα(sp(x ′ = x+2, γ(X 1
`1

)))

= + t α(sp(x ′ = 1, γ(>))) t α(sp(x ′ = x + 2, γ(+)))

= + t α(sp(x ′ = 1, γ(>))) t α(x > 2)

= + t α(x = 1) t α(x > 2) = + t+ t+ = +

X 2
`e

:= X 1
`e
t sp#(x < 0,X 1

`1
) = ⊥

= ⊥ t α(sp(x < 0, γ(X 1
`0

)))
= ⊥ t α(sp(x < 0, γ(+)))
= ⊥ t α(sp(x < 0, x > 0)) = ⊥ t α(⊥) = ⊥

Fixed point
reached
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Exercise: sign abstraction fixedpoint

Exercise 13.2
Apply sign abstraction on the following example?

`0

`1

`e

x := 1

x > 100

x < 50 ∧ x ′ = x + 2

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Exercise: sign abstraction fixedpoint

Exercise 13.3
Apply sign abstraction on the following example?

main (){

x := 0;

y := -1;

while( x < 20 ) {

if( x < 10 ) {

y := y - 1;

}else{

y := y + 1;

}

x = x + 1;

}

}

Note that there is no error location in the above program.
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Demo - The Interproc Analyzer

http://pop-art.inrialpes.fr/interproc/interprocweb.cgi

Exercise 13.4
Run Interproc on the following code

var i:int;

begin

i = 0;

while (i<=10) do

i = i+2;

done;

end

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Example: interval abstraction

One may feel sign abstraction is too coarse. Let us try more precise/refined

interval abstraction.

Example 13.4
Consider program:

`0

`1

`e

x := 1

x < 0

x = x + 2

Let us use interval abstraction:
⊥ v [a, b] v >

Initial abstract state:
X 0
`0

:= >,
X 0
`1

:= ⊥,
X 0
`e

:= ⊥

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 18

Example: interval abstraction(contd.)

Consider program:

`0

`1

`e

x := 1

x < 0

x = x + 2

First iteration

X 1
`0

:= X 0
`0

= >

X 1
`1

:= X 0
`1
t sp#(x ′ = 1,X 0

`0
) t sp#(x ′ = x + 2,X 0

`1
)

= ⊥tα(sp(x ′ = 1, γ(X 0
`0

)))tα(sp(x ′ = x+2, γ(X 0
`1

)))

= α(sp(x ′ = 1, γ(>))) t ⊥
= α(sp(x ′ = 1, γ(>))) = α(x = 1) = [1, 1]

X 1
`e

:= X 0
`e
t sp#(x < 0,X 0

`1
) = ⊥

= ⊥ t α(sp(x < 0, γ(X 0
`0

)))
= ⊥ t α(sp(x < 0, γ(⊥)))
= ⊥ t α(sp(x < 0,⊥)) = ⊥ t α(⊥) = ⊥
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Example: interval abstraction(contd.)

Consider program:

`0

`1

`e

x := 1

x < 0

x = x + 2

Second iteration

X 2
`0

:= X 1
`0

= >

X 2
`1

= X 1
`1
t sp#(x ′ = 1,X 1

`0
) t sp#(x ′ = x + 2,X 1

`1
)

= [1, 1] t α(sp(x ′ = 1, γ(>)))t
α(sp(x ′ = x + 2, γ([1, 1])))

= [1, 1] t α(sp(x ′ = 1,>)) t α(sp(x ′ = x + 2, [1, 1]))
= [1, 1] t [1, 1] t [3, 3] =[1, 3]

X 2
`e

:= ⊥

After third iteration X 3
`0

:= >,X 3
`1

:= [1, 5],X 3
`e

:= ⊥

. . . the process will go on forever
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Acceleration

Many interesting abstract domains are of infinite size.

Abstraction may only provide simple calculations, but not convergence.

For convergence we need acceleration using a special operator widening.

