CS615 2019

Lecture 10: Linear rational arithmetic (basics)

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2019-10-07

Reasoning over linear arithmetic

Example 10.1

Consider the following proof step

$$\frac{2x - y \le 1 \quad 4y - 2x \le 6}{x + y \le 5}$$

Is the above proof step complete?

Basic concepts

One needs to know the following

- ► Linearly independent
- Rank of a set of vectors
- Vector vs. Row vector
- Hyperplane
- Affine hull

Fundamental theorem of linear inequality

Theorem 10.1

Let a_1, \ldots, a_m and b be n-dimensional vectors.

Then, one of the following is true.

- 1. $b := \lambda_1 a_{i_1} + \dots + \lambda_k a_{i_k}$ for $\lambda_j \ge 0$ and a_{i_1}, \dots, a_{i_k} are linearly independent
- 2. There exists a hyperplane $\{x | cx = 0\}$ containing t 1 linearly independent vectors from a_1, \ldots, a_m such that

$$ca_1 \geq 0, \ldots, ca_m \geq 0$$
 and $cb < 0$,

where $t := rank\{a_1, \ldots, a_m, b\}$.

Observation:

- c is a row vector
- ▶ Wlog, we assume $t = n_{\text{.(why?)}}$
- ▶ Both possibilities cannot be true at the same time.(why?)

Geometrically, theorem case 1

In the first case, b is in the cone of a_1, \ldots, a_m .

Geometrically theorem case 2

In the second case, b is outside of the cone of a_1, \ldots, a_m . Furthermore, a_1, \ldots, a_m are in one side of $\{x | cx = 0\}$ and b is on the other.

Exercise 10.1 Give a c?

Proof: fundamental theorem of linear inequality

Proof.

Consider the following iterative algorithm to decide case 1 or 2.

Initially choose n independent vectors $D := \{a_{i_1}, \ldots, a_{i_n}\}$ from a_1, \ldots, a_m .

- 1. Let $b = \lambda_{i_1} a_{i_1} + \cdots + \lambda_{i_n} a_{i_n}$.
- 2. If $\lambda_i, \ldots, \lambda_i \geq 0$, case 1 and exit.

7. $D := D \setminus \{a_{i_k}\} \cup \{a_s\}$. goto 1.

- Clearly, cb < 0.(why?) 3. Otherwise, choose smallest i_h such that $\lambda_{i_h} < 0$.
- 4. Choose c such that ca = 0 for each $a \in D \setminus \{a_{i_h}\}$ and $ca_{i_h} = 1$.
- 5. If $ca_1, \ldots, ca_m \geq 0$, case 2 and exit. (why?)
- 6. Otherwise, choose smallest s such that $ca_s < 0$.
- Exercise 10.2
- a. Why λs exists in step 1? b. Why c exists in step 4?
- c. Why D remains linearly independent over time?
- d. Why not simply enumerate all linearly independent subsets from $a_1, ..., a_m$?

Example: iterations for D

Example 10.2

Let us have a set of vectors $\{a_1, a_2, a_3\}$ in 2-dimensional vector space and also vector b. We are looking for a subset D that contains b in its cone.

- 1. Initial guess, $D = \{a_1, a_2\}$.
- 2. If we write $b = \lambda_1 a_1 + \lambda_2 a_2$, then $\lambda_1 < 0$.
- 3. Clearly b is not in the cone of D.
- 4. We get c such that $ca_2 = 0$ and $ca_1 > 0$.
- 5. Since $cb = c(\lambda_1 a_1 + \lambda_2 a_2) = \lambda_1 ca_1$, cb < 0.
- We find a₃ such that ca₃ < 0 (Intuition: a₃ is likely to be closer to b)
- 7. Now $D := D \setminus \{a_1\} \cup \{a_3\} = \{a_2, a_3\}$
- 8. b is in the cone of D. Terminate.

Proof: fundamental theorem of linear inequality II

Proof.

We are yet to prove termination of the algorithm.

Let D^k be the set D at iteration k.

claim: D^k will not repeat in any future iterations. (Therefore, termination.) Contrapositive: For some $\ell > k$, $D^{\ell} = D^k$.

Let r be the highest index such that a_r left D at pth iteration and came back at qth iteration for $k \leq p < q \leq \ell$

Blue dots are indexes for D^p . Red dots are indexes for D^q .

