
cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 1

CS615: Formal Specification and
Verification of Programs 2019

Lecture 16: Abstract interpretation - combination

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2019-10-17

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
http://www.cse.iitb.ac.in/~akg/


cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 2

Topic 16.1

Domain combination

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 3

Multiple domains in a tool

A typical abstract interpretation tool implements many abstract domains.

The domains can potentially help each other for better precision.

We will discuss a few schemes for combining the domains.

Commentary: The content on combination is based on https://arxiv.org/pdf/1309.5146.pdf

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/
https://arxiv.org/pdf/1309.5146.pdf


cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 4

Two abstract domains

Let us consider two abstract domains

(D1,v1,t1,u1) and (D2,v2,t2,u2)

Let us suppose both the domains form the Galois connection with the
concrete world C

(C ,⊆) −−−→←−−−
α1

γ1
(D1,v1) and (C ,⊆) −−−→←−−−

α2

γ2
(D2,v2).

Example 16.1

In the lecture, we will use the following domains

I D1 = {>,Even,Odd ,⊥} aka parity domain

I D2 = interval domain (we have seen in the earlier lecture)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 5

Two abstract domains II

We also assume that the following implementable operators available for the
domains

I α1 : C → D1

I t1 : D1 × D1 → D1

I O : D1 × D1 → D1, and

I sp#1 : abstract post

I α2 : C → D2

I t2 : D2 × D2 → D2

I O : D2 × D2 → D2, and

I sp#2 : abstract post

How do we combine the domains?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 6

Product domain

Let us define a product domain

(D1 × D2,v)
where (a, b) v (a′, b′) , a v1 a′ and b v2 b′.

The other operators for the combined domain are not fixed automatically.

The combination schemes make choices for α, sp#, and O.

We will drop narrowing from our discussion.(why?)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 7

Combination schemes

We will consider the following domain combination schemes

1. Cartesian product

2. Reduced product

3. Granger product

4. Reduced cardinal power

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 8

Cartesian product : simplest combination

We define the domain operators as follows

1. α(c) = (α1(c), α2(c))

2. sp#((a, b), ρ) = (sp#1(a, ρ), sp#2(b, ρ))

3. (a, b)O(a′, b′) = (aO1a
′, bO2b

′)

There is no interaction between the two domains.

The result would be as if the two abstract domains are applied independently
and the results are combined.

Exercise 16.1
What is γ? Recall: α fixes gamma.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 9

Exercise: cartesian product

Exercise 16.2
Apply the following operators

I α({1, 3, 5})
I α({1, 4})
I sp#((Even, [2, 4]), x := x + 1)

I α(∅)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 10

Example: cartesian product

Example 16.2

Let us suppose D1 = parity domain and D2 = interval domain.

Consider the following program

`0

`1

`e

x := 1

x = 30 ∨ x = 301

x := x + 2
x < 100

X`0 = (>,>)

X`1 = (Odd , [1, 101])

X`e = (Odd , [30, 30])

Exercise 16.3
X`e is not (⊥,⊥), how do we conclude that `e is unreachable?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 11

Example: interaction helps

Example 16.3

Consider abstract state (Odd , [30, 30]).

Since there is no even number in the range [30, 30], we may reduce the state
to

(⊥,⊥).

Abstract states may help each other for precision.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 12

Example: interaction during fixedpoint computation

Example 16.4

Let us suppose D1 = parity domain and D2 = interval domain.

Consider the following program

`0

`1

`e

x := 1

x ≥ 100 ∧x := havoc()

x := x + 2
x < 99

X`0 = (>,>)

X`1 = (Odd , [1, 100])

X`e = (>, [100, 100])

Exercise 16.4
Did we prove that `e is unreachable?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 13

Reduced product : reduced function

We may define a reduction function

ρ : D1 × D2 → D1 × D2.
ρ takes the product abstract state and returns a reduced states such that

ρ((a, b)) = u{(a′, b′)|γ(a, b) ⊆ γ(a′, b′)}

where γ(a, b) = γ1(a) ∩ γ2(b).

We can not implement the above definition in general. However, ρ satisfying
the following is acceptable.

1. ρ(a, b) v (a, b)

2. γ(ρ(a, b)) = γ((a, b))

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 14

Reduced product

We define the operators for reduced product as follows

1. α(c) = ρ(α1(c), α2(c))

2. sp#((a, b), ρ) = ρ(sp#1(a, ρ), sp#2(b, ρ))

3. (a, b)O(a′, b′) = ρ(aO1a
′, bO2b

′)7

The O operator may not satisfy the definition of widening operator.
Therefore, no guarantee of convergence.