If we do too much widening then we may need narrowing.
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Widening

Definition 13.2
A widening O : D × D → D on a poset (D,v) satisfies

I ∀x , y ∈ D. x v xOy ∧ y v xOy

I for an increasing chain x0 v x1 . . . , the increasing chain

y0 , x0 yn , yn−1Oxn

is not strictly increasing.

Definition 13.3
widening iterates (Ik , k < n) for monotone function f from a ∈ prefp(f )

I I0 , a

I In+1 , In if f (In) v In

I In+1 , InOf (In) if f (In) 6v In

Theorem 13.2
There exists k ∈ N, f (Ik) v Ik and lfpa(f ) v Ik .

http://creativecommons.org/licenses/by-nc-sa/4.0/
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widening for interval domain

We define a widening operator for interval as follows:

I [a, b]O⊥ = [a, b]

I ⊥O[a, b] = [a, b]

I [a, b]O[a′, b′] = [((a′ < a)?−∞ : a), ((b′ > b)?∞ : b)]

Exercise 13.5
Apply the O operator
I [2, 3]O[−3, 2] =

I [2, 3]O[4, 6] =

I [2, 3]O[1, 6] =

I ⊥O⊥ =

Exercise 13.6
a. Show O for interval domain satisfies the definition of widening
b. Show O is not symmetric and monotone

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Abstract fixed-point equations with widening

For each `′ ∈ L, consider the following function FO
`′ where X is input and

return a set of valuations.

FO
`′ (X ) = X`′︸︷︷︸

known reaching abstract state

O
⊔

(`,ρ,`′)∈E

sp#(X`, ρ)

︸ ︷︷ ︸
more reaching abstract state due to neighbours

Now, let us define the following function.

FO(X ) = [FO
`0

(X ),FO
`1

(X ), ....]

A lfpa(FO) will be in postfpa(F#).(why?)

Exercise 13.7
The iterations generated by F# do not exactly match with widening iterates
of definition 13.3. What we need to assume on O to match them?
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Example: widening in action

Example 13.5

Consider program:

`0

`1

`e

x := 1

x < 0

x := x + 2

Initial:
X 0
`0

:= >,X 0
`1

:= ⊥,X 0
`e

:= ⊥

First iteration:(nothing changed)
X 1
`0

:= >,X 1
`1

:= [1, 1],X 1
`e

:= ⊥

Second iteration:
X 2
`0

:= >,
X 2
`1

:= X 1
`1
O(sp#(x ′ = 1,X 1

`0
) t sp#(x ′ = x + 2,X 1

`1
))

= [1, 1]O([1, 1] t [3, 3]) = [1, 1]O[1, 3]= [1,+∞]
X 2
`e

:= ⊥

Third iteration:
X 3
`0

:= >,
X 3
`1

:= X 2
`1
O(sp#(x ′ = 1,X 2

`0
) t sp#(x ′ = x + 2,X 2

`1
))

= [1, 1]O([1, 1] t [1,+∞]) = [1,+∞]
X 3
`e

:= ⊥ .... fixed point reached
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Example: too much widening

Now consider:

`0

`1

`e

x := 1

x > 200

x := x + 2
x < 100

X 0
`1

:= ⊥,X 0
`e

:= ⊥

X 1
`1

:= [1, 1],X 0
`e

:= ⊥

X 2
`1

= [1, 1]O([1, 1] t sp#(x < 100∧x ′ = x + 2,X 1
`1

))
= [1, 1]O([1, 1] t [3, 3]) = [1,+∞]

X 2
`1

:= [1,+∞],X 2
`e

:= ⊥

X 3
`e

= X 2
`e
O(sp#(x > 200 ∧ x ′ = x ,X 2

`1
))

X 3
`e

= ⊥O(sp#(x > 200 ∧ x ′ = x , [1,+∞]))
X 3
`e

= ⊥O[200,+∞] = [200,+∞]
X 2
`1

:= [1,+∞],X 3
`e

= [200,+∞]
... reaching error location
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Narrowing

Definition 13.4
A narrowing 4 : D × D → D on a poset (D,v) satisfies

I ∀x , y ∈ D. y v x ⇒ y v x4y v x

I for an decreasing chain . . . x1 v x0, the decreasing chain

y0 , x0 yn , yn−14xn

is not strictly decreasing.