©0© | CS615 2019 | Instructor: Ashutosh Gupta | IITB, India

Therefore, $D^p \cap \{a_{r+1}, \ldots, a_m\} = D^q \cap \{a_{r+1}, \ldots, a_m\}$

Proof: fundamental theorem of linear inequality III

Proof.

$$egin{aligned} & \mathcal{D}^p := \{ a_{i_1^p}, \dots, a_{i_n^p} \} \ & \mathsf{Let} \ b = \lambda_{i_1^p} a_{i_1^p} + \dots + \lambda_{i_n^p} a_{i_n^p}. \end{aligned}$$

Since
$$r$$
 left D^p ,
if $i_j^p < r$, $\lambda_{i_j^p} \ge 0$ and
if $i_j^p = r$, $\lambda_r < 0$.

At qth iteration, we have $c^q b < 0$.

Since r entered in D^q , for each j < r, $c^q a_j \ge 0$, for each j = r, $c^q a_r < 0$, and for each $i_j^q > r$, $c^q a_{i_j^q} = 0$.

Proof: fundamental theorem of linear inequality IV

Proof.

Consider

$$0>c^{\mathbf{q}}b=c^{\mathbf{q}}(\lambda_{i_1^p}a_{i_1^p}+\cdots+\lambda_{i_n^p}a_{i_n^p})$$

Let us show for each j, $\lambda_{i_i^p}(c^q a_{i_i^p})$ is nonnegative.

Three cases

$$ightharpoonup i_j^p < r: \lambda_{i_i^p} \ge 0 \text{ and } c^q a_{i_i^p} \ge 0$$

$$i_i^p = r$$
: $\lambda_r < 0$ and $c^q a_r < 0$

$$i_j^p > r$$
: $c_i^q a_{i_i^p} = 0$ (why?)

Therefore, $c^q b > 0$. Contradiction.

Cone, Polyhedra

Definition 10.1

A set C of vectors is a cone if $x, y \in C$ then $\lambda_1 x + \lambda_2 y \in C$ for each $\lambda_1, \lambda_2 \geq 0$.

Definition 10.2

A cone C is a polyhedral if $C = \{x | Ax \le 0\}$ for some matrix A.

Definition 10.3

A cone C is finitely generated by vectors x_1, \ldots, x_m is the set

$$cone\{x_1,\ldots,x_m\} := \{\lambda_1x_1 + \cdots + \lambda_mx_m | \lambda_1,\ldots,\lambda_m \ge 0\}$$

Example 10.3

$$C = \{x | \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} x \le 0\} = \{\lambda_1 x_1 + \lambda_2 x_2 | \lambda_1, \lambda_2 \ge 0\}$$

©(1)

Polyhedra == finitely generated cone

Theorem 10.2

A convex cone is polyhedral iff it is finitely generated.

Proof.

Intuitively, obvious.

We are skipping the proof here.

Polyhedron, affine half space, polytope

Definition 10.4

A set of vectors P is called polyhedron if

$$P = \{x | Ax \le b\}$$

for some matrix A and vector b.

Definition 10.5

A set of vectors H is called affine half-space if

$$H = \{x | wx \le \delta\}$$

for some nonzero row vector w and number δ .

Polytope

Definition 10.6

A set of vectors Q is called polytope if

$$\textit{Q} = \textit{hull}(\{\textit{x}_1,..,\textit{x}_m\}) = \{\lambda_1 \textit{x}_1 + \cdots + \lambda_m \textit{x}_m | \lambda_1 + \cdots + \lambda_m = 1 \land \lambda_1, \ldots, \lambda_m \geq 0\}$$

for some nonzero vectors x_1, \ldots, x_m .

Example 10.4

The following is $hull(\{(2,3),(0,0),(3,1)\})$

polyhedron = polytope + polyhedral

Theorem 10.3 (Decomposition theorem)

Let $P = \{x | Ax \le b\}$ be a polyhedron iff P = Q + C for some polytope Qand polyhedral C.

Proof.

Let us consider the forward direction.

Let us construct the following cone in one higher dimension.

$$P' = \left\{ \begin{bmatrix} x \\ \lambda \end{bmatrix} | Ax - \lambda b \le 0 \land \lambda \ge 0 \right\}$$

Clearly, the following holds

$$x \in P$$
 iff $\begin{bmatrix} x \\ 1 \end{bmatrix} \in P'$

Exercise 10.3

Prove the reverse direction

polyhedron = polytope + polyhedral (contd.)

Proof(contd.)