Exercise 16.5
Show that if the following condition holds, then the above widening operator
ensures convergence.

∀a, a′ ∈ D1, b, b
′ ∈ D2 ∃a′′ ∈ D1, b

′′ ∈ D2, (aO1a
′, bO2b

′) ∈ ρ(a′′, b′′)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 15

Reduced product worked around for widening

If the condition in the last exercise holds, then well and good.

Then, we may simply choose not to apply reduction operator after widening,
i.e.,

(a, b)O(a′, b′) = (aO1a
′, bO2b

′).

We loose precision due to the above choice.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 16

Example: reduced product

Example 16.5

`0

`1

`e

x := 1

x := havoc()
x ≥ 100

x := x + 2
x < 99

X`0 = (>,>)

X`1 = (Odd , [1, 100])

X`e = (>, [100, 100])

Cartesian

X`0 = (>,>)

Reduced

X`1 = (Odd , [1, 99])

X`e = (>,⊥)

Now we have proven that `e is unreachable.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 17

Granger product

Implementing, the reduction operator ρ is not entirely clear.

In granger product, the reduction operator is modular, i.e, each domains
declare how it takes in the information form other.

ρi : D1 × D2 → Di

where i ∈ {1, 2}.

ρ1 and ρ2 must satisfy the following conditions.

1. ρ1(a, b) v a

2. γ1(ρ(a, b)) ∩ γ2(b) = γ1(a) ∩ γ2(b)

3. ρ2(a, b) v b

4. γ1(a) ∩ γ2(ρ(a, b)) = γ1(a) ∩ γ2(b)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 18

Granger product: ρ from ρis

The rest of scheme remains the same as reduced product. We implement ρ
using ρi s.

We compute ρ(a, b) using the following iterates.

(a0, b0) := (a, b)

(an, bn) := (ρ1(an−1, bn−1), ρ2(an−1, bn−1))

We interate until the sequence (an, bn)n∈N stabilizes.

The stabilized value is our ρ(a, b).

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 19

Example: Granger product

Example 16.6

Consider state (Even, [1, 1])

Let us first apply ρ2

ρ2(Even, [1, 1]) = ⊥

So we obtain state (Even,⊥).

Let us apply ρ1

ρ1(Even,⊥) = ⊥

So we obtain state (⊥,⊥).

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 20

Why Granger product?

In principle, Granger product is same as reduced product.

The practical advantage of the Granger product is that we can separately
define and implement ρ1and ρ2.

Therefore, an abstract interpretation tool can have modular implementation
of domains.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 21

Reduced cardinal power : exotic combination
We may compose two domains in completely different way.

Let us define the product domain

(DD2
1 ,v)

where v is defined as follows

f v g , ∀a ∈ D1. f (a) v2 g(a).

Example 16.7

Let us suppose D1 = parity domain and D2 = interval domain.
{Even 7→ [2, 3],Odd 7→ [19, 3000]} ∈ DD2

1 .

Exercise 16.6
Let x and y be variables in a program. Does the following hold?

I {Evenx 7→ [2, 3]y ,Oddx 7→ [1, 3]y} v {Evenx 7→ [2, 6],Oddx 7→ [6, 9]y}
I {Evenx 7→ [2, 3]y ,Oddx 7→ ⊥y} v {Evenx 7→ [2, 40],Oddx 7→ [1, 33]y}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 22

Operators for reduced cardinal power

1. α(c) = {a→ α2(c ∩ γ1(a))|a ∈ D1}
2. f Of ′ = {a→ f (a)O2f

′(a)|a ∈ D1}
3. sp#((a, b), ρ) = (Need custom implementations!)

Since we have α, one may say that we can implement sp#.
However, α enumerates elements of D1, which may be expensive.

Widening also needs enumeration over D1, therefore D1 must be finite.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 23

Example: reduced cardinal product

Example 16.8

Again, let us suppose D1 = {b = 0, b = 1} and D2 = interval domain.

Consider the following program

`0

`1

x := 1, b := 0

x := x + 2, b := 1
b = 0

x := x − 2, b := 0
b = 1

`e

b = 0 ∧ x = 3

We need X`1 = {b = 0 7→ x = 1, b = 1 7→ >} to prove the property.
Therefore, the need of reduced cardinal product.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/


cbna CS615: Formal Specification and Verification of Programs 2019 Instructor: Ashutosh Gupta IITB, India 24

End of Lecture 16

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akg/

	Domain combination