Definition 13.5
narrowing iterates (Ik , k < n) for monotone function f from a ∈ postfp(f )

I I0 , a

I In+1 , In if f (In) = In

I In+1 , In4f (In) if In v f (In)

Theorem 13.3
For all x ∈ X . x = f (x) v a⇒ ∃k . x v Ik = Ik+1 v a

Unfortunate misnomer!!
Narrowing is not the dual of widening!
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Narrowing for interval abstraction

A definition of narrowing for the interval domain

I ⊥4[a, b] = ⊥
I [a, b]4[a′, b′] = [((a = −∞)?a′ : a), ((b =∞)?b′ : b)] if [a′, b′] v [a, b]

Exercise 13.8
Apply the 4 operator
I [1, 3]4[1, 2] =

I [2, 3]4[4, 6] =

I [−∞, 6]4[1, 3] =

I ⊥4[1, 3] =

Exercise 13.9
Show 4 for interval domain satisfy the definition of the narrowing operator.
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Using narrowing after widening

Let us suppose we have monotonic f : D → D, a ∈ prefp(f ), widening O,
and narrowing 4.

I Apply widening iterates to obtain b such that a v b ∈ postfp(f )

I Then, apply narrowing iterates to obtain c such that c = f (c) v b

prefp postfp

v

a

b
O

c
4

Exercise 13.10
Show a v c.
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Example: narrowing interval domain

Example 13.6

Now consider:

`0

`1

`e

x := 1

x > 200

x := x + 2
x < 100

Result of widening iterates:
X 3
`1

:= [1,+∞],X 3
`e

:= [200,+∞]

Forth iteration with narrowing:

X 4
`1

:= X 3
`1
4([1, 1] t sp#(x < 100∧x ′ = x + 2,X 3

`1
))

= [1,∞]4([1, 1]t sp#(x < 100∧x ′ = x + 2, [1,∞]))
= [1,∞]4([1, 1] t [3, 101])
= [1,∞]4([1, 101])= [1, 101]

X 4
`e

:= X 3
`e
4(sp#(x > 200 ∧ x ′ = x ,X 3

`1
))

= [200,+∞]4(sp#(x > 200 ∧ x ′ = x , [1,+∞]))
= [200,+∞]4[200,+∞] = [200,+∞]
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Example: narrowing interval domain

Example 13.7

Now consider:

`0

`1

`e

x := 1

x > 200

x := x + 2
x < 100

Fifthe iteration with widening

X 5
`1

:= X 4
`1
4([1, 1] t sp#(x < 100∧x ′ = x + 2,X 4

`1
))

= [1, 101]

X 5
`e

:= X 4
`e
4(sp#(x > 200 ∧ x ′ = x ,X 4

`1
))

= [200,+∞]4(sp#(x > 200 ∧ x ′ = x , [1, 101]))
= [200,+∞]4⊥ = ⊥

Fixed point
reached
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Widening and narrowing policy

We need not apply narrowing/widening of at every iteration or for every
variable.

I use narrowing/widening operators only at cut points

I use narrowing/widening operators at every ith iteration

Exercise 13.11
What would be definitions of duals of O and 4 operators.
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Exercise : widening chaos

The proposed machinery may have unpredictable behaviors!!

Exercise 13.12
Apply widening iterates of interval domain on the following examples

`0

`1

x := 0

x := 1
x = 0

x := 2
x = 1

`0

`1

x := nondat()%3

x := 1
x = 0

x := 2
x = 1
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Abstract domain

An abstract domain consists of

I a lattice (D,v,t,u),

I a abstraction function α : C → D and a concretization function
γ : D → C such that

(D,v) −−−→←−−−α
γ

(C ,⊆),

I a widening operator O : D × D → D, and

I a narrowing operator 4 : D × D → D.
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End of Lecture 13
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