Let the following q + c vectors generate P'. (why exists?)

$$\underbrace{\begin{bmatrix} x_1 \\ 1 \end{bmatrix} \cdots \begin{bmatrix} x_q \\ 1 \end{bmatrix}}_{q}, \underbrace{\begin{bmatrix} y_1 \\ 0 \end{bmatrix} \cdots \begin{bmatrix} y_c \\ 0 \end{bmatrix}}_{c}$$

Let $Q = hull(\{x_1, ..., x_a\})$ and $C = cone(\{y_1, ..., y_c\})$

claim:
$$P = Q + C$$

Let $x \in P$

 \Leftrightarrow By definition of P', for some $\mu_1, ..., \mu_q, \lambda_1, ..., \lambda_c \geq 0$ the following holds.

$$\begin{bmatrix} x \\ 1 \end{bmatrix} = \mu_1 \begin{bmatrix} x_1 \\ 1 \end{bmatrix} + \dots + \mu_q \begin{bmatrix} x_q \\ 1 \end{bmatrix} + \lambda_1 \begin{bmatrix} y_1 \\ 0 \end{bmatrix} + \dots + \lambda_c \begin{bmatrix} y_c \\ 0 \end{bmatrix}.$$

 $\Leftrightarrow \mu_1 x_1 + ... \mu_q x_q \in Q \text{ and } \lambda_1 y_1 + \cdots + \lambda_c y_c \in C_{\text{(why?)}}$ $\text{ CS615 2019} \qquad \text{Instructor: Ashutosh Gupta}$ @**()**(\$)

Example: P = Q + C

Example 10.5

Consider the following polyhedron P.

- 1. Green + red vectors are generators of P'
- 2. Red vectors have no λ component, they form the cone C
- 3. Green vectors have $\lambda = 1$.
- Projecting green vectors on x₁ and x₂ plane we get purple vectors.
- 5. *Q* is the hull of the purple vectors

Farkas lemma (version I)

Theorem 10.4

Let A be a matrix and b be a vector. Then, there is a vector $x \ge 0$ such that Ax = b iff

for all
$$y$$
, $yA \ge 0 \Rightarrow yb \ge 0$.

Proof.

Let $x_0 \ge 0$ be such that $Ax_0 = b$.

Therefore, for some row vector y, $yAx_0 = yb$.

Since $x_0 \ge 0$, if $yA \ge 0$ then $yb \ge 0$.

$$(\Leftarrow)$$

Let us suppose there is no such x.

Let a_1, \ldots, a_n be columns of A.

Therefore, $b \notin cone\{a_1, \ldots, a_n\}$.(why?)

Due to Theorem 10.1, there is a y such that $yA \ge 0$ and yb < 0.

Farkas lemma (version II)

Theorem 10.5

Let A be a matrix and b be a vector. Then, there is a vector x such that $Ax \leq b$ iff

for all
$$y$$
, $y \ge 0 \land yA = 0 \Rightarrow yb \ge 0$.

Proof.

Consider matrix $A' = [I \ A \ -A]$.

A'x' = b with $x' \ge 0$ has a solution iff $Ax \le b$ has. (why?)

Due to theorem 10.4, the left hand side is equivalent to

$$\text{for all } y, \quad y[\texttt{I} \ A \ -A] \geq 0 \Rightarrow yb \geq 0.$$

Therefore, for all y, $y \ge 0 \land yA \ge 0 \land -yA \ge 0 \Rightarrow yb \ge 0$.

Therefore, for all y, $y \ge 0 \land yA = 0 \Rightarrow yb \ge 0$.

Exercise 10.4

Give the relation between solutions of $A'x' = b \wedge x' \geq 0$ and $Ax \leq b$.

Example: empty polyhedron

There is a $y \ge 0$ such that $yA = 0 \Rightarrow yb \ge 0$.

Farkas lemma (version III)

Exercise 10.5

Prove that:

Let A be a matrix and b be a vector. Then, there is a vector $x \ge 0$ such that Ax < b iff

for all
$$y$$
, $y \ge 0 \land yA \ge 0 \Rightarrow yb \ge 0$.

Exercise 10.6

Prove that:

Let A be a matrix and b be a vector. Then, there is a vector x such that

$$Ax = b$$
 iff

for all
$$y$$
, $yA = 0 \Rightarrow yb = 0$.

Linear programming problem

Definition 10.7

Linear programming (LP) is the problem of maximizing or minimizing linear functions over a polyhedron. For example,

$$min\{cx|Ax \leq b\}$$

Definition 10.8

The following is called LP-duality condition

We will prove the following always holds.

$$max\{cx|Ax \leq b\} = min\{yb|y \geq 0 \land yA = c\}.$$

Example 10.6

Consider the green polyhedron with a corner. max achieves the optima at the corner, if c is in the blue cone.

c is nonnegative combination of rows of A, i.e., y.

Duality theorem

Theorem 10.6

Let A be a matrix, and let b and c be vectors. Then,

$$\max\{cx|Ax \le b\} = \min\{yb|y \ge 0 \land yA = c\}$$

provided both sets are nonempty.

Proof.

claim: max will be less than or equal to min

Let us suppose $Ax \le b$, $y \ge 0$, and yA = c.

After multiply x in yA = c, we obtain yAx = cx.

Since $y \ge 0$ and $Ax \le b$, $yb \ge cx$.

We need to show that the following is nonempty.

$$Ax \le b \land y \ge 0 \land yA = c \land \underbrace{cx \ge yb}_{\text{makes min and max equal}}$$

⊚⊕\$0

Duality theorem (contd.)

Proof.

Writing $Ax \le b \land y \ge 0 \land yA = c \land cx \ge yb$ as follows.

$$\begin{bmatrix} A & 0 \\ 0 & -\mathbf{I} \\ 0 & A^T \\ 0 & -A^T \\ -c & b^T \end{bmatrix} \begin{bmatrix} x \\ y^T \end{bmatrix} \le \begin{bmatrix} b \\ 0 \\ c^T \\ -c^T \\ 0 \end{bmatrix}$$

To show the above is nonempty, we apply theorem 10.5. Now we need to show that for each $u, t, v, w, \lambda \ge 0$

$$uA - \lambda c = 0 \wedge \lambda b^T + (v - w)A^T - t = 0 \Rightarrow ub + (v - w)c^T \geq 0.$$

After simplifications, we need to show that for each $u, \lambda \ge 0$ and v' $uA = \lambda c \wedge \lambda b^T + v'A^T \ge 0 \Rightarrow ub + v'c^T \ge 0.$

Duality theorem (contd.)

Proof.

We need to show that for each $u, \lambda > 0$ and v'

$$uA = \lambda c \wedge \lambda b^T + v'A^T \ge 0 \Rightarrow ub + v'c^T \ge 0.$$

We assume left hand side and case split on number λ .

case $\lambda > 0$:

Consider
$$\lambda b^T + v'A^T \ge 0$$
 \Rightarrow $b^T + v'A^T/\lambda \ge 0$ \Rightarrow $b + Av'^T/\lambda \ge 0$ \Rightarrow $ub + \lambda cv'^T/\lambda \ge 0$ \Rightarrow $ub + cv'^T \ge 0$ \Rightarrow $ub + v'c^T \ge 0_{\text{(why?)}}$

case $\lambda = 0$:

Left hand side reduces to $uA = 0 \wedge v'A^T > 0$.

claim:
$$ub \ge 0$$

@**()**(\$)**(3**)

Therefore, $ub > uAx_0 = 0$.

claim:
$$v'c^T \geq 0$$

There is a x_0 such that $Ax_0 \le b$. There is a y_0 such that $y_0 \ge 0 \land y_0 A = c$. $v_0^T > 0 \wedge v' A^T v_0^T = v' c^T$.

Therefore, $v'c^T > 0$.

CS615 2019

Emptiness of dual space

Definition 10.9

For an LP problem $\max\{cx|Ax \leq b\}$, the set $\{y|y \geq 0 \land yA = c\}$ is called dual space.

Theorem 10.7

If the dual space of LP problem $\max\{cx|Ax \leq b\}$ is empty. Then, the maximum vaule is unbounded.

Proof.

Let us suppose the dual space $y \ge 0 \land yA = c$ is empty.

Due to theorem 10.4, there is a z such that

$$Az \geq 0 \land cz < 0.$$

We can use -z to arbitrarily increase the value of cx. Therefore, the max value is unbounded.

Farkas lemma (Affine version)

Theorem 10.8

Let the system Ax < b is nonempty and let c be a row vector and δ be a number. Let us suppose for each x

$$Ax \leq b \Rightarrow cx \leq \delta$$
.

Then there exists $\delta' \leq \delta$ such that $cx \leq \delta'$ is a nonnegative linear combination of the inequalities in $Ax \leq b$.

Proof.

Since the max is bounded, the dual space is nonempty and let the max be δ' .

Since both the spaces are nonempty and due to the duality theorem,

$$\max\{cx|Ax \le b\} = \min\{yb|y \ge 0 \land yA = c\}$$

Therefore, there exists y_0 , such that $y_0b = \delta' \wedge y_0 \geq 0 \wedge y_0A = c.$ (why?)

Therefore, $cx < \delta'$ is nonnegative linear combination of Ax < c. (why?) @**()**(\$)**(3**) CS615 2019

End of Lecture 10